Spelling suggestions: "subject:"mem"" "subject:"deem""
151 |
Contribution à l’étude de l’influence des régimes bi-phasiques sur les performances des électrolyseurs de type PEM basse pression : approche numérique, analytique et expérimentale / Contribution to the study of the influence of bi-phasic regimes on the performance of electrolysers of low pressure PEM type : numerical, analytical and experimental approachAubras, Farid 27 April 2018 (has links)
Les électrolyseurs à membrane échangeuse de protons basse pression (E-PEMs) apparaissent comme une solution efficace et durable pour la production d’hydrogène. Cette technologie pourrait permettre de pallier l’intermittence des énergies renouvelables (notamment solaire et éolien) en convertissant l’énergie électrique produite en énergie chimique (hydrogène). Durant ces travaux de thèse, trois aspects ont été développés : une approche analytique, une approche numérique, ainsi que approche expérimentale. Ces trois approches ont permis de comprendre l’influence du mélange bi-phasique eau/oxygène à l’anode du système sur les performances électrochimiques des E-PEMS ainsi que déterminer les paramètres opérationnels et intrinsèques qui impactent les performances des E-PEMs. À propos de l'approche expérimentale, des mesures d'impédance électrochimique ainsi que des courbes de polarisation ont été réalisées sur deux différentes cellules d'électrolyseurs de type PEM basse pression (la cellule ITW power de l'Electrochimical innovation Lab (UCL) et la cellule réversible Q-URFC du Laboratoire d'Énergétique, d'Électronique et Procédés (LE2P). À propos de la modélisation numérique, Le modèle expérimentale conjugue une approche multi-échelle macroscopique 2D et mésoscopique 1D. Ce modèle prend en compte le transfert de matière, le transfert de chaleur, les réactions électrochimiques anodique et cathodique et le transfert de charges présents dans le cœur des E-PEMs. D’un point de vue mésoscopique, une attention particulière a été portée sur l’influence des régimes bi-phasiques anodiques (régime de bulles coalescées (BC régime) et régime de bulles non coalescées (NCB régime) sur le transfert de matière à l’anode et sur l’humidification de la membrane. Ces travaux démontrent et confirment l’hypothèse que la transition du NCB régime vers le CB régime augmente le transfert de matière anodique, diminue la résistance ohmique de la membrane et améliore l’efficacité des E-PEMs. À propos de la modèle analytique, l’étude analytique explore une approche adimensionnelle de l'assemblage membrane électrode (AME) en régime stationnaire et isotherme. À l’échelle locale, en 1D, les équations prises en compte sont la conservation du courant dans l’AME, les réactions électrochimiques au sein des couches actives et le transfert de matière à travers la membrane. La résolution a permis d’obtenir des expressions analytiques des surtensions aux électrodes, de la chute ohmique et de la teneur en eau dans la membrane. L’approche adimensionnelle a permis de quantifier analytiquement les sources d’irréversibilités (chute ohmique, surtensions d’activations anodique et cathodique, et de la surtension induite par le bouchonnement des canaux anodiques) respectivement pour les faibles densités de courant, les moyennes densités de courant et les hautes densités de courant. En outre, ce modèle analytique peut être implémenté dans une boucle de contrôle commande. Ces travaux de thèse proposent une contribution à la compréhension du fonctionnement des E-PEMs basse pression en général, et en particulier de l'impact des régimes bi-phasiques sur leurs performances électro-chimiques. / Based on proton conduction of polymeric electrolyte membrane (PEM) technology, the water electrolysis (PEMWE) offers an interesting solution for efficiency hydrogen production. During the electrolysis process of water in PEMWE, the anodic side is the place where the water is splitting into oxygen, protons and electrons. The aim of this study is to recognize the link between two-phase flows (anode side) and cell performance under low pressure conditions. We have developed three approaches: the analytical approach and the numerical approach validated by the experimental data. For the numerical model, we have developed a two-dimensional stationary PEMWE model that takes into account electro-chemical reaction, mass transfer (bubbly flow), heat transfer and charges balance through the Membrane Electrodes Assembly (MEA). In order to take into account the changing electrical behavior, our model combines two scales of descriptions: at microscale within anodic active layer and MEA scale. The water management at both scales is strongly linked to the slug flow regime or the bubbly flow regime. Therefore, water content close to active surface areas depends on two-phase flow regimes. Our simulation results demonstrate that the transition from bubble to slug flow in the channel is associated with improvement in mass transport, a reduction of the ohmic resistance and an enhancement of the PEMWE efficiency. Regarding the analytical model, we have developed a one-dimensional stationary isothermal PEMWE model that takes into account electro-chemical reaction, mass transfer and charges balance through the Membrane Electrodes Assembly (MEA). The analytical approach permit to obtain mathematical solution of the activation overpotential, the ohmic losses and the bubbles overpotential respectively for the low current density, the middle current density and the high current density. This approach quantify the total overpotential of the cell, function of the operational and intrinsic numbers. In terms of perspective, the analytical model could be used for the diagnostic of the electrolyzer PEM.
|
152 |
Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical AnalysisAl-Smail, Jamal Hussain January 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right.
The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
|
153 |
Etude de dégradations des performances de Piles à Combustible PEM BT alimentées en H2/O2 lors de campagnes d'endurance : du suivi de l'état de santé en opération à la modélisation du vieillissement / Study of the performance degradation of low temperature PEM fuel cells fed with H2/O2 during ageing campaigns : from the online state of health monitoring to the ageing modelingTognan, Malik 12 September 2018 (has links)
Les travaux développés dans cette thèse traitent de la thématique du vieillissement des Piles à Combustible (PàC) à Membranes Echangeuses de Protons Basse Température (PEM BT). L’utilisation d’une PàC dans un contexte stationnaire à l’intérieur d’une batterie H2 (tandem PàC/Electrolyseur avec un étage de stockage H2 voire O2) est envisagée dans le cadre du déploiement d’un micro-réseau insulaire basé sur des sources d’énergie renouvelables (éolien et photovoltaïque). Deux aspects connexes associés à l’utilisation de la PàC et à son vieillissement dans cet environnement sont investigués dans ce travail de thèse : d’une part la manière dont les performances de la PàC et son rendement vont se dégrader au cours du temps et d’autre part les méthodes et outils qui vont être utilisés pour évaluer son état de santé durant sa période d’activité. La première de ces deux thématiques est abordée via l’étude d’une base de données d’essais en endurance à courant constant effectués sur des prototypes de stack PEM BT fonctionnant en H2/O2. L’hétérogénéité du vieillissement pour les différents stacks testés est mise en avant, de même que le découplage entre les pertes d’étanchéité interne et les dégradations des performances en tension au courant nominal durant les différentes campagnes. Une méthodologie proposant une dissociation des dynamiques réversibles et irréversibles de décroissance de la tension de la PàC au cours du temps est ensuite exposée et sert de base à la construction d’un modèle de dégradation de la tension sur un fonctionnement à courant fixe. Le modèle montre des résultats encourageants et une perspective liée à son utilisation dans le cadre du pronostic est suggérée. La question de la sensibilité du vieillissement aux variations dynamiques de la charge est ensuite abordée de manière complémentaire à ces essais d’endurance (effectués à charge constante) via une campagne de vieillissement effectuée sur des monocellules hybridées ou non directement par des supercondensateurs et cyclant sur un profil de courant dynamique. Une comparaison des évolutions des performances des monocellules au cours du temps dans les deux cas (hybridé et non-hybridé) est effectuée et met en avant l’effet du cyclage dynamique sur la dégradation des performances des PàC. La deuxième thématique touchant les méthodes et outils dédiés à l’évaluation de l’état de santé de la PàC durant son fonctionnement est introduite dans la suite de ces travaux en se penchant notamment sur une des causes majeures de la fin de vie des PàC : l’accroissement du crossover d’H2 vers l’O2 lié à la perte d’étanchéité interne de la membrane. Des mesures de tension à vide (OCV) effectuées lors de phases d’arrêt/démarrage sont scrutées a posteriori pour une des campagnes de la base de données d’essais en endurance. L’objectif est de rechercher des éventuelles corrélations entre l’accroissement des fuites internes et l’évolution de ces mesures au cours du temps afin de développer des potentiels indicateurs des fuites internes. Une séquence opératoire de mise en gaz mettant en avant un lien entre le niveau de crossover d’H2 et la vitesse d’effondrement de l’OCV pour certaines cellules du stack est identifiée et reproduite à l’occasion d’une campagne complémentaire d’essais. Une dernière partie du manuscrit est finalement consacrée à une approche théorique prospective dédiée à l’intégration d’un phénomène parasite, l’oxydation du Pt, dans la modélisation des performances statiques et dynamiques d’une PàC. Les retombées attendues portent sur l’amélioration de l’interprétation des caractérisations menées régulièrement (EIS, OCV, balayages sinus de forte amplitude aux très basses fréquences…), permettant le suivi du vieillissement. / This thesis work deals with the thematic of the Low Temperature Proton Exchange Membrane (PEM LT) Fuel Cell (FC) aging. The use of a FC inside a H2 battery (association of a FC, an electrolyzer and H2 / O2 tanks) in a stationary context is considered in an island micro-grid based on renewable energies (wind and solar power). Two axes linked with the FC use and aging in this context are investigated in this work: one of the axes is centered in the study of the FC performance decrease dynamics over time and the other on the development of methods and tools dedicated to the state of health monitoring during the FC operation. The first thematic is introduced through the exploitation of several aging campaigns performed on PEM FC stack prototypes under constant current solicitations. The stacks considered are fed with pure O2 on the cathode side. A focus is made on the aging heterogeneity inside the stacks and a decoupling between the nominal voltage degradation dynamics and the development of the H2 internal leak with time is highlighted for the different stacks and campaigns. A generic methodology dissociating the reversible and the irreversible voltage losses dynamics is proposed and is further used as a basis to model the nominal voltage degradation with time. The model built in this way is showing encouraging results and its potential use for prognostic purpose is suggested. Whereas these investigations focus on the FC performance degradations under constant current solicitation, the impact of load current dynamic variations on the FC aging is also treated with an experimental study performed on single cells. An ageing campaign under a dynamic load profile is performed on several single cells directly hybridized or not by supercapacitors. The hybridized cells are cycling on an almost-constant current profile whereas the non-hybridized cells are cycling on a dynamic one. A comparison of the performances evolution with time in both cases (hybridized and nothybridized) is done and highlights the effect of the dynamic cycling on the FC performance degradation. The second thematic dealing with the FC state of health evaluation is introduced with one of the main causes of the FC end-of-life: the development of the H2 internal leak between the anode and cathode compartments. Open Circuit Voltage (OCV) measurements performed during start-up and shut-down routines phases are scanned a posteriori in one of the aging campaign of the database. The objective is to seek some potential correlations between those OCV measurements and the H2 internal leak increase over time in order to develop internal leak indicators. A gases introduction operating sequence highlighting a link between the internal leak level and the OCV drift for some stack’s cells is identified during some start-up phases and reproduced during a complementary campaign. A last part of the manuscript is finally dedicated to the integration of a parasitic mechanism (the Pt oxidation) into the FC theoretical quasi-static and dynamic performance modeling. The model integrating this phenomenon is showing some abilities to explain and analyze several experimental features observed on classical performance characterization measurements (EIS, OCV measurements, large amplitude sinus sweep at very low frequency…), opening some perspectives for the FC state of health monitoring.
|
154 |
Voltage loss analysis of PEM fuel cellsJayasankar, B., Pohlmann, C., Harvey, D.B. 25 November 2019 (has links)
The assessment of performance for PEM Fuel Cells (PEMFC) at the stack, Single Repeating Unit (SRU), and Membrane Electrode Assembly (MEA) level is dominated by the evaluation of polarization curves. However, polarization curves do not provide adequate detail as to the origin of the inefficiencies of the fuel cell performance and information on these sources of origin are critical to understand and address topics such as material selection, optimal operating conditions, and overall robust and reliable cell and stack design characteristics. To the purpose of understanding the origin of the inefficiencies underlying the fuel cell polarization curve a series of additional experimental and analysis techniques must be applied and from the resultant data the origin of the inefficiencies can then be assigned to kinetic, ohmic, and mass transport loss categorizations. Further, through a combination of the diagnostic methods further resolution can be implied down to the contribution of the individual components to the relative voltage loss categories. In this topic, a methodology will be presented and discussed that achieves and demonstrates this process.
|
155 |
Fahrzeugnahe Methoden zur Diagnose von Degradationsvorgängen an automobilen PEM-BrennstoffzellenaggregatenHartung, Ingmar 11 June 2018 (has links)
In dieser Arbeit werden drei voneinander unabhängige Verfahren zur Diagnose von Alterungsvorgängen an automobilen Polymer-Elektrolyt-Membran-Brennstoffzellen-Stapeln und -Aggregaten entwickelt. Gemeinsam ermöglichen diese Methoden ein tieferes Verständnis für die elektrochemischen Schadensmechanismen und stellen Mittel zu deren Reduktion zur Verfügung. Die erste Methode behebt die an Stapeln auftretenden Probleme konventioneller Zyklovoltammetrie mittels gezielter Modifikation der Spannungstransienten. Dieses Vorgehen ermöglicht die exakte und sehr zuverlässig reproduzierbare Bestimmung von Wasserstoff- Crossoverstrom, Doppelschichtkapazität und aktiver Katalysator-Oberfläche im Stapel und stellt damit eine neue Art der Alterungsdiagnose an Stapeln dar. Der Zweck der zweiten Methode ist es, die systematische Entwicklung einer schonenden Betriebsstrategie für Luft-/Luft-Starts auf Aggregate-Ebene zu ermöglichen. Hierfür wird eine Reihe von Referenzelektroden in ein Fahrzeug-Aggregat eingebracht, um die im Stapel während des Starts ablaufenden elektrochemischen Vorgänge örtlich und zeitlich aufgelöst beobachten zu können. Auf diese Weise werden zwei Startprozeduren analysiert und bzgl. ihrer Eignung verglichen. Beim dritten Verfahren handelt es sich um eine Parameterschätzung, die die modellbasierte Diagnose und Regelung von schwer zu messenden Zustandsgrößen zum Ziel hat. Der echtzeitfähige Algorithmus schätzt die aktive Katalysator-Oberfläche, die Gaszusam- mensetzungen auf Anode und Kathode sowie den rezirkulierten Volumenstrom mittels verschiedener Modelle für Stapel und Systemkomponenten.:(1) Einleitung
(2) Aufbau und elektrochemische Limitierungen von PEM-Brennstoffzellen
(3) Aufbau von automobilen PEM-Brennstoffzellenaggregaten
(4) Eine Übersicht bekannter Diagnosemethoden für PEM-Brennstoffzellen
(5) In-situ-Charakterisierung von PEM-Brennstoffzellenstapeln
(6) Bewertungsmethode für Startprozeduren von PEM-Brennstoffzellenaggregaten
(7) Online-Diagnose mittels gekoppelter Echtzeit-Parameterschätzung
(8) Zusammenfassung und Ausblick / This thesis presents three newly developed methods for the diagnosis of deterioration in automotive polymer electrolyte membrane fuel cell stacks and systems. The combination of these methods allows for a more comprehensive understanding of electrochemical degradation processes and provides means for their mitigation.
The first technique aims at the elimination of problems associated with the application of conventional cyclic voltammetry on fuel cell stacks. This is achieved by specific modification of the voltage transients. The procedure enables the precise and highly reproducible measurement of the hydrogen crossover current, double layer capacity and
the electrochemically active surface area within the stack and thus represents a completely new kind of stack diagnosis method. The intention of the second method is to facilitate the purposeful development of damage mitigating air-/air-startup operating strategies on system level. To that intent, a number of dynamic hydrogen reference electrodes are positioned within the stack of a vehicle system, which allows for locally and temporally resolved observation of the electrochemical
processes. Using this method, two startup procedures are analysed and compared with regard to their suitability. The third technique is an online parameter estimation aiming at the model based diagnosis and control of quantities, which can only be measured with difficulty. The algorithm estimates the electrochemically active surface area, the gas compositions on anode and cathode and the recirculated volumetric flow using various models for stack and system components. With these three methods, all relevant parameters for the intrinsical quantification of the degradation of each single cell within the stack can be precisely quantified. The methods thus enable a direct observation of the deterioration of the fuel cell and contribute to a further increase in durability as well as faster and more efficient development processes.:(1) Einleitung
(2) Aufbau und elektrochemische Limitierungen von PEM-Brennstoffzellen
(3) Aufbau von automobilen PEM-Brennstoffzellenaggregaten
(4) Eine Übersicht bekannter Diagnosemethoden für PEM-Brennstoffzellen
(5) In-situ-Charakterisierung von PEM-Brennstoffzellenstapeln
(6) Bewertungsmethode für Startprozeduren von PEM-Brennstoffzellenaggregaten
(7) Online-Diagnose mittels gekoppelter Echtzeit-Parameterschätzung
(8) Zusammenfassung und Ausblick
|
156 |
Polymerelektrolytbrennstoffzelle – von der Fertigung bis zur WiederverwendungSchmidt, Patrick Alexander, Bießmann, Marvin 27 May 2022 (has links)
Für Brennstoffzellen wird in den kommenden Jahren ein erhebliches Marktwachstum prognostiziert. Aktuell besteht die Notwendigkeit die technischen und wirtschaftlichen Herausforderungen für einen Markthochlauf zu realisieren. Hierzu müssen neue hochratenfähige Fertigungstechnologien entwickelt werden, um die Produktions- und Stückkosten zu senken. Für das Stapeln von Brennstoffzellen-Stacks sollen zukünftig mehrere entwickelte Konzepte für das „Stacking im Fließverfahren“ betrachtet und hinsichtlich ihrer Machbarkeit und Wirtschaftlichkeit überprüft werden. Zusätzlich müssen hochratenfähige Prüfverfahren entwickelt werden, um eine Null-Fehler-Produktion der kostenintensiven Komponenten und Systeme zu gewährleisten. Hierbei sollen u.a. KI-basierte Technologien genutzt werden. Die Abhandlung zeigt den aktuellen Stand der Technik auf dem Gebiet des Stapelns und stellt innovative und zugleich wirtschaftliche technische Lösungsansätze vor, wie die Fertigungsprozesse zukünftig gestaltet werden können und welche technologischen Neuerungen dafür notwendig sein werden. Weiterhin steht die Demontage der Brennstoffzellen unter dem Aspekt einer optimalen Verwertung (Recycling) sowie insbesondere der Nachnutzung (ReUse) im Fokus der Betrachtungen. / Considerable market growth is forecast for fuel cells in the coming years. Currently, there is a need to realise the technical and economic challenges for a market ramp-up. To this end, new high-rate manufacturing technologies must be developed in order to reduce production and unit costs. For the stacking of fuel cell stacks, several developed concepts for 'stacking in a flow process' are to be considered in the future and examined with regard to their feasibility and economic efficiency. In addition, high-rate testing methods must be developed to ensure zero-defect production of the cost-intensive components and systems. Among other things, AI-based technologies are to be used here. The paper shows the current state of the art in the field of stacking and presents innovative and at the same time economical technical solution approaches, how the manufacturing processes can be designed in the future and which technological innovations will be necessary for this. Furthermore, the disassembly of the fuel cells under the aspect of optimal utilisation (recycling) as well as re-utilisation (ReUse) is the focus of the considerations.
|
157 |
Inkjet printing processes as an innovative manufacturing method for the production of catalytically coated membranes (CCM) for fuel cells as well as electrolyzersWillert, Andreas, Zeiner, Christian, Zubkova, Tatiana, Zichner, Ralf 27 May 2022 (has links)
Digitally controlled inkjet printing technology has attractive features for the production of catalyst coated membranes (CCM) for application either in electrolysers or in fuel cells. There are a number of unique features: pattern like coating for effective use of expensive materials like platinum or iridium, direct deposition onto membrane material, non-impact printing, easy change of pattern design, and ability to generate catalytic gradients. Employing inkjet printing technology enables the manufacturing of catalytic layers as well as other components. The challenges are to evaluate process-compatible inks as well as processing parameters. / Die digital gesteuerte Inkjetdrucktechnologie hat attraktive Eigenschaften für die Herstellung von katalysatorbeschichteten Membranen (CCM), die entweder in Elektrolyseuren oder in Brennstoffzellen eingesetzt werden. Es gibt eine Reihe einzigartiger Merkmale: mustergenaue Beschichtung für den effektiven Einsatz teurer Materialien wie Platin oder Iridium, direkte Bedruckung des Membranmaterials, berührungsfreies Drucken, einfache Änderung des Druckdesigns und die Fähigkeit, katalytische Gradienten zu erzeugen. Der Einsatz der Inkjetdrucktechnologie ermöglicht die Herstellung von katalytischen Schichten und anderen Komponenten. Die Herausforderungen bestehen darin, prozesskompatible Tinten sowie Verarbeitungsparameter zu evaluieren.
|
158 |
Potentiell koppling mellan elektrolys och landbaseradfiskodling : En analys av behov och tillgång på syrgas och värmeHansen, Per January 2021 (has links)
Det kommer ske en stor utbyggnad av elektrolys för produktion av vätgas i Sverigeoch övriga världen. För att sänka produktionskostnaden och därmed göra vätgasenbilligare analyserar denna rapport vilket behov av syrgas och värme som en landbaserad fiskodling har, samt hur mycket syrgas och värme fiskodlingen skulle behövaköpa från en elektrolysör. Analysen visar att de arter som används i studien - tilapia(Oreochromis, Oreochromis,. Alcolapia), regnbåge (Oncorhynchus mykiss) och lax(Salmo salar) - i en odling som producerar 40 ton fisk om året skulle förbruka cirka1,16 procent av syrgasen och cirka 0,35 procent av värmen från en 3 MW PEMelektrolysör. Försäljningsvärdet av syrgasen och värmen från en 3 MW elektrolysörberäknas till cirka 695 000 SEK/år för syrgasen och cirka 1 830 000 SEK/år för värmen. Den genomsnittliga kostnaden för syrgas och värme för arterna i studien i enodling på 40 ton/år beräknas till 8900 SEK/år för syrgasen och 6400 SEK/år förvärmen i en landbaserad fiskodling. / There will be a major expansion of electrolysis for production of hydrogen in Sweden and the rest of the world. To reduce production costs and thus make hydrogencheaper, this report analyzes how much oxygen and heat a fish farm consumes andtherefore would need to buy from an electrolyser. The analysis shows that the species used in the study - tilapia (Oreochromis, Oreochromis, Alcolapia), rainbow(Oncorhynchus mykiss) and salmon (Salmo salar) - in a farm that produces 40 tonsof fish per year would consume 1.16 percent of the oxygen and 0,35 percent of theheat produced from a 3 MW PEM electrolyzer. The value of the oxygen and theheat from a 3 MW electrolyser is calculated at SEK 694,939/year for the oxygenand SEK 1,829,813/year for the heat. The average cost for the species in the studyin a 40 tonne/year fish farm is calculated at SEK 8,900/year for the oxygen and SEK6,400/year for the heat in a land-based fish farm.
|
159 |
Modeling of an Electrolysis System for Techno-Economic Optimization of Hydrogen ProductionKöstlbacher, Jürgen January 2023 (has links)
In face of climate change, Europe and other global actors are in the process of transitioning to carbon-neutral economies, aiming to phase out of fossil fuels and power industries with renewable energies. Hydrogen is going to play a crucial role in the transition, replacing fossil fuels in hard-to-decarbonize industries and acting as energy carrier and energy storage for renewable electricity. However, the hydrogen production method with the lowest carbon intensity, water electrolysis in combination with renewable electricity, is often not cost competitive to other production methods. Even though policies and initiatives are providing subsidies to scale up low-carbon hydrogen production, companies hesitate to invest due to the complexity of hydrogen production systems and the uncertainties of cost competitiveness. This research aims to develop a tool for optimizing the capacity of a water electrolysis system to produce low-carbon hydrogen and to lay the groundwork for optimizing the operation of electrolysis hydrogen production plants. The objective is to find the optimal plant capacity to achieve the lowest cost of hydrogen production for a defined hydrogen demand and energy supply. The scope is limited to the electrolysis system as optimizing asset which is modeled with technology-specific costs and characteristics, gained from manufacturer interviews and internal company data. This includes the often neglected characteristics of load-dependent efficiency and degradation effects. Further, the tool is enabled to buy and sell electricity on the spot market according to predicted prices in order to minimize the electricity costs. The developed tool is tested, benchmarked and applied to two different industry-based test scenarios in Germany and Portugal. The test scenario in Germany describes a mid-scale hydrogen production case for a transport application with a demand increase over 10 years (80 to 1,800 tons per year) and regional renewable energy supply via power purchase agreements. The lowest costs of hydrogen production for this scenario can be reached with an alkaline electrolysis system of a capacity of 16 MWel considering only renewable energy sources, achieving a LCOH of 4.75 €/kg of green hydrogen. The second test scenario describes a large-scale production case in Portugal for application in the refinery industry. The yearly hydrogen demand increases from 5,000 tons up to 17,100 tons within three years and is assumed to stay constant for the residual years. The electricity for the electrolysis process is secured through large solar PV and offshore wind power purchase agreements. Utilizing the alkaline electrolysis technology with a capacity of 128 MWel, a LCOH of 3.31 €/kg of green hydrogen can be achieved at the output point of the plant. The study concludes that the optimal solution and the achievable hydrogen production costs are highly dependent on the hydrogen demand (quantity and profile), the energy supply (quantity, profile, costs), and the chosen technology (efficiency, degradation, costs) and need to be evaluated under the case-specific prerequisites. The thesis further highlights the significant impact of the electrolysis system efficiency and capital expenditures on the capacity decision and achievable hydrogen production costs. / Mot bakgrund av klimatförändringarna håller Europa och andra globala aktörer på att ställa om till koldioxidneutrala ekonomier, med målet att fasa ut fossila bränslen och driva industrier med förnybara energikällor. Vätgas kommer att spela en avgörande roll i omställningen genom att ersätta fossila bränslen i industrier som är svåra att koldioxidneutralisera och fungera som energibärare och energilagring för förnybar el. Den metod för vätgasproduktion som har lägst koldioxidintensitet, vattenelektrolys i kombination med förnybar el, är dock ofta inte kostnadsmässigt konkurrenskraftig i förhållande till andra produktionsmetoder. Även om politik och initiativ tillhandahåller subventioner för att skala upp koldioxidsnål vätgasproduktion, tvekar företagen på grund av komplexiteten i vätgasproduktionssystemen och osäkerheten kring konkurrenskraften. Denna forskning syftar till att utveckla ett verktyg för att optimera kapaciteten hos ett vattenelektrolyssystem för att producera grön vätgas och att lägga grunden för att optimera driften av elektrolysanläggningar för vätgasproduktion. Målet är att hitta den optimala anläggningskapaciteten för att uppnå den lägsta kostnaden för vätgasproduktion för en definierad vätgasefterfrågan och definierad energiförsörjning. Omfattningen är begränsad till elektrolyssystemet som en optimerande tillgång som modelleras med teknikspecifika kostnader och egenskaper, hämtade från tillverkar-intervjuer och från företags interna marknadsdata. Detta inkluderar de ofta försummade egenskaperna hos lastberoende effektivitet och degraderingseffekter. Vidare kan verktyget köpa och sälja el på spotmarknaden enligt förutspådda priser för att minimera elkostnaderna. Det utvecklade verktyget testas, jämförs och tillämpas på två olika industribaserade testscenarier i Tyskland och Portugal. Testscenariot i Tyskland beskriver en medelstor vätgasproduktion för en transporttillämpning där efterfrågan ökar över 10 år (80 till 1 800 ton per år) och regional förnybar energiförsörjning via energiköpsavtal (power purchase agreements). De lägsta kostnaderna för vätgasproduktion för detta scenario kan uppnås med ett alkaliskt elektrolyssystem med en kapacitet på 16 MWel som endast använder förnyelsebara energikällor och uppnår en LCOH på 4,75 €/kg grön vätgas. Det andra testscenariot beskriver en storskalig vätgasproduktion i Portugal för tillämpning inom raffinaderi-industrin. Det årliga vätgasbehovet ökas från 5 000 ton till 17 100 ton inom tre år och antogs förbli konstant under de återstående åren. El för elektrolysprocessen säkras genom stora energiköpsavtal (power purchase agreements) för solceller och havsbaserad vindkraft. Genom att använda alkalisk elektrolysteknik med en kapacitet på 128 MWel kan en LCOH på 3,31 €/kg grön vätgas uppnås vid anläggningens utgångspunkt. Studien visar att den optimala lösningen och de uppnåbara vätgasproduktionskostnaderna är starkt beroende av vätgasbehovet (mängd och profil), energiförsörjningen (mängd, profil, kostnader) och den valda tekniken (effektivitet, nedbrytning, kostnader) och måste utvärderas utifrån de fallspecifika förutsättningarna. Avhandlingen belyser vidare den betydande inverkan som elektrolyssystemets effektivitet och kapitalutgifter har på kapacitetsbeslutet och de uppnåeliga kostnaderna för vätgasproduktion.
|
160 |
En ekonomisk analys av biprodukterna från fossilfri vätgasproduktion : Undersökning av vätgasprojekt i Gävle hamnLindqvist, Oskar, Ellgren, Tommy January 2022 (has links)
In order to keep the Paris Agreement's goal of limiting global warming to well below 2°C, greenhouse gas emissions should be reduced. However, larger measures need to be implemented as it has been established that today's measures will not be enough. The Port of Gävle has plans to install a water electrolyser for hydrogen production of either Proton Exchange Membrane (PEM) or Alkaline Water Electrolysis(AWE). The size of the electrolyser will be approximately 10 MW and will have the capacity to produce 2,000 tons of fossil-free hydrogen per year that might supply 100 heavy trucks. However, it is currently cheaper with fossil hydrogen production. Therefore, an article review is conducted containing a calculation part where the purpose is to investigate the amount of by-products produced and whether they can be sold in other areas of use to make renewable hydrogen more economically competitive. Information for the study has been retrieved from databases, search engines, companies, authorities and individuals deemed relevant to the study. The by-products from the 10 MW electrolyser in the Port of Gävle have been compared with 1,5 MW and 17 MW electrolysers, then a sensitivity analysis has also beenperformed on the 10 MW electrolysers. The potentially generated heat depends on the type of electrolyser where AWE generates 77 MWh of residual heat per day and PEM potentially generates 67 MWh of residual heat per day. Furthermore, AWE needs 64 kWh of electricity to produce 1 kg of hydrogen while PEM needs 66,5 kWh of electricity per kg of hydrogen produced. Revenues from residual heat sales for AWE were estimated annually to approximately 7 million SEK and for PEM approximately 6 million SEK. For electrolysis-produced oxygen to compete with cryogenic oxygen, the price should not exceed 108 SEK/tonne. For the 10 MW electrolyser, oxygen sales are estimated to generate approximately 1,1 million SEK annually for both AWE and PEM. Total income for AWE will annually be just over 8,1 million SEK and 7.1million SEK annually for PEM. The AWE process is then preferable as it is more economically sustainable as the income from the by-products is 12% higher than PEM due to higher production of oxygen and greater generation of residual heat. / För att hålla Parisavtalets mål att begränsa den globala uppvärmningen till väl under 2°C bör utsläppen av växthusgaser minska. Däremot behöver större åtgärder genomföras då det har konstaterats att dagens åtgärder inte kommer att räcka. Gävle hamn har planer på att installera en vattenelektrolysör för vätgasproduktion av antingen Protonutbytesmembran (PEM) eller Alkalisk vattenelektrolys (AWE). Storleken på elektrolysören kommer vara ungefär 10 MW och har kapaciteten att producera 2000 ton fossilfri vätgas per år som kan försörja 100 tunga lastbilar. Dock är det i dagsläget billigare med fossil vätgasproduktion. Därför genomförs en litteraturstudie innehållande en beräkningsdel. Där syftet är att undersöka mängden biprodukter som produceras samt om de kan säljas inom andra områden för att göra förnyelsebar vätgas mer ekonomiskt konkurrenskraftig. Information för studien har hämtats från databaser, sökmotorer, företag, myndigheter och enskilda personer som ansetts relevanta för studien. Biprodukterna från 10 MW elektrolysören i Gävle hamn har jämförts med 1,5 MW och 17 MW elektrolysörer, sedan har även en känslighetsanalys utförts på elektrolysörerna. Potentialen att generera värme beror på typen av elektrolysör där AWE genererar 77 MWh restvärme per dygn och PEM genererar potentiellt 67 MWh restvärme per dygn. Vidare behöver AWE 64 kWh el för att producera 1 kg vätgas medan PEM behöver 66,5 kWh el per producerat kg vätgas. Intäkterna från restvärmeförsäljningen för AWE beräknades årligen till ungefär 7mnSEK och för PEM ungefär 6 mnSEK. För att elektrolysframställd syrgas ska kunna konkurrera med kryogent framställd syrgas bör inte priset övergå 108 SEK/ton. För 10 MW elektrolysören beräknas syrgasförsäljningen kunna inbringa omkring 1,1 mnSEK årligen både för AWE och PEM. Totala inkomsten för AWE blir drygt 8,1 mnSEK/år och 7,1 mnSEK/år för PEM. AWE processen är att föredra då den är mer ekonomiskt hållbar då inkomsten från biprodukterna är 12% högre än PEM på grund av högre produktion av syrgas samt större generering av restvärme.
|
Page generated in 0.0436 seconds