• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 7
  • 4
  • 1
  • Tagged with
  • 48
  • 48
  • 11
  • 11
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

[pt] AVALIAÇÃO METROLÓGICA DA INFLUÊNCIA DA LARGURA DE JANELA DE UM DETECTOR DE FÓTONS ÚNICOS POR MEIO DE ATENUAÇÃO ÓPTICA / [en] METROLOGICAL EVALUATION OF THE INFLUENCE OF THE GATE WIDTH OF A SINGLEPHOTON DETECTOR BY OPTICAL ATTENUATION

VITOR SILVA TAVARES 01 September 2020 (has links)
[pt] Detectores de fótons únicos baseados em fotodiodos de avalanche (SPADs) são essenciais em aplicações que requerem alta resolução, como comunicações quânticas e metrologia quântica. O efeito da largura de janela de detecção temporal de fótons é pouco explorado, e não há estudos para a faixa de comprimentos de onda de interesse em telecomunicações em torno de: 1550 nm. Neste trabalho, apresenta-se uma proposta para análise de impacto da largura de janela de detecção de um SPAD de InGaAs/InP, realizando uma análise da estatística entre detecções consecutivas e da probabilidade de detecção de 0 ou 1 evento em função da atenuação óptica. Variou-se o número médio de fótons por janela medido pelo SPAD, e os resultados foram avaliados para os valores de 4 ns, 8 ns, 12 ns, 16 ns e 20 ns de largura de janela de detecção, sendo estimada a Incerteza de Medição Expandida para cada ensaio. Os resultados obtidos indicam uma faixa adequada de potência óptica para calibração de um SPAD com eficiência de detecção de 15 porcento e um tempo morto de 1 microssegundo, no intervalo de 10 nW a 0,15 nW. Nesta faixa de potência, os respectivos produtos associados ao efetivo número médio de fótons por janela de detecção correspondem aos valores de 190 x 10-(4) a 0,32 x 10(-4) (para 4 ns) e 140 x 10(-4) a 2,9 x 10(-4) (para 8 ns). Foram obtidos comportamentos lineares para os ajustes das curvas de calibração para larguras de janela de 4 ns e 8 ns. / [en] Single photon detectors based on avalanche photodiodes (SPADs) are essential in applications that require high resolution, such as quantum communications and quantum metrology. The effect of the width of photon detection gate is little explored, and there are no studies for the wavelength range of interest in telecommunications around 1550 nm. In this work, a proposal is presented for analyzing the impact of the detection gate width of an InGaAs/InP SPAD, performing a statistical analysis of consecutive detections and the probability detection of 0 or 1 events depending on the optical attenuation. The average number of photons per gate measured by the SPAD was varied, and the results were evaluated for the values of 4 ns, 8 ns, 12 ns, 16 ns and 20 ns of detection gate widths, and Expanded Measurement Uncertainty was estimated for each test. The results obtained indicate an adequate optical power range for calibrating a SPAD with a detection efficiency of 15 percent and dead – time of 1 microssecond, in the range of 10 nW to 0,15 nW. In this power range, the respective products, which are associated with an effective average number of photons per gate window, correspond to the values of 190 x 10(-4) to 0,32 x 10(-4) (for 4 ns) e 140 x 10(-4) to 2,9 x 10(-4) (for 8 ns). Linear behaviors were obtained for the adjustment of the calibration curves for gate widths of 4 ns and 8 ns.
42

Development and Performance Study of Thick Gas Electron Multiplier (THGEM) Based Radiation Detector

Garai, Baishali January 2013 (has links) (PDF)
Radiations can be classified as either ionizing or non-ionizing according to whether it ionizes or does not ionize the medium through which they propagate. X-rays photons and gamma rays are the typical examples of ionizing radiations whereas radiowave, heat or visible light are examples of non ionizing radiations. UV photons have some features of both ionizing and non-ionizing radiation. Both ionizing and non-ionizing radiation can be harmful to living organisms and to the natural environment. Hence the detection and measurement of radiation is very important for the well being of living organisms as well as the natural environment. Not only for safety reasons, have radiation detectors found their applications in various fields including medical physics, nuclear and particle physics, astronomy and homeland security. Industrial sectors that use radiation detection include medical imaging, security and baggage scanning, the nuclear power industry and defense. Gas electron multiplier (GEM) is one of the most successful representatives of gaseous detectors used for UV photon and X-ray photon detection. Recently there is a growing demand for large area photon detectors with sensitivity reaching to the level of single photon. They are used in spectroscopy and imaging in astronomy high energy physics experiments etc. Thick GEM (THGEM) is a mechanical expansion of standard GEM. It has all the necessary requirements needed for large area detector and offers a multiplication factor that permits efficient detection of light. Hence, the development and performance study of THGEM based radiation detector is chosen as the topic of study in the present thesis. The initial part of the thesis contains simulation studies carried out for the understanding the working of the detector and the effect of various design parameters of THGEM for the above said applications. Different steps for the fabrication of THGEM and the technical challenges faced during the process are discussed. In the view of application of the fabricated THGEM for UV photon detection, cesium iodide photocathode is prepared using thin film technology and characterized. The performance of the photocathode under various operating conditions is studied in terms of its photoemission property. The effect of vacuum treatment on the photoemission property of the photocathode exposed to moist air is studied in detail. A major portion of this thesis focuses on maximizing the detection efficiency of the UV photon detector realized using the fabricated THGEM coupled with the cesium iodide photocathode. Simulations are used at different stages to interpret the experimental observations. The electron spectrum obtained from the detector under study was analyzed. The dependence of secondary effect like photon feedback on the operating parameters is also discussed. The last portion of the thesis deals with the application of THGEM as an X-ray detector. The performance is evaluated in terms of the gain and energy resolution achieved. The thesis is organized as follows: Chapter 1 is divided into two sections. Section A gives a general introduction to different types of radiation detectors found in the present day and their working principles. This is followed by discussion about gas ionization based detector and its working principle in detail. A brief literature survey of the different types of micropattern gas detectors is also given in this section. In Section B of this chapter GEM and THGEM are introduced with discussion about their working principle and areas of application. Chapter 2 deals with the simulation study of THGEM undertaken to have a clear understanding of the detector’s working. Section A of this chapter gives an overview of the simulation tools used for the present thesis in particular ANSYS and GARFIELD. Section B presents the results of the simulation study highlighting the effects of different geometrical and operating parameters on the electric field distribution in and around the THGEM aperture. The relevance of the study to the detectors performance is discussed vividly for all the cases. In Chapter 3, the details of the different steps involved in THGEM fabrication are given. Design aspects involved, fabrication of the THGEM using standard PCB technology coupled with photolithography technique are discussed in this chapter. This is followed by an elaborate description of the test setup used for all the performance study. Preface In the view of application of THGEM as a UV photon detector, cesium iodide photocathode was prepared and characterized. Chapter 4 discusses about the CsI photocathode preparation and its characterization for the above said application. Photoemission property of the photocathode was analyzed under various operating parameters. The effect of vacuum treatment on the photocathode performance is a new aspect of this thesis. Its correlation with the microstructure of the film is reported for the first time. Chapter 5 deals with the application of THGEM as a UV photon detector. The study mainly focuses on the improvement of the detection efficiency of the detector. The effect of drift parameters on the electron transfer efficiency and hence on the detection efficiency of the detector is a major contribution of this thesis. There are no literature available which discusses this aspect of a UV photon detector. The experimental study has been supported with simulation results. In addition to the study on detection efficiency, electron spectrum has also been acquired from the UV photon detector. The spectrum has been analyzed under various operating conditions. Discussions about secondary effects like photon feedback prevailing in the detector output are also present in this chapter. Chapter 6 presents the results of THGEM as an X-ray detector. The performance of the detector has been evaluated in terms of the effective gain and energy resolution achieved under different operating conditions. The gain instability with time and its uniformity across the THGEM area are also studied. The effect of drift field on the energy resolution and its correlation with ETE is a new aspect of this work. Chapter 7 summarizes the salient features of the work presented in this thesis. Also the scope of future work based on this thesis is discussed at the end of the chapter.
43

A detector for charged particle identification in the forward region of SuperB / Un détecteur pour l’identification des particules chargées dans la région avant de SuperB

Burmistrov, Leonid 09 December 2011 (has links)
Dans cette thèse nous présentons la conception, l'étude des performances et les premiers tests, effectues au Cosmic Muon Telescope situe au SLAC, d'un nouveau détecteur d'identification des particules émises dans la région ''avant'' du détecteur SuperB.Ce détecteur est base une technique de temps de vol (TOF). Pour identifier les particules avec une impulsion jusqu'à 3GeV/c et une distance de vol de l'ordre de deux mètres nous avons besoin d'un détecteur TOF capable de mesurer le temps avec une précision typique de 30 ps. Pour atteindre cet objectif nous avons conçu un composant pour lequel le passage d'une particule chargée produit de la lumière Cherenkov dans un ''fused silica'' (quartz) radiator qui est ensuite détectée par des photodétecteurs tres rapides et une électronique rapide dédiée. Nous l'appelons détecteur DIRC-like TOF.Les photodétecteurs HAMAMATSU SL-10 MCP-PMT ont été caractérises sur faisceau de test au LAL et la résolution en temps d'environ 37 ps a été mesurée. La nouvelle électronique 16-canaux USB WaveCatcher développée au LAL(CNRS/IN2P3) et CEA/IRFU montre un jitter de moins de 10 ps. La géometrie du détecteur a quartz a été étudiée avec une attention particulière a l'aide d'une simulation Geant4. Celle-ci montre que la meilleure géométrie permet d'atteindre une résolution en temps d'environ 90 ps par photoélectron avec au moins 10 photoélectrons détectés, donnant en moyenne la résolution totale désirée de 30 ps.Nous avons construit un prototype d'un tel composant, utilisant les barres de quartz utilisées pour l'expérience Babar et nous l'avons installe dans le Cosmic Ray Telescope au SLAC. Une résolution en temps d'environ 70~ps par photoélectron a été obtenue, en accord avec la simulation.Cette preuve de principe a convaincu la Collaboration SuperB d'adopter un tel composant comme solution de base pour l'identification des particules émises vers l'avant dans SuperB. Le point délicat, encore ouvert, est celui de la résistance de ce détecteur aux bruits de fond de la machine.Dans cette thèse nous présentons aussi les études préliminaires de différents types de bruit de fond et leur effet sur les performances du détecteur DIRC-like TOF. Le processus Bhabha radiatif est de loin la source dominante de bruit de fond. Le taux de photoélectrons de bruit de fond principalement du aux gammas d'énergie d'environ 1.4 MeV est estimée a ~480 kHz/cm^2 ce qui correspond a 2 C/cm^2 de charge d'anode integrée sur 5 ans. Le flux de neutrons traversant l'électronique de front end du détecteur DIRC-like TOF est estimée a ~10^11/cm^2/year. Ces résultats préliminaires sont rassurants. / In this thesis, we present the conception, the performances studies and the first tests in the Cosmic Muon Telescope situated at SLAC of a new detector for the particle identification in the forward region of the SuperB detector.This detector is based on time-of-flight (TOF) technique. To identify the particles with momentum up to 3 GeV/c and flight base around two meters we need a TOF detector able to measure the time with a precision of about 30 ps. To achieve this goal we have conceived a device producing Cherenkov light in a fused silica (quartz) radiator, by a charged particle, which then detected with very fast photodetectors and dedicated ultrafast electronics. We call it, the DIRC-like TOF detector.For what concern the photodetectors, the HAMAMATSU SL-10 MCP-PMT has been characterized at LAL test bunch and the time resolution of about 37 ps has been measured. The new 16-channel USB WaveCatcher electronics developed by LAL (CNRS/IN2P3) and CEA/IRFU has shown to have a jitter of less than 10 ps. The geometry of the quartz detector has been then carefully studied with Geant4 simulation. Which shows that the best detector geometry allow to reach the time resolution of about 90 ps per photoelectron with at least 10 photoelectrons detected, giving in average the desired 30 ps total time resolution.We have constructed a prototype of such device, using the quartz bars available from the Babar experiment, and we have installed it, in the SLAC Cosmic Ray Telescope. A time resolution of about 70 ps per photoelectron was obtained, in agreement with simulation.This proof-of-principle has convinced the SuperB Collaboration to adopt such a device as the baseline for the SuperB particle identification detector in the forward region. The delicate point which is still opened is the resistance of this detector to the machine background.In this thesis we also present preliminary studies of different types of background and their effect on the performances of the DIRC-like TOF detector. Radiative Bhabha process is by far the dominant source of background. The rate of the background photoelectrons caused mainly by the gammas with energy around 1.4 MeV is estimated to be ~480 kHz/cm^2 which corresponds to 2 C/cm^2 of integrated anode charge in 5 years. The neutron flux thought the DIRC-like TOF front end electronics is ~10^11/cm^2/year. These preliminary results are reassuring.
44

Studies on Performance Enhancement of Infrared and Terahertz Detectors for Space Applications

Sumesh, M A January 2016 (has links) (PDF)
Currently, the concept of multipurpose spacecrafts is being transformed into many small spacecrafts each of them performing specific tasks and thus leading to the realization of pico and nano satellites. No matter what is the application or size, demand for more number of IR channels for earth observation is ever increasing which necessitates significant reduction in the mass, power requirement and cost of the IR detectors. In this scenario, several order of magnitude mass and power savings associated with uncooled IR arrays are advantageous compared to cooled photon detectors. However the poor speed of response of uncooled microbolometer array devices obstruct the total replacement of cooled detectors in thermal imaging applications. This is especially true when the mission requires 50 m to 100 m ground resolution, in which even the "fastest" micro bolometer arrays turns "too slow" to follow the ground trace when looked from low earth orbit (LEO). Hence there is a great and unfulfilled requirement of faster uncooled detector arrays for meeting the demand for future micro and mini satellite projects for advanced missions. The present thesis describes the systematic studies carried out in development of high performance IR and THz detectors for space applications. Ge-Si-O thin films are prepared by ion beam sputtering technique with argon (Ar) alone and argon and oxygen as sputtering species, using sputtering targets of different compositions of Ge and SiO2. The deposited thin films are amorphous in nature and have chemical compositions close to that of the target. The study of electrical properties has shown that the activation energy and hence the thermistor constant (β) and electrical resistivity (ρ) are sensitive to oxygen flow rate, and they are the least for thin films prepared with Ar alone as the sputtering species. Different thermal isolation structures (TIS), consisting of silicon nitride (Si3N4) membrane of different thicknesses, Ge-Si-O thin film and, chromium coating on the rear side of the membrane, are prepared by bulk micro-machining technique, whose thermal conductance (Gth) properties are evaluated from the experimentally determined current-voltage (I-V) characteristics. Gth shows non-linear dependence with respect to raise in temperature of thin film thermistor due to Joule heating. The infrared micro-bolometer detectors, fabricated using one of the TIS structures have shown responsivity (<v) close to 115 V W−1 at a bias voltage of 1.5 V and chopping frequency of 10 Hz, thermal time constant (τth) of 2.5 ms and noise voltage of 255 nV Hz−1⁄2 against the corresponding thermal properties of Gth and thermal capacitance Cth equal to 9.0 × 10−5 W K−1 and 1.95 × 10−7 J K−1 respectively. The detectors are found to have uniform spectral response in the infrared region from 2 µm to 20 µm, and NEDT in the range from 108 mK to 574 mK when used with an F/1 optical system. The detector, in an infrared earth sensor system, is tested before an extended black body which simulates the earth disc in the laboratory and the results are discussed. As an extension of the single element detector to array device, design of a microbolometer array for earth sensor dispensing of scanning mechanisms is presented. It makes use of four microbolometer arrays with in-line staggered configuration that stare at the earth horizons, perceiving IR radiation in the spectral band of 14 µm to 16 µm. Design of the microbolometer has been carried out keeping in mind low power, lightweight, without compromising on the performance. An array configuration of 16 × 2 pixels is designed and developed for this purpose. Finite elemental analysis is carried out for design optimization to yield best thermal properties and thus high performance of the detectors. Suitable optical design configuration was arrived to image the earth horizon on to array. Using this optimum design, prototype arrays have been fabricated, packaged and tested in front of the black body radiation source and found to have Responsivity, NEP, and D∗ of 120 V W−1, 5.0 W Hz−1⁄2, 1.10 × 107 cm Hz1⁄2 W−1 respectively. The pixels show a uniform response within a spread of ±6 % and the pixel resistances are within a range of ±5 %. Optically Immersed Bolometer IR detectors are fabricated using electron beam evaporated Vanadium Oxide as the sensing material. Spin coated polyimide is used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices have been packaged in suitable electro-optical packages and the detector parameters are studied in detail. Thermal time constant varies from 0.57 ms to 6.1 ms and responsivity from 75VW−1 to 757VW−1 corresponding to polyimide thickness in the range 2.0 μm to 70 μm for a detector bias of 9V. Highest D obtained was 1.28 × 108 cm Hz1⁄2W−1. Noise Equivalent Temperature Difference (NETD) of 20mK is achieved for devices with polyimide thickness of 32 μm, whereas the NETD × th product is the lowest for devices with moderate thickness of thermal impedance layer. Bolometric THz detectors were fabricated using V2O5 as sensing element immersed onto germanium hemispherical lens using polyimide as immersion media. These detectors were characterized for their efficiency in detection of THz radiation in the range 10 THz to 35 THz emitted by a black body radiator. The responsivity of the devices determined in four different frequency bands covering the spectrum of interest and a maximum responsivity of 398VW−1 was observed. A variation in the responsivity is observed which is due to the characteristics absorption of polyimide in the THz region of interest and can be avoided by replacing with HDPE which has less attenuation. NEP of 6.8 × 10−10WHz−1⁄2 was observed which is very close to the state of art in the case of uncooled detectors which entitles the detectors for spectroscopic applications. Specific Detectivity D* was observed to be much higher than the conventional detectors thanks to the benefits of immersion. NETD of 26mK was observed which is advantageous of application of these detectors in imaging applications These studies have lead to development of a new technology for fabrication of high performance IR and THz detectors which can be used for spectroscopic and imaging applications. Further, this technology can be scaled for development of linear and area arrays finding applications where the speed of respnose as well as sensitivity are of equal importance. from 0.57 ms to 6.1 ms and responsivity from 75 V W−1 to 757 V W−1 corresponding to polyimide thickness in the range 2.0 µm to 70 µm for a detector bias of 9 V. Highest D∗ obtained was 1.28 × 108 cm Hz1⁄2 W−1. Noise Equivalent Temperature Difference (NETD) of 20 mK is achieved for devices with polyimide thickness of 32 µm, whereas the NETD × τth product is the lowest for devices with moderate thickness of thermal impedance layer. Bolometric THz detectors were fabricated using V2O5 as sensing element immersed onto germanium hemispherical lens using polyimide as immersion media. These detectors were characterized for their efficiency in detection of THz radiation in the range 10 THz to 35 THz emitted by a black body radiator. The responsivity of the devices determined in four different frequency bands covering the spectrum of interest and a maximum responsivity of 398 V W−1 was observed. A variation in the responsivity is observed which is due to the characteristics absorption of polyimide in the THz region of interest and can be avoided by replacing with HDPE which has less attenuation. NEP of 6.8 × 10−10 W Hz−1⁄2 was observed which is very close to the state of art in the case of uncooled detectors which entitles the detectors for spectroscopic applications. Specific Detectivity D* was observed to be much higher than the conventional detectors thanks to the benefits of immersion. NETD of 26 mK was observed which is advantageous of application of these detectors in imaging applications These studies have lead to development of a new technology for fabrication of high performance IR and THz detectors which can be used for spectroscopic and imaging applications. Further, this technology can be scaled for development of linear and area arrays finding applications where the speed of respnose as well as sensitivity are of equal importance.
45

Modelling, Fabrication and Characterization of HgCdTe Infrared Detectors for High Operating Temperatures

Srivastav, Vanya January 2012 (has links) (PDF)
In this work, we have designed, simulated, fabricated and characterized homojunction Hg1-xCdxTe detector for high operating temperature in the MWIR region. The IR photon detectors need cryogenic cooling to suppress thermal generation. The temperature of operation in narrow gap semiconductor devices is limited by the noise due to statistical nature of thermal generation-recombination in narrow gap semiconductors. To make IR systems affordable they have to be operated without cooling or with minimal cooling compatible with low cost, low power and long life. Several fundamental and technological limitations to uncooled operation of photon detectors have been discussed in Chapter-1 of this thesis. Way and means adopted to increase the operating temperature, such as non-equilibrium operation, use of multilayer stacked hetero¬structures, optical immersion etc. have also been discussed. Key to improving the detector performance at any temperature is reduction of dark currents to level below the photocurrent and ultimately to the level where detector noise is determined by the fluctuations in photon flux from the scene (BLIP limit). In addition, design of present generation uncooled Hg1-xCdxTe infrared photon detectors relies on complex hetero-structures with a basic unit cell of type n+/π/p+. Theoretical modeling and numerical simulations on TLHJ device consisting of backside illuminated n+/π/p+ photodiodes have been performed. A numerical model for solving carrier transport equations for Hg1-xCdxTe infrared photodiodes was developed in MATLAB. Finite difference discretization of carrier transport equations and successive over relaxation method have been adopted. Numerical models are more appropriate than analytical models when analyzing multi-layer hetero-structures because we can account for realistic doping profiles, compositional grading and hetero-structures using this model. The model can be suitably modified to accommodate different device architectures, designs, material properties and operating temperature. Such a generalized model is useful to a device designer to customize the detector performance as per the availability of the material to suit the application specific requirements. The present work therefore proposes a more flexible, accurate and generalized methodology to accommodate the user needs by simulating the position dependence of carrier concentration, electrostatic potential and g-r rates and their effect on detector performance vis-à¬vis contact doping, absorber doping and absorber width on device performance. We detail aspects of our simulation model by developing a library of Hg1-xCdxTe properties using analytical and empirical expressions for material parameters (energy band gap, electron affinity, intrinsic carrier concentration, carrier effective mass, carrier mobility, dielectric constant and absorption coefficient). The PDEs were solved using the FDM coupled with SOR method. Behavior of Hg1-xCdxTe diodes (homo/hetero-junction) under different biasing, illumination and non equilibrium situations were modeled. Model has been validated for experimental measured data on n on p Hg1-xCdxTe photodiodes. The numerical computations are next applied to simulation/modeling of MWIR (λc=4.5 μm) n+/π/p+ TLHJ device for operation at T=250K. Several recombination processes occur in Hg1¬-xCdxTe depending on material quality, operating temperature, device design and processing conditions. Detailed mathematical models of radiative, Auger, Shockley Read Hall (SRH), surface recombination and optical g-r are analyzed and their effect on carrier lifetime have been evaluated. Analytical models for dark currents affecting the performance of Hg1-xCdxTe diodes at different temperatures are discussed. The mechanisms contributing to dark current are: (i) the thermal diffusion of minority carriers from the neutral regions (IDiff); (ii) generation-recombination from the space charge region of diode (IG-R) (iii) trap assisted tunneling currents, wherein the traps in the depletion region or the traps in the quasi neutral p region close to the depletion edge participate in the tunneling process(ITAT); (iii) band-to-band tunneling currents (IBTB) and (iv) surface leakage currents due to shunt resistance. Total current of a photodiode is ITOT=IDiff+IG-R+ITAT+IBTB+ISH-IP, where IP is the photocurrent. We evaluate the variation of electrostatic potential, carrier concentration, and electric field and g-r profiles as a function of position. The effect of variation in absorber width, doping and contact doping on D* is also analyzed. The mathematical models of different g-r processes (Auger, SRH, radiative, surface recombination and optical generation) affecting the device performance analyzed and their affect on carrier lifetimes are investigated. Responsivity ~3.25Amp-Watt-1, noise current~2pA/Hz1/2 and D* ~8x109 cmHz1/2watt-1 at 0.1V reverse bias have been calculated using optimized values of doping concentration, absorber width and carrier lifetime. The suitability of the method has been illustrated by demonstrating the feasibility of achieving the optimum device performance by carefully selecting the device design and other parameters. The numerical models provided insight about the operation and performance of Hg1-xCdxTe Auger-suppressed infrared photodiodes. Hetero-junction configuration increases the dynamic resistance, while the heavily doped contacts reduce the contact resistance. Wide gap/heavily doped contacts present a barrier to injection of minority carries into the absorber layer. At the same time they allow collection of minority carriers generated in the absorber region at the contacts. Hg1-xCdxTe hetero-diodes are grown by MOCVD and MBE with precise doping and compositional gradient control to reduce g-r contributions from defects and dislocations to the dark current in order to reap advantages of Auger suppression. Measured dark currents in hetero-junction photodiodes continue to be larger than expected in spite of the advancements in MBE technique. Delineation of an array on hetero-structures involves mesa separation of the diodes thus creating additional surface requiring passivation. Overall, the whole effort of fabricating a hetero Hg1-xCdxTe detector array is disproportionate to the overall gain in the performance. Therefore, we employ a much simpler fabrication process of homo-junction Hg1-xCdxTe detectors. It involves a planar device fabrication approach thus minimizing the surface passivation problem. We have deliberated upon the specific growth, characterization techniques and processing steps employed in our study. We discuss some of the experimental issues. We also presented results on the novel processing techniques developed that are potentially applicable to HOT technology and Hg1-xCdxTe technology in general. Hg1-xCdxTe (x=0.27-0.31) layer of ~ 15×15mm2 area and 15-20µm thickness is grown on CdZnTe substrate by Liquid Phase Epitaxy (LPE) in-house. As grown wafer is vacancy doped p-type with a carrier concentration of ~5×1015-1x1016 cm-3 and hole mobility of ~400cm2V-1s-1@80K. Planar n+/ν/p junction ~2-3µm deep is formed by B+ ion implantation and subsequent annealing; details are outlined in Chapter-4. Hall measurements and differential Hall measurements were used to find the carrier concentration, carrier mobility, resistivity of the wafer. The diodes are formed in the form of a 2D array along with various PEV’s for process characterization. Composition of Hg1-xCdxTe wafers used for the work is in the range of 0.27¬ 0.31 as determined by FTIR, corresponding to cutoff wavelength of 4.5-6.5µm. Junction depth and doping profile of the diodes after ion implantation was characterized by differential Hall technique. Transient minority carrier lifetime in fabricated MWIR n+/ν/p Hg1-xCdxTe (x=0.27) diodes were characterized using diode reverse-recovery technique. We prefer this method because it is a direct indicator of device as well as material quality post processing. By this time the device has undergone all the chemical/mechanical treatments and the measured lifetime is the cumulative of g-r mechanisms operative in bulk, space charge region and surface of diode. The value of lifetime extracted from the measured data lies in the range of 80-160ns. Variable temperature lifetime data was also extracted to determine the prevalent g-r process operative in the device. Diode dark I-V and junction C-V measurements were also made to correlate the observed behavior of the measured lifetime with g-r processes. Evidence of Auger suppression at room temperature is seen in the dark I-V characteristics via observation of negative differential resistance in the homo-junction Hg1-xCdxTe diodes. The experimental data is fitted using the numerical and analytical models developed. Based on this fitting, the current mechanisms limiting the dark current in these photodiodes are extracted. An improved analytical I-V model is reported by incorporating TAT and electric field enhanced Shockley-Read-Hall generation recombination process due to dislocations. Tunneling currents are fitted before and after the Auger suppression of carriers with energy level of trap (Et), trap density (Nt) and the doping concentrations of n+ and νregions as fitting parameters. Values of Et and Nt were determined as 0.78-0.80Eg and ~7-9×1014 cm-3 respectively in all cases. Doping concentration of νregion was found to exhibit non-equilibrium depletion from a value of 2×1016 to 4×1015 cm-3. Quantum efficiency of the diodes was found to ~25-30%. Note, that these are wafer level measurements on unpackaged device without backside AR coating. In addition to junction diodes, we present results on several PEV's such as VADA, MIS/MIM capacitors and TLM structures both at room and low temperature. Variable temperature measurements for a VADA tile and subsequent analysis provide evidence of g-r processes originating from defects, dislocations and dislocation loops, which are non-uniformly distributed across the Hg1-xCdxTe wafer and contributes to TAT current at high temperatures. MIS analysis yielded surface charge density lying between 3×1010-1×1011 cm-2 for ZnS/CdTe surface corresponding to a near flat band condition. Results of low and variable temperature measurements on the devices have also been shown to correlate it with the possibility of operating the device at mid temperatures such as 180-250K.
46

Conception et modélisation de détecteurs de radiation basés sur des matrices de photodiodes à avalanche monophotoniques pour la tomographie d'émission par positrons / Design and simulation of radiation detectors based on single photon avalanche diodes for positron emission tomography

Corbeil Therrien, Audrey January 2018 (has links)
La tomographie d'émission par positrons (TEP) se distingue des autres modalités d'imagerie par sa capacité à localiser et quantifier la présence de molécules marquées, appelées radiotraceurs, au sein d'un organisme. Cette capacité à mesurer l'activité biologique des différents tissus d'un sujet apporte des informations uniques et essentielles à l'étude de tumeurs cancéreuses, au fonctionnement du cerveau et de ses maladies neurodégénératives et de la pharmacodynamique de nouveaux médicaments. Depuis les tout débuts de la TEP, les scientifiques rêvent de pouvoir utiliser l'information de temps de vol des photons pour améliorer la qualité de l'image TEP. L'arrivée des photodiodes avalanche monophotoniques (PAMP), rend maintenant ce rêve possible. Ces dispositifs détectent la faible émission de lumière des scintillateurs et présentent une réponse grandement amplifiée avec une faible incertitude temporelle. Mais le potentiel des PAMP n'est pas encore entièrement exploré. Plutôt que de faire la somme des courants d'une matrice de PAMP, il est possible d'utiliser leur nature intrinsèquement binaire afin de réaliser un photodétecteur numérique capable de déterminer avec précision le temps d'arrivée de chaque photon de scintillation. Toutefois, la conception de matrices de PAMP numériques en est encore à ses débuts, et les outils de conception se font rares. Ce projet de doctorat propose un simulateur facilitant la conception de matrices de PAMP, que celles-ci soient analogiques ou numériques. Avec cet outil, l'optimisation d'une matrice de PAMP numérique basée dans une technologie Teledyne DALSA HV CMOS \SI{0,8}{\micro\metre} est proposée. En plus de guider les choix de conception de l'équipe, cette optimisation permet de mieux comprendre quels paramètres influencent les performances du détecteur. De plus, puisque le photodétecteur n'est pas l'unique acteur des performances d'un détecteur TEP, une étude sur l'impact des scintillateurs est aussi présentée. Cette étude vérifie l'amélioration apportée par l'intégration de photons prompts dans des scintillateurs LYSO. Enfin, une approche novatrice pour discriminer l'énergie des évènements TEP basée sur l'information temporelle des photons de scintillation a été développée et vérifiée à l'aide du simulateur. Bien que ce simulateur et les études réalisées dans le cadre de cette thèse soient concentrés sur des détecteurs TEP, l'utilité des PAMP et du simulateur ne se limite pas à cette application. Les matrices de PAMP sont prisées pour le développement de détecteur en physique des particules, physique nucléaire, informatique quantique, LIDAR et bien d'autres. / Abstract : Positron emission tomography (PET) stands out among other imaging modalities by its ability to locate and quantify the presence of marked molecules, called radiotracers, within an organism. The capacity to measure biological activity of various organic tissues provides unique information, essential to the study of cancerous tumors, brain functions and the pharmacodynamics of new medications. Since the very beginings of PET, scientists dreamed of using the photon's time-of-flight information to improve PET images. With the recent progress of Single Photon Avalanche Diodes (SPAD), this dream is now possible. These photodetectors detect the scintillators' low light emission and offers a greatly amplified response with only a small time uncertainty. However the potential of SPAD has not yet been entirely explored. Instead of summing the currents of a SPAD array, it is possible to use their intrinsically binary operation to build a digital photodetector, able to establish with precision the time of arrival of each scintillation photon. With this information, the time-of-flight measurements will be much more precise. Yet the design of digital SPAD arrays is in its infancy and design tools for this purpose are rare. This project proposes a simulator to aid the design of SPAD arrays, both analog and digital. With this tool, we propose an optimised design for a digital SPAD array fabricated in Teledyne Dalsa HV CMOS \SI{0.8}{\micro\metre} technology. In addition to guiding the design choices of our team, this optimisation led to a better understanding which parameters influence the performance of a PET detector. In addition, since the photodetector is not the sole actor in the performance of a PET detector, a study on the effect of scintillators is also presented. This study evaluates the improvement brought by incorporating a prompt photon emission mechanism in LYSO crystals. Finally, we describe a novel approach to energy discrimination based on the timing information of scintillation photons was developped and tested using the simulator. While this simulator and the studies presented in this thesis focus on PET detectors, SPAD are not limited to this sole application. SPAD arrays are promising for a wide variety of fields, including particle physics, high energy physics, quantum computing, LIDAR and many more.
47

[pt] ELEMENTOS PARA COMUNICAÇÃO QUÂNTICA EXPERIMENTAL UTILIZANDO FOTODIODOS AVALANCHE / [en] ELEMENTS FOR QUANTUM COMMUNICATION BASED ON AVALANCHE PHOTODIODES

THIAGO FERREIRA DA SILVA 12 November 2021 (has links)
[pt] Detectores de fótons únicos baseados em fotodiodo avalanche (SPADs) são elementos essenciais em aplicações que requerem alta sensibilidade, como comunicações quânticas. É proposto um método para caracterização em tempo real da eficiência de detecção e das probabilidades de contagem de escuro e de pós-pulsos em SPADs através da análise da estatística de tempos entre detecções consecutivas utilizando instrumentação simples com o detector sob condições de operação. O método é então aplicado no monitoramento dos detectores utilizados em um sistema de distribuição quântica de chaves, motivado pela falha de segurança que imperfeições apresentadas pela tecnologia atual de detecção podem acarretar. Em especial, os ataques after-gate e time-shif são implementados e analisados. Uma simulação através do método de Monte-Carlo de um detector de fótons únicos composto por uma associação de diversos SPADs ativados serialmente e precedidos por uma chave óptica ativa é apresentada, visando otimizar a performance de detecção com tecnologia atual no tangente à frequência de gatilho. É reportada ainda a interferência estável entre fótons provenientes de fontes laser atenuadas totalmente independentes, cuja visibilidade é monitorada ao longo do tempo para um enlace implementado sobre duas bobinas de 8,5 km com controle ativo de polarização, passo importante para a tecnologia de repetidores quânticos e para o protocolo para distribuição quântica de chaves independente do aparato de medição. Um medidor de estados de Bell é implementado, utilizando-se óptica linear, com a resposta do sistema verificada para diferentes combinações dos estados preparados em duas estações remotas conectadas à estação central de medição através do canal estabilizado. / [en] DetecSingle-photon detectors based on avalanche photodiodes (SPADs) are key elements in ultra-sensitive applications, such as quantum communication. This thesis presents a method for real-time characterization of the overall detection efficiency, afterpulse and dark count probabilities, based on the analysis of the statistics of times between consecutive detections with simple instrumentation under operational condition. The method is employed for monitoring the SPADs on a quantum key distribution system, to prevent security failures due to side-channel attacks caused by current technology loopholes. The after-gate and time-shift attacks are implemented and analyzed. A Monte-Carlo simulation of a serially-activated association of SPADs, preceeded by an active optical switch, is performed for enhancement of the gating frequency performance with detectors based on current technology. The stable interference between photons from two independent faint laser sources is also reported, with visibility stability monitored over time after an optical link composed by two polarization-controlled 8.5-km fiber spools, a key features for quantum repeater and the measurement device independent quantum key distribution protocols. A Bell states analyzer is implemented with linear optics, and its response is verified for different combination of polarization states received from the remote stations through the stabilized channels.
48

Análise do potencial de calibração da força óptica através de dispositivos de microscopia de força atômica / Analysis of the calibration potential of optical force through atomic force microscopy devices

Marques, Gustavo Pires, 1978- 20 August 2018 (has links)
Orientador: Carlos Lenz Cesar / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-20T14:50:59Z (GMT). No. of bitstreams: 1 Marques_GustavoPires_M.pdf: 1771357 bytes, checksum: 8ee6919633e2615608f25b33bec98e96 (MD5) Previous issue date: 2005 / Resumo: O microscópio de força atômica é uma ferramenta que possibilita a medida de forças precisamente localizadas com resoluções no tempo, espaço e força jamais vistas. No coração deste instrumento está um sensor a base de uma viga (cantilever) que é responsável pelas características fundamentais do AFM. O objetivo desta pesquisa foi usar a deflexão deste cantilever para obter uma calibração rápida e precisa da força da armadilha da pinça óptica, assim como testar e comparar com os método tradicionalmente utilizados para este propósito. Para isso, foi necessário analisar e entender o condicionamento de sinais utilizados no AFM. Foram estudados cantilever tradicionais, cujo sistema de detecção é baseado na deflexão de um feixe laser em conjunto com fotodetectores, bem como cantilevers piezoresistivos. Cantilevers piezoresistivos fornecem uma alternativa simples e conveniente aos cantilevers ópticos. A integração de um elemento sensorial dentro do cantilever elimina a necessidade de um laser externo e de um detector utilizados na maioria dos AFMs. Isto elimina a etapa delicada de alinhamento da laser ao cantilever e fotodetector que normalmente precede uma medida com AFM, uma simplificação que expande o potencial do AFM para o uso em meios adversos, como câmaras de ultra alto vácuo ou, como no caso específico das Pinças Ópticas, onde existem esferas em solução líquida e também restrições de dimensão / Abstract: The atomic force microscope (AFM) is a tool that enables the measurement of precisely localized forces with unprecedented resolution in time, space and force. At the heart of this instrument is a cantilever probe that sets the fundamental features of the AFM. The objective of this research has been using the deflection of this cantilever to get a fast and accurate calibration of optical tweezers trap force, as well as testing and comparing to the traditionally used methods of calibration for this purpose. For that it was necessary to resolve and understand the sensors signals conditioning used in the AFM. Traditional cantilevers, whose detection system is based on the deflection of a laser beam in addition with a photodetector, as well as piezoresistive cantilevers has been studied. Piezoresistive cantilevers provide a simple and convenient alternative to optically detected cantilevers. Integration of a sensing element into the cantilever eliminates the need for the external laser and detector used in most AFMs. This removes the delicate step of aligning the laser to the cantilever and photodetector which usually precedes an AFM measurement, a simplification which expands the potential of the AFM for use in difficult environments such as ultrahigh vacuum chambers or, as in Optical Tweezers specific case, where there are spheres into a liquid solution as well as dimensional constraints / Mestrado / Física / Mestre em Física

Page generated in 0.1571 seconds