• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 132
  • 34
  • 33
  • 11
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 275
  • 275
  • 58
  • 37
  • 35
  • 34
  • 33
  • 32
  • 31
  • 30
  • 28
  • 27
  • 26
  • 25
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Atomic Simulations on Phase Transformation and Cyclic Deformation Mechanisms in Various Binary Metallic Glasses

Lo, Yu-chieh 04 August 2009 (has links)
The bulk metallic glasses (BMGs) are potential metallic materials due to their interesting properties, such as the high strength, high elastic strain limit, and high wear/corrosion resistance. Over the past four decades, a variety of studies have been done on the characteristics of the mechanical, thermodynamic properties of such category of metallic materials, but there still remain many questions about basic deformation mechanisms and their microstructures so far. Molecular dynamics (MD) simulation can provide significant insight into material properties under the atomic level and see a detailed picture of the model under available investigation in explaining the connection of macroscopic properties to atomic scale. MD simulation is applied to study the material properties and the deformation mechanisms in various binary metallic glasses and intended to examine the feasibility of MD simulation to compare the experimental results obtained in our laboratory over the past few years. The gradual vitrification evolution of atom mixing and local atomic pairing structure of the binary Zr-Ni, Zr-Ti alloys and pure Zr element during severe deformation at room temperature is traced numerically by molecular dynamic simulation. It is found that the icosahedra clusters will gradually develop with the increasing of disorder environment of alloys in the Zr-Ni, Zr-Ti systems, forming amorphous atomic packing. Other compound-like transition structures were also observed in transient in the Zr-Ni couple during the solid-state amorphization process under severe plastic deformation. The crystalline pure Zr can be vitrified in the simulation provided that the rolling speed is high enough and the rolling temperature is maintained at around 300 K. On the other hand, the effective medium theory (EMT) inter-atomic potential is employed in the molecular dynamics (MD) simulation to challenge the study of the diffusion properties in the Mg-Cu thin films. The transition of local structures of Mg-Cu thin films is traced at annealing temperatures of 300, 413, and 500 K. Furthermore, the simulation results are compared with the experimental results obtained from the transmission electron microscopy and X-ray diffraction. The gradual evolution of the local atomic pairing and cluster structure is discussed in light of the Mg and Cu atomic characteristics. Lately, the progress of the cyclic-fatigue damage in a binary Zr-Cu metallic glass in small size scale is investigated using classical molecular-dynamics (MD) simulations. The three-dimensional Zr-Cu fully amorphous structure is produced by quenching at a cooling rate 5 K/ps (ps = 10-12 s-1) from a high liquid temperature. The Nose-Hoover chain method is used to control the temperature and pressure to maintain a reasonable thermodynamic state during the MD-simulation process, as well as to bring the imposed cyclic stress on the subsequent simulation process. Both the stress- and strain-control cyclic loadings are applied to investigate the structural response and free-volume evolution. The overall structure would consistently maintain the amorphous state during cyclic loading. The plastic deformation in simulated samples proceeds via the network-like development of individual shear transition zones (STZs) by the reversible and irreversible structure-relaxations during cyclic loading, dislike the contribution of shear band in large-scale specimens. Dynamic recovery and reversible/irreversible structure rearrangements occur in the current model, along with annihilation of excessive free volumes. This behavior might be able to retard the damage growth of metallic glass and enhance their fatigue life.
172

Load-carrying and energy-dissipation capacities of ultra-high-performance concrete under dynamic loading

Buck, Jonathan J. 06 April 2012 (has links)
The load-carrying and energy-dissipation capacities of ultra-high-performance concrete (UHPC) under dynamic loading are evaluated in relation to microstructure composition at strain rates on the order of 10⁵ s⁻¹ and pressures of up to 10 GPa. Analysis focuses on deformation and failure mechanisms at the mesostructural level. A cohesive finite element framework that allows explicit account of constituent phases, interfaces, and fracture is used. The model resolves essential deformation and failure mechanisms in addition to providing a phenomenological account of the effects of the phase transformation. Four modes of energy dissipation are tracked, including pressure-sensitive inelastic deformation, damage through the development of distributed cracks, interfacial friction, and energy released through phase transformation of the quartz silica constituent. Simulations are carried out over a range of volume fractions of constituent phases to quantify trends that can be used to design materials for more damage-resistant structures. Calculations show that the volume fractions of the constituents have more influence on the energy-dissipation capacity than on the load-carrying capacity, that inelastic deformation is the source of over 70% of the energy dissipation, and that the presence of porosity changes the role of fibers in the dissipation process. The results also show that the phase transformation has a significant effect on the load-carrying and energy-dissipation capacities of UHPC for the conditions studied. Although transformation accounts for less than 2% of the total energy dissipation, the phase transformation leads to a twofold increase in the crack density and yields nearly an 18% increase to the overall energy dissipation. Microstructure-behavior relations are established to facilitate materials design and tailoring for target-specific applications.
173

Influence of metallurgical phase transformation on crack propagation of 15-5PH stainless steel and 16MND5 low carbon steel

Liu, Jikai 07 December 2012 (has links) (PDF)
Ou study focuses on the effects of phase transformations on crack propagation. We want to understand the changes of fracture toughness during welding. In this work, fracture toughness is expressed by J-integral. There are many experimental methods to obtain the critical toughness JIC but they are impractical for our investigation during phase transformation. That is the reason why we have proposed a method coupling mechanical tests, digital image correlation and finite element simulation. The fracture tests are implemented on pre-cracked single edge notched plate sample which is easy for machining and heat conduct during phase transformation. The tests are conducted at different temperatures until rupture. Digital image correlation gives us the displacement information on every sample. Each test is then simulated by finite element where the fracture toughness is evaluated by the method G-Theta at the crack propagation starting moment found by potential drop method and digital image correlation technical. Two materials have been studied, 15Cr-5Ni martensitic precipitation hardening stainless steel and 16MND5 ferritic low carbon steel. For these two materials, different test temperatures were chosen before, during and after phase transformation for testing and failure characterization of the mechanical behavior. Investigation result shows that metallurgical phase transformation has an influence on fracture toughness and further crack propagation. For 15-5PH, the result of J1C shows that the as received 15-5PH has higher fracture toughness than the one at 200°C. The toughness is also higher than the original material after one cycle heat treatment probably due to some residual austenite. Meanwhile, pure austenite 15-5PH at 200°C has higher fracture toughness than pure martensitic 15-5PH at 200°C. For 16MND5, the result also proves that the phase transformation affects fracture toughness. The as received material has bigger J1C than the situation where it was heated to 600°C. On the other hand, the material at 600°C just before isothermal bainite transformation after the austenitization during cooling process also has higher fracture toughness than the one at 600°C before austenitization. These two conclusions are consistent well with the result of 15-5PH. But the final situation of 16MND5 after one cycle heat treatment has a slightly smaller J1C than the receiving situation. It means that one cycle heat treatment hasn't an significant influence on 16MND5fracture toughness. Conclusions show that one should pay attention to the heating period before austenitization of the substrate material when people do the welding as the higher temperature will bring the lower fracture toughness during this process. While during cooling period, the fracture toughness doesn't change a lot during, before or after the cooling induced phase transformation. Even for 15-5PH, it has a better fracture toughness after the martensite transformation than before.
174

Comprehensive Investigation of the Uranium-Zirconium Alloy System: Thermophysical Properties, Phase Characterization and Ion Implantation Effects

Ahn, Sangjoon 16 December 2013 (has links)
Uranium-zirconium (U-Zr) alloys comprise a class of metallic nuclear fuel that is regularly considered for application in fast nuclear energy systems. The U-10wt%Zr alloy has been demonstrated to very high burnup without cladding breach in the Experimental Breeder Reactor-II (EBR-II). This was accomplished by successfully accommodating gaseous fission products with low smear density fuel and an enlarged cladding plenum. Fission gas swelling behavior of the fuel has been experimentally revealed to be significantly affected by the temperature gradient within a fuel pin and the multiple phase morphologies that exist across the fuel pin. However, the phase effects on swelling behavior have not been yet fully accounted for in existing fuel performance models which tend to assume the fuel exists as a homogeneous single phase medium across the entire fuel pin. Phase effects on gas bubble nucleation and growth in the alloy were investigated using transmission electron microscopy (TEM). To achieve this end, a comprehensive examination of the alloy system was carried out. This included the fabrication of uranium alloys containing 0.1, 2, 5, 10, 20, 30, 40, and 50 wt% zirconium by melt-casting. These alloys were characterized using electron probe micro-analysis (EPMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Once the alloys were satisfactorily characterized, selected U-Zr alloys were irradiated with 140 keV He^(+) ions at fluences ranging from 1 × 10^(14) to 5 × 10^(16) ions/cm^(2). Metallographic and micro-chemical analysis of the alloys indicated that annealing at 600 °C equilibrates the alloys within 168 h to have stable α-U and δ-UZr_(2) phase morphologies. This was in contrast to some reported data that showed kinetically sluggish δ-UZr_(2) phase formation. Phase transformation temperatures and enthalpies were measured using DSC-TGA for each of the alloys. Measured temperatures from different time annealed alloys have shown consistent matches with most of the features in the current U-Zr phase diagram which further augmented the EPMA observed microstructural equilibrium. Nevertheless, quantitative transformation enthalpy analysis also suggests potential errors in the existing U-Zr binary phase diagram. More specifically, the (β-U, γ2) phase region does not appear to be present in Zr-rich (> 15 wt%) U-Zr alloys and so further investigation may be required. To prepare TEM specimens, characterized U-Zr alloys were mechanically thinned to a thickness of ~150 μm, and then electropolished using a 5% perchloric acid/95% methanol electrolyte. Uranium-rich phase was preferentially thinned in two phase alloys, giving saw-tooth shaped perforated boundaries; the alloy images were very clear and alloy characterization was accomplished. During in-situ heating U-10Zr and U-20Zr alloys up to 810 °C, selected area diffraction (SAD) patterns were observed as the structure evolved up to ~690 °C and the expected α-U → β-U phase transformation at 662 °C was never observed. For the temperature range of the (α-U, γ2) phase region, phase transformation driven diffusion was observed as uranium moved into Zr-rich phase matrix in U-20Zr alloy; this was noted as nonuniform bridging of adjacent phase lamellae in the alloy. From the irradiation tests, nano-scale voids were discovered to be evenly distributed over several micrometers in U-40Zr alloys. For the alloys irradiated at the fluences of 1 × 10^(16) and 5 × 10^(16) ions/cm^(2), estimated void densities were proportional to the irradiation doses, (250 ± 40) and (1460 ± 30) /μm^(2), while void sizes were fairly constant, (6.0 ± 1.5) and (5.2 ± 1.2) nm, respectively. Measured data could be foundational inputs to the further development of a semi-empirical metal fuel performance model.
175

Evaluating the Potential of Scaling due to Calcium Compounds in Hydrometallurgical Processes

Azimi, Ghazal 04 August 2010 (has links)
A fundamental theoretical and experimental study on calcium sulphate scale formation in hydrometallurgical solutions containing various minerals was conducted. A new database for the Mixed Solvent Electrolyte (MSE) model of the OLI Systems® software was developed through fitting of existing literature data such as mean activity, heat capacity and solubility data in simple binary and ternary systems. Moreover, a number of experiments were conducted to investigate the chemistry of calcium sulphate hydrates in laterite pressure acid leach (PAL) solutions, containing Al2(SO4)3, MgSO4, NiSO4, H2SO4, and NaCl at 25–250ºC. The database developed, utilized by the MSE model, was shown to accurately predict the solubilities of all calcium sulphate hydrates (and hence, predict scaling potential) in various multicomponent hydrometallurgical solutions including neutralized zinc sulphate leach solutions, nickel sulphate–chloride solutions of the Voisey’s Bay plant, and laterite PAL solutions over a wide temperature range (25–250°C). The stability regions of CaSO4 hydrates (gypsum, hemihydrate and anhydrite) depend on solution conditions, i.e., temperature, pH and concentration of ions present. The transformation between CaSO4 hydrates is one of the common causes of scale formation. A systematic study was carried out to investigate the effect of various parameters including temperature, acidity, seeding, and presence of sulphate/chloride salts on the transformation kinetics. Based on the results obtained, a mechanism for the gypsum–anhydrite transformation below 100°C was proposed. A number of solutions for mitigating calcium sulphate scaling problems throughout the processing circuits were recommended: (1) operating autoclaves under slightly more acidic conditions (~0.3–0.5 M acid); (2) mixing recycled process solutions with seawater; and (3) mixing the recycling stream with carbonate compounds to reject calcium as calcium carbonate. Furthermore, aging process solutions, saturated with gypsum, with anhydrite seeds at moderate temperatures (~80°C) would decrease the calcium content, provided that the solution is slightly acidic.
176

Modélisation du comportement des sols fins quasi-saturés comportant de l’air occlus / Behaviour modelling of fine, quasi-saturated soils containing entrapped air

Lai, Ba Tien 08 April 2016 (has links)
Lors du dimensionnement des ouvrages en terre : remblais, digues, on observe que la plupart des matériaux sont compactés à l’optimum Proctor ou coté humide. En général, ce compactage implique que le sol se trouve dans un état où le degré de saturation est très élevé. Cruz et al (1985) ont montré qu'à un degré de saturation élevé (supérieur à 85%, voire 90% dans le cas de certains sols), la phase liquide est continue alors que l’air présent sous forme de bulles est occlus ; ce qui rend le comportement du sol complexe. L’élaboration d’un modèle de comportement pour ce type de sols nécessite une compréhension approfondie des phénomènes physico-mécaniques intervenant au sein de l’air occlus, de l'eau liquide contenant de l'air dissous et du squelette solide. Dans ce sens, un nouveau modèle hydromécanique a été développé. Ce modèle prend en compte le comportement physico-mécanique et la cinématique propre de chacun des constituants du milieu polyphasé (eau liquide, air dissous, air sous forme gazeuse et matrice solide). En particulier, dans ce modèle, nous tenons compte de la tension de surface, de la migration des phases gazeuse et liquide qui ont des impacts importants sur le comportement mécanique des sols. Le développement du modèle conduit à un système d’équations aux dérivées partielles fortement non linéaire qui peut être résolu numériquement en utilisant la méthode des éléments finis. Ce nouveau modèle a été implémenté dans un code de calcul écrit en C++ « Hydromech », développé à l'origine par Pereira (2005), qui permet de simuler les essais oedométriques suivant différents trajets de chargement hydromécanique. En particulier, ce code de calcul permet de simuler de façon cohérente la transition entre différents régimes de saturation, aussi bien dans l'espace (translation progressive d'une frontière entre deux régimes voisins) que dans le temps (passage d'un régime à l'autre en un point donné) ; ce qui constitue un problème de modélisation difficile. Les études numériques réalisées montrent que ce modèle donne des résultats cohérents et mettent en évidence sa capacité à simuler avec précision le comportement hydromécanique des sols quasi-saturés comportant de l'air occlus. / The behaviour of quasi-saturated materials is an important factor to be considered when designing cuttings and embankments in which earthwork materials are compacted to the optimum proctor density. Typically, soil compaction is performed at the optimum Proctor or on the wet side of the optimum, which means that the soil is in a highly saturated state. Cruz et al (1985) have shown that at a high degree of saturation (greater than 85% or even 90% in the case of certain soils), the liquid phase is continuous whereas the gas phase in the form of entrapped air bubbles is discontinuous. It is the presence of the entrapped air bubbles which makes the soil behaviour complex. The construction of a theoretical model for this type of soils requires the consideration of various physical-mechanical phenomena and their couplings occurring within the tri-phasic medium consisting of the solid grains, liquid water containing dissolved air and the entrapped air bubbles. In this sense, a new hydromechanical model has been developed that takes into account the physical-mechanical interactions between different phases as well as the kinematics of each constituent (liquid water, dissolved air, gaseous air and solid grains). In particular, the model accounts for the interfacial tension, migration of gaseous and liquid phases, which have important impacts on the mechanical behaviour. The development leads to a system of highly non-linear partial differential equations which can be solved numerically using the finite element method. This new model has been implemented in a numerical code “Hydromech” written in C++, developed originally by Pereira (2005) that has been used to simulate oedometer tests with different hydromechanical loading paths. In particular, this code allows to simulate consistently the transition across different regimes of saturation, both with respect to space (progressive translation of a boundary between two neighbouring regimes) and to time (transition of one regime to another at a fixed material point); which constituted a difficult modelling problem at the start. Numerical studies carried out show that this model gives consistent results providing a clear demonstration of its ability to simulate with precision the hydro-mechanical behaviour of quasi-saturated soils containing entrapped air.
177

Croissance, caractérisation et transformation de phase dans des couches minces d'YMnO3 / Growth, characterization and phase transformation in YMnO3 thin films

Iliescu, Ionela 19 February 2015 (has links)
Couches minces multiferroiques d’YMnO3 (YMO) films ont été synthétisée par MOCVD sur desubstrats de Si, STO, LAO et LSAT orientées (100). L'effet de l'épaisseur des couches et de lacomposition chimique sur les propriétés structurales et magnétiques a été étudié. YMO peutcristalliser dans deux structure : hexagonale (h-YMO) et orthorhombique (o-YMO), généralementconsidérée comme les phases stables et métastables, respectivement. Les deux phases, ainsi queleur phase précurseur amorphe sont étudiées dans cette thèse. D'un côté, une croissance sélectivede la phase amorphe, h-YMO ou o-YMO est réalisé sur des substrats de Si en ajustant lesconditions de dépôt. Une étude approfondie des conditions optimales a été réalisée. Unetransformation de phase irréversible de l'état amorphe à la phase cristalline o-YMO a lieu à unetempérature à peu près constante (~ 700 ° C) et dans un court période de temps (min ~). La phaseo-YMO ainsi obtenue est stable au moins jusqu'à 900 ° C.De l'autre côté, la phase o-YMO est stabilisé par épitaxie sur des substrats de type perovskite (STO,LAO, LSAT). Les films sur STO et LSAT présentent principalement l’orientation (010) tandis queceux sur les substrats de LAO sont orientées (101). Une orientation secondaire de domaines estobservée en particulier sur des substrats de STO: rotation de 90 ° dans le plan du domaine (010).A des faibles épaisseurs les couches sont contraintes. Les mesures magnétiques montrent uncomportement de verre de spin pour chacune de phase o- ou h-YMO, indépendamment du substrat. / Multiferroic YMnO3 (YMO) films have been grown by MOCVD on (100)-oriented Si, STO, LAOand LSAT substrates. The effect of the film thickness and the chemical composition on structuraland magnetic properties has been investigated. YMO can crystallize in two structure: hexagonal(h-YMO) and orthorhombic (o-YMO), generally considered as stable and metastable phases,respectively. Both phases, together with their amorphous precursor phase, are studied in this thesis.On one side, a selective growth of the amorphous, o-YMO or h-YMO phase is achieved on Sisubstrates through the deposition conditions. An extensive study of the optimal conditions hasbeen carried out. An irreversible phase transformation from amorphous to crystalline o-YMOphase takes place at an almost constant temperature (~ 700 °C) and in a short period of time (~min). The o-YMO phase thus obtained is stable at least up to 900 °C.On the other side, the o-YMO phase is epitaxially stabilized on perovskite type substrates (STO,LAO, LSAT). The films on STO and LSAT substrates present mainly the (010) orientation whilethose on LAO substrate are (101)-oriented. Secondary domain orientation are observe in particularon STO substrates: (010) in plane with 90° rotation. Strained films are observed for smallthicknesses. The magnetic measurements show a spin glass behavior for either o- or h-YMO phase,independently of the substrate.
178

Caractérisation par essais DMA et optimisation du comportement thermomécanique de fils de NiTi - Application à une aiguille médicale déformable / Characterization by DMA test and thermomechanical behaviour optimization of NiTI wires - Application to a medical steerable needle

Alonso, Thierry 24 June 2015 (has links)
De nombreux gestes médicaux utilisent des aiguilles. Il est proposé une solution de principe pour contrôler la trajectoire d’une aiguille lors son insertion. Ce contrôle de trajectoire permet d’éviter des obstacles et atteindre une cible avec plus de précision. La solution de principe proposée repose sur l’utilisation des alliages à mémoires de forme de type Nickel-Titane (NiTi) et des traitements thermiques localisés. Une méthode expérimentale originale pour caractériser les alliages NiTi est développée. Cette méthode repose sur l’utilisation d’un dispositif expérimental permettant de faire des mesures et analyses mécaniques dynamiques (DMA) lors d’un essai de traction ou au cours d’un balayage en température sous contrainte. Ces mesures DMA ont permis de détecter les nombreux phénomènes présents dans ces alliages : élasticité, transformation de phase, réorientation,localisation, plasticité. Les résultats des mesures effectuées sur un fil commercial de NiTi sont présentés et analysés. L’analyse de l’évolution du module de conservation a permis de mettre en évidence les différentes séquences de transformation et de définir les domaines d’existence des phases en fonction de la contrainte et de la température. Des valeurs de modules d’élasticité de l’austénite, de la martensite et de la phase R sont proposées. Enfin,des modèles d’évolution du module de conservation lors d’un essai de traction et d’un balayage en température sous contrainte sont proposés. Une dernière partie concerne l’étude des effets des traitements thermiques sur un fil NiTi étiré à froid. Une gamme de traitements thermiques a été réalisée sur un fil NiTi. Les propriétés thermomécaniques ont été investiguées à la fois par des essais de traction isothermes et des mesures DMA en balayage en température sous contrainte. / Many medical procedures use needles. A solution is proposed to control and modifyneedle trajectory during its insertion. This steerable needle must be able to avoid anobstacle and reach the target with more accuracy. The solution uses Nickel Titanium(NiTi) shape memory alloy. A new experimental method is proposed to characterize NiTiwires. This method is based on experimental device wich allows to perform DynamicMechanical Analysis (DMA) during a tensile test or during a temperature sweep understress. DMA measurements can detect many phenomena : elasticity, phase transformation,reorientation, plasticity. Results for a commercial NiTi wire are presented and analyzed.Storage modulus evolution analysis shows multistage phase transformations for which thestress-temperature diagram has been established. Values of elastic modulus are determinedfor austenite, martensite and R phase. Estimation models are proposed to determinestorage modulus evolution during tensile test with DMA and temperature sweep understress with DMA. The last part of this work studies the effect of heat treatment on acold worked Niti wire. A range of heat treatments was performed. Thermomechanicaltreatment effects were investigated both with tensile tests and temperature sweeps understress with DMA.
179

Experimental and numerical modeling of the dissolution of delta ferrite in the Fe-Cr-Ni system : application to the austenitic stainless steels / Modélisation expérimentale et numérique de la dissolution de la ferrite delta dans le système Fe-Cr-Ni : application aux aciers inoxydables austénitiques

Saied, Mahmoud 24 May 2016 (has links)
La ferrite résiduelle δ est présente dans les microstructures de coulée des aciers inoxydables austénitiques. Elle résulte de la transformation incomplète δ→γ ayant lieu l'étape de solidification. Sa présence peut nuire à la forgeabilité à chaud des aciers inoxydables et peut conduire à la formation de criques de rives et de pailles en J lors du laminage à chaud des brames. Ce travail de thèse a pour but de comprendre les mécanismes de la transformation δ→γ à haute température dans les aciers inoxydables austénitiques via une modélisation expérimentale et numérique. La transformation a été étudié dans un alliage ternaire Fe-Cr-Ni coulé par lingot et de composition proche de celle des alliages industriels. Trois morphologies de ferrite ont été mises en évidence à l'état brut de solidification: lattes au bord du lingot, vermiculaire et lattes au centre. Leur cinétique de dissolution est étudiée à des températures allant de 1140°C à 1340°C et caractérisée en termes de fraction de ferrite et profils de composition du Cr et du Ni. La dissolution de la ferrite vermiculaire comprend trois étapes : une croissance initiale transitoire suivie par deux régimes de dissolution à haute puis à faible taux de transformation. D'un autre côté, il a été possible d'étudier la dissolution de la ferrite dans des microstructures multicouches élaborées par l'empilement de plaques de ferrite et d'austénite du système Fe-Cr-Ni et soudées à l'état solide par Compression Isostatique à Chaud puis réduits en épaisseurs par laminages successifs. L'étude et la caractérisation de la cinétique de dissolution de la ferrite est plus facile dans ces microstructures étant donnée la planéité initiale des interfaces δ/γ. L'analyse des résultats expérimentaux a été menée via le développement d'un modèle numérique, à interface mobile, de la transformation de phases δ→γ pilotée par la diffusion. La diffusion peut être traitée dans les géométries plane, cylindrique et sphérique. En guise de validation, le modèle a été utilisé pour analyser la dissolution de la ferrite dans les microstructures multicouches. Par la suite il a été appliqué au cas de la ferrite vermiculaire en usant d'une approche novatrice où la morphologie des dendrites est approximée par une combinaison de cylindres et de sphères. Malgré la simplicité des hypothèse sous-jacentes, le modèle a permis d'expliquer les mécanismes de croissance initiale et de changement de régime de dissolution. D'autre part, via une étude paramétrique, l'effet des données d'entrée a été étudié et les plus pertinentes d'entre eux en termes de prédiction quantitative ont été mises en avant, en particulier la description thermodynamique du digramme Fe-Cr-Ni, le gradient initial et la distribution des rayons des particules de ferrite. / Residual δ-ferrite is widely encountered in the as-cast microstructure of austenitic stainless steels. It stems from the incomplete high temperature solid-state δ→γ transformation occurring upon the solidification stage. Its presence has a detrimental effect the hot workability of stainless steels, leading to the formation of edge cracks and sliver defects during slabs hot rolling. This PhD work aims at bringing more understanding of the kinetics of high temperature δ→γ transformation in austenitic stainless steels via experimental and numerical modeling. The transformation was studied in a ternary Fe-Cr-Ni ingot-cast alloy with composition close to the industrial alloys. Three ferrite morphologies were identified: lathy at the edge of the ingot, vermicular and lathy at the center. Their dissolution kinetics were established at temperatures ranging from 1140°C to 1340°C and characterized in terms of ferrite fraction and Cr and Ni diffusion. The vermicular ferrite undergoes a transient growth followed by a high then a low rate dissolution regimes. On the other hand, ferrite dissolution was also studied in the multilayered microstructures. such microstructures were elaborated by alternating ferrite and austenite sheets of the Fe-Cr-Ni system, diffusion-bonded by Hot isostatic Pressing and reduced in thickness by successive rollings. Dissolution is easier to handle in such microstructures thanks to the initial planar δ/γ interfaces. Analysis of the experimental results were carried out with a numerical moving-boundary model of diffusion-controlled δ→γ transformation. Diffusion can be treated in the planar, cylindrical and spherical geometries. As a preliminary validation, the model was used to analyze kinetics of ferrite dissolution in the multilayered microstructures. It was then applied to the cast alloy using an original descriptive approach combining spheres and cylinders as equivalent morphology of dendritic ferrite. Although based on simplifying assumptions, the model was able to reproduce experimental results with satisfactory agreement. Mechanisms underlying the initial growth of vermicular ferrite and the transition in dissolution regimes were outlined. The effect of a wide range of input parameters has been considered and relevant parameters for quantitative calculations were brought to light, such as thermodynamical descriptions of the Fe-Cr-Ni system, composition gradients and distribution of ferrite's radii.
180

Caractérisation par nanoindentation et modélisation micromécanique de l’activation de mécanismes inélastiques : plasticité cristalline et transformation martensitique / Nanoindentation characterization and micromechanical modeling of inelastic mechanisms activation : crystalline plasticity and martensitic transformation

Caër, Célia 09 December 2013 (has links)
Les modèles développés afin de prédire le comportement des Alliages à Mémoire de Forme (AMF) sont généralement basés sur une description phénoménologique simplifiée de l’activation des variantes de martensite sous chargement thermomécanique. Cette étude a pour objectif de modéliser et de caractériser par nanoindentation la formation discrète des plaquettes de martensite à l’échelle nanométrique. Un nouveau critère, nommé critère de Patel-Cohen d’indentation, est proposé afin de décrire l’activation de la première variante de martensite sous l’indent et sa transformation inverse. L’évidence de transformation martensitique est observée sur les courbes d’indentation par l’apparition successive d’évènements de type « pop in » et « pop out » lors, respectivement, de la charge et de la décharge. Cela met en évidence la discontinuité spatio-temporelle de l’activation et de la propagation de la transformation martensitique à l’échelle nanométrique. L’émission de dislocations dans le nickel pur a été étudiée en tout premier lieu afin de valider et la procédure de nanoindentation utilisant un indent Berkovich et le calcul des facteurs de Schmid d’indentation décrivant l’activation de « pop ins » correspondant à l’activation et à la propagation de dislocations. Un bon accord est trouvé entre les essais réalisés sur un AMF CuAlBe superélastique et la dépendance théorique à l’orientation cristallographique des charges de « pop-ins » et de « pop outs » prédite par le critère de Patel-Cohen d’indentation introduit dans cette étude / Constitutive models developed to predict Shape Memory Alloys (SMA) behavior are often based on a simplified phenomenological description of martensite variant activation under thermomechanical loading at the micro scale. This study aims at modeling and characterizing by nanoindentation the discrete variant activation events at the nano scale. A new criterion is proposed to describe the first martensite variant activation beneath the indenter. Evidence of discrete martensitic transformation is observed during nanoindentation by the successive occurrences of pop-in and pop-out load events on the force versus displacement curve during respectively loading and unloading. Thus, the spatial-temporal discontinuity of phase transformation activation and propagation is highlighted at the nano scale with the introduction of an indentation Patel-Cohen factor for both forward austenite-martensite and reverse phase transformations. Dislocation emission in pure nickel is first studied to validate both the nanoindentation testing procedure using a Berkovich indenter and the calculations of indentation Schmid factors to describe excursion bursts corresponding to dislocation activation and propagation. Good agreement is found between nanoindentation tests performed on a superelastic CuAlBe SMA and theoretical crystallographic dependence of pop-in and pop-out loads predicted by the new introduced indentation Patel and Cohen factor

Page generated in 0.0875 seconds