Spelling suggestions: "subject:"poincaré"" "subject:"poincarés""
71 |
Tempo de chegada ao equilíbrio da dinâmica de Metropolis para o GREM / Reaching time to equilibrium of the Metropolis dynamics for the GREMAntonio Marcos Batista do Nascimento 29 March 2018 (has links)
Neste trabalho consideramos um processo de Markov a tempo contínuo com espaço de estados finito em um meio aleatório, a saber, a dinâmica de Metropolis para o Modelo de Energia Aleatória Generalizado (GREM) com um número de níveis finito e discutimos o comportamento do seu tempo de chegada ao equilíbrio, o qual é dado pelo inverso da lacuna espectral de sua matriz de probabilidades de transição. No principal resultado desta tese provamos que o quociente entre o volume do sistema e o logaritmo do inverso da lacuna é quase sempre limitado, por cima, por uma função da temperatura, que também é a que descreve a energia livre do GREM sob o regime de temperaturas baixas. Como um estudo adicional, também é discutido um correspondente limitante inferior em um caso particular do GREM com 2 níveis. / In this work we consider a finite state continuous-time Markov process in a random environment, namely, the Metropolis dynamics for the Generalized Random Energy Model (GREM) with a finite number of levels, and we discuss the behavior of its reaching time to equilibrium which is given by inverse of the spectral gap of its transition probability matrix. On the main result of this thesis, we prove the division between the system volume and the logarithm of the inverse of the gap is almost surely upper bounded by a function of the temperature that it is also the function that describe the free energy of the GREM at low temperature. As an additional study, it is also discuss the corresponding limiting lower in a particular case of the 2-level GREM.
|
72 |
Fórmulas de Poincaré-Hopf e classes características de variedades singulares / Poincaré-Hopf´s formulas and characteristic classes of singular manifoldsGiuliano Angelo Zugliani 08 February 2008 (has links)
Neste trabalho, estudamos diferentes construções e propriedades das classes características de variedades suaves e singulares. Para ilustrar a teoria, calculamos a obstrução de Euler de algumas superfícies singulares no espaço tridimensional e apresentamos uma fórmula do tipo Poincaré-Hopf para variedades singulares / In this work, we study different constructions and properties of the characteristics classes of smooth and singular manifolds. To ilustrate the theory, we compute the Euler obstructions of some singular surfaces in tridimensional space and state a Poincaré-Hopf´s formula for singular varieties
|
73 |
O índice de Poincaré-Hopf e generalizações no caso singular / The Poincaré-Hopf index and generalizations in singular caseThaís Maria Dalbelo 25 February 2011 (has links)
Neste trabalho,estudamos o índice de Poincaré-Hopf, definido para singularidades isoladas de campos de vetores sobre variedades diferenciáveis. Além disso, investigamos algumas definições de índices de campos de vetores definido sem variedades singulares, como o índice de Schwartz e o índice GSV. Estudaremos estes invariantes no caso específico em que (V; 0) é um germe de uma interseção completa com singularidade isolada na origem / In this work, we study thePoincaré-Hopf index, defined for isolated singularities of vector fields on manifolds. Moreover, we investigate some definitions of indices of vector fields defined on singular varieties, as the Schwartz index and the GSV index. We study these invariants in the case where (V; 0) is a germ of a complete intersection with an isolated singularity at the origin
|
74 |
O Teorema de Poincaré-Bendixson para campos vetoriais contínuos na garrafa de Klein / The Poincaré-Bendixson Theorem for continuous vector fields on the Klein bottleDaniela Paula Demuner 05 February 2009 (has links)
Neste trabalho apresentamos uma versão do Teorema de Poincaré-Bendixson para campos vetoriais contínuos na garrafa de Klein. Como conseqüência, mostramos que a garrafa de Klein não possui campo vetorial contínuo com trajetória injetiva recorrente / We present a version of the Poincaré-Bendixson Theorem on the Klein bottle for continuous vector fields. As a consequence, we obtain the fact that the Klein bottle does not admit continuous vector fields having a recurrent injective trajectory
|
75 |
Abordagem fuzzy do teorema de Poincaré-Bendixson / Fuzzy approach of the Poincaré-Bendixson theoremDiniz, Michael Macedo, 1987- 20 August 2018 (has links)
Orientador: Rodney Carlos Bassanezi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T11:41:06Z (GMT). No. of bitstreams: 1
Diniz_MichaelMacedo_M.pdf: 80124316 bytes, checksum: 747345bace3d8a8cc71d1af0819a9f2a (MD5)
Previous issue date: 2012 / Resumo: Nesta dissertação temos como objetivo principal, o estudo do Teorema de Poincaré- Bendixson em sistemas dinâmicos que utilizam a teoria dos conjuntos fuzzy para incorporar à estes, incertezas inerentes no processo de modelagem. Para isso, abordaremos os sistemas dinâmicos fuzzy através de duas vertentes. Primeiramente estudaremos o Teorema de Poincaré-Bendixson em sistemas de EDOs cuja condição inicial é fuzzy, estes sistemas são obtidos através da extensão de Zadeh aplicada à solução de uma equação diferencial. Nestes modelos consideremos apenas a condição inicial como sendo fuzzy. Como resultado, proporemos um teorema que sob certas condições, garante a existência de uma região de atração para o fluxo fuzzy. No último capítulo, trabalharemos com sistemas P-fuzzy contínuo. Inicialmente, apresentaremos condições suficientes para que um sistema P-fuzzy contínuo tenha solução única, dada uma condição inicial. Para sistemas que satisfazem essas condições, será enunciado o Teorema de Poincaré-Bendixson, que garantirá sob certas hipóteses, a convergência de uma solução de um sistema P-fuzzy para uma órbita periódica / Abstract: In this work, we have as a main goal, the study of the Poincaré-Bendixson Theorem in dynamic systems that uses fuzzy set theory to incorporate uncertainties in the modeling process. To do this, we treat the fuzzy dynamic systems in two diffent contexts. In first one, we study the Poincaré-Bendixson theorem for systems of ODEs whose initial condition is fuzzy. These systems are obtained by Zadeh's extension applied to the solution of a differential equation. For these models, we consider only the initial condition as being fuzzy. Moreover, we propose a theorem that guarantees the existence of a region of attraction for the fuzzy flow under certain conditions. In the last chapter, we will work with P-fuzzy continuous systems. Initially, we present sufficient conditions for a fuzzy Pcontinuous system which ensure the uniqueness of the solution, given an initial condition. For systems that satisfy those conditions, we state the Poincaré-Bendixson theorem, with additional hypotheses that guarantees, the convergence of a solution of a P-fuzzy system for a periodic orbit / Mestrado / Matematica Aplicada / Mestre em Matemática Aplicada
|
76 |
Molecular relaxation dynamics of Anthracene cations studied in an electrostatic storage ring / Dynamique de relaxation de cations d'Anthracène étudiée dans un anneau de stockage électrostatiqueJi, Ming Chao 28 April 2015 (has links)
Les molécules hydrocarbures aromatiques polycycliques (HAP) sont à l'heure actuelle considérées comme probablement responsables des bandes d'émission infrarouge non identifiées du milieu interstellaire (MIS). La dynamique de refroidissement des molécules HAP est essentielle pour estimer leur photo-stabilité, leur durée de vie et les distributions de taille dans le MIS. Au cours des dernières années, les expériences s'appuyant sur le stockage électrostatique d'ions moléculaires ou d'agrégats sont devenus des outils puissants pour étudier leur refroidissement dans une large gamme de temps allant de la microseconde à quelques secondes. En général, l'étude des courbes de déclin associées aux processus de dissociation dans le cas des cations ou bien de détachement d'électrons dans le cas des anions fournit des informations sur l'évolution de l'énergie interne des ions stockés. Dans ce travail de thèse, le refroidissement de cations d'anthracène a été étudié dans un anneau de stockage électrostatique compact, le Mini-Ring, jusqu'à 8 ms. Les courbes de déclin spontané provenant de la dissociation par émission de fragment C2H2 ou H neutres montrent trois régions distinctives. Ces trois régions indiquent différents régimes de refroidissement en fonction du temps de stockage, la dissociation domine pour les temps inférieurs à 1 ms, l'effet de l'émission radiative entre alors en compétition avec la dissociation puis domine au-delà de 3 ms / The polycyclic aromatic hydrocarbon (PAH) molecules have been considered as possible carrier of the unidentified infrared emission bands from the interstellar medium (ISM) for about thirty years. The cooling dynamics of the PAH molecules which is essential to estimate their photostability and therefore their lifetime and size distributions in the ISM, has attracted numerous theoretical and experimental studies. In recent years, electrostatic storage devices (ESD) became powerful tool to investigate the cooling regime of molecules and clusters in a large time range from microseconds to seconds. Generally speaking, the decay of the emitted neutral yields due to dissociation of molecular cations or electron detachment of anions in such experiments carries information on the internal energy of the stored molecular ions. In this thesis work, the cooling regimes of anthracene cations are studied by following the time evolution of the internal energy distribution (IED) of the stored anthracene cations. A spontaneous neutral yield curve obtained from the stored molecular ions as a function of the storage time shows three distinguishable regions. The three regions indicate different cooling regimes at corresponding storage time range, i.e., the dissociation mechanism of the molecule dominates at storage time t < 1 ms, quenching of the dissociation by radiative cooling processes occurs during 1 < t < 3 ms and radiative cooling governs at t > 3 ms
|
77 |
Étude des comportements chaotiques dans les convertisseurs statiques / Study of chaotic behaviors in static converterDjondiné, Philippe 07 July 2015 (has links)
Les travaux de cette thèse portent sur l'analyse des comportements chaotiques dans les convertisseurs multicellulaires séries. Ces systèmes à commutationpeuvent présenter une variété de phénomènes complexes liés à des bifurcationset au chaos. Sachant qu'un convertisseur de puissance qui a une charge purementdissipative, ne peut générer un comportement chaotique, nous avons dans la première partie de cette thèse, connecté un hacheur à deux cellules à une charge non linéaire non strictement dissipative et nous avons analysé ses comportements à l'aide des propriétés dynamiques de base et présenté les routes vers le chaos. La fin de cette partie a été consacrée à l'étude du hacheur à cinq cellules qui est une généralisation du hacheur à deux cellules. Afin de supprimer le comportement chaotique, la deuxième partie du travail a été consacrée à la synthèse d'une loi de commande hybride basé sur la modélisation par réseaux de Petri pour la régulation des tensions des condensateurs flottants et du courant de charge. / This thesis deals with the analysis of chaotic behaviors in serial multicellularconverters. These switching systems can have a variety of complex phenomenaassociated with bifurcations and chaos. Knowing that a power converter that has a purely dissipative load cannot generate chaotic behavior, we've in the first part of this thesis, we connected a two-cell chopper to a nonlinear load not strictly dissipative and we've analyzed its behaviors by using some basic dynamic properties and thus presented the routes to chaos. The end of this part was devoted to the study of the 5-cell chopper which is a generalization of the two-cell chopper. In order to eliminate the chaotic behavior, the second part was devoted to the synthesis of a controlled law based on hybrid modeling of Petri nets for the regulation of capacitor voltages and current load.
|
78 |
Detecção de patologias em pregas vocais utilizando a seção Poincaré do espaço de fase tridimensional de um sinal de voz / Detection of pathologies in vocal fold by means of Poincaré section of the tridimensional phase space of a voice signalFernando Araujo de Andrade Sobrinho 02 September 2016 (has links)
Diversos estudos foram realizados para detecção de patologias na laringe. Essas patologias causam alteração na frequência, amplitude e formato de onda do sinal de voz e podem ser estudadas através dos parâmetros convencionais de análise como jitter e shimmer, ou sob o enfoque da dinâmica não linear. Essas técnicas são não invasivas e servem de apoio ao especialista da área de fonoaudiologia para o diagnóstico de patologias nas pregas vocais. As técnicas de análise acústica baseiam-se no formato de onda vocal no domínio do tempo e domínio da frequência, enquanto que a técnica de análise não linear utilizada nesse trabalho baseia-se no atrator reconstruído do sinal de voz. O objetivo dessa tese é diferenciar vozes normais e patológicas e entre patologias usando a técnica de análise não linear conhecida como Seção de Poincaré. Foram analisados 48 sinais de vozes humanas, divididos em 3 grupos (16 normais, 16 com nódulo e 16 com edema de Reinke). Em seguida foram selecionados 3 trechos de 500 ms nos intervalos 0.5s-1.0s, 2.0s-2.5s e 4.0s-4.5s chamado de primeiro critério e um trecho 500ms no trecho de maior variação de pitch, chamado de segundo critério. Em seguida, o atrator foi reconstruído em 3 dimensões, determinado o atrator médio, e de cada ponto do atrator médio foi extraída a seção de Poincaré. De cada seção de Poincaré foi calculada a dispersão dos pontos do atrator no plano através da média e desvio padrão das dispersão dos pontos da seção de Poincaré em relação ao ponto médio da seção. A validação da ferramenta desenvolvida para essa tese foi realizada utilizando um sinal senoidal inserindo jitter gradativamente, onde verificou-se uma variação proporcional da média da dispersão. Os resultados obtidos mostraram que não foi possível diferenciar patologias mas foi possível classificar vozes normais das patológicas. O melhor intervalo para classificar as vozes normais das patológicas utilizando o primeiro critério foi entre 0.5s-1.0s pois nesse intervalo todas as vozes normais foram classificadas corretamente. No entanto, 6 vozes patológicas foram classificadas como normais com 2 vozes patológicas na fronteira que separa as vozes normais das patológicas. O segundo critério classificou todas as vozes normais corretamente e apenas uma voz patológica foi classificada como patológica. Concluiu-se que a ferramenta proposta utilizando o segundo critério mostrou-se superior em relação ao primeiro critério para diferenciar vozes normais das patológicas. / Several studies have been performed to detect pathologies of the larynx. These pathologies cause changes in the frequency, amplitude, and waveform of the voice signal. They can be studied by means of conventional analysis parameters such as jitter and shimmer, or from nonlinear dynamics concepts. These techniques are noninvasive and can help the speech therapist to better diagnose the pathologies in the vocal folds. The acoustic analysis techniques are based on the voice waveform in the time and frequency domains, while the non-linear analysis techniques are based on the attractor reconstructed from the speech signal.The aim of this thesis is to differentiate normal and pathological voices using a nonlinear analysis technique named Poincaré section. We analyzed 48 human voice signals divided into 3 groups (16 normal, 16 nodule and 16 Reinke\'s edema). Then, we analyzed 3 stretches of 500ms in the intervals 0.5s-1.0s, 2.0s-2.5s e 4.0-4.5s, denominated first criteria, and a stretch of 500ms in a higher variation in pitch, denominated second criteria. The attractor was then reconstructed in three dimensions, the average attractor was determined, and at each point of the average attractor, a Poincaré section was extracted. From each Poincaré section, the dispersion of the points of the attractor was calculated in the plane by means of the statistical average and standard deviation related to the medium point of the section. The validation of the tool developed for this thesis was achieved by inserting jitter gradually in a sinusoidal wave, where there was a proportional variation of average\'s dispersion was observed. The results obtained for this set of voices showed that the average and standard deviation of dispersion of the points in the Poincaré section differentiate the groups of voices, but not the pathological groups. The Statistical tests of Anova and Tukey were used to analyze the 3 groups and all group pairings, two by two, with a statistical significance of 5%. The best interval to classify normal voices from pathological voices by means of the first criteria was between 0.5s-1.0s, given the fact that in this interval, all normal voices were correctly classified. However, 6 pathological voices were classified as normal voices, with 2 voices border lining the frontier between normal voices from pathological voices. The second criteria classified all normal voices correctly, with only one pathological voice incorrectly classified. In conclusion, the second criteria tool proposed by this thesis was proven superior to differentiate normal voices from pathological ones.
|
79 |
Stratégies de résolution numérique pour des problèmes d'identification de fissures et de conditions aux limites / Numerical resolution strategies for cracks and boundary conditions identification problemsFerrier, Renaud 27 September 2019 (has links)
Le but de cette thèse est d'étudier et de développer des méthodes permettant de résoudre deux types de problèmes d'identification portant sur des équations elliptiques. Ces problèmes étant connus pour leur caractère fortement instable, les méthodes proposées s'accompagnent de procédures de régularisation, qui permettent d'assurer que la solution obtenue conserve un sens physique.Dans un premier temps, on étudie la résolution du problème de Cauchy (identification de conditions aux limites) par la méthode de Steklov-Poincaré. On commence par proposer quelques améliorations basées sur le solveur de Krylov utilisé, en introduisant notamment une méthode de régularisation consistant à tronquer la décomposition de Ritz de l'opérateur concerné. Par la suite, on s'intéresse à l'estimation d'incertitude en utilisant des techniques issues de l'inversion Bayésienne. Enfin, on cherche à résoudre des problèmes plus exigeants, à savoir un problème transitoire en temps, un cas non-linéaire, et on donne des éléments pour effectuer des résolutions sur des géométries ayant un très grand nombre de degrés de liberté en s'aidant de la décomposition de domaine.Pour ce qui est du problème d'identification de fissures par la méthode de l'écart à la réciprocité, on commence par proposer et tester numériquement différents moyens de stabiliser la résolution (utilisation de fonctions-tests différentes, minimisation des gradients a posteriori ou régularisation de Tikhonov). Puis on présente une autre variante de la méthode de l'écart à la réciprocité, qui est applicable aux cas pour lesquels les mesures sont incomplètes. Cette méthode, basée sur une approche de Petrov-Galerkine, est confrontée entre autres à un cas expérimental. Enfin, on s'intéresse à certaines idées permettant d'étendre la méthode de l'écart à la réciprocité à l'identification de fissures non planes. / The goal of this thesis is to study and to develop some methods in order to solve two types of identification problems in the framework of elliptical equations. As those problems are known to be particularly unstable, the proposed methods are accompanied with regularization procedures, that ensure that the obtained solutions keep a physical meaning.Firstly, we study the resolution of the Cauchy problem (boundary conditions identification) by the Steklov-Poincaré method. We start by proposing some improvements based on the used Krylov solver, especially by introducing a regularization method that consists in truncating the Ritz values decomposition of the operator in question. We study afterwards the estimation of uncertainties by the mean of techniques stemming from Bayesian inversion. Finally, we aim at solving more demanding problems, namely a time-transient problem, a non-linear case, and we give some elements to carry out resolutions on geometries that have a very high number of degrees of freedom, with help of domain decomposition.As for the problem of crack identification by the reciprocity gap method, we firstly propose and numerically test some ways to stabilize the resolution (use of different test-functions, a posteriori minimization of the gradients or Tikhonov regularization). Then we present an other variant of the reciprocity gap method, that is applicable on cases for which the measurements are incomplete. This method, based on a Petrov-Galerkin approach, is confronted, among others, with an experimental case. Finally, we investigate some ideas that allow to extend the reciprocity gap method for the identification of non-plane cracks.
|
80 |
Sur des solutions périodiques de systèmes discrets à vibro-impact avec un contact unilatéral / On some periodic solutions of discrete vibro-impact systems with a unilateral contact conditionLe Thi, Huong 16 June 2017 (has links)
La motivation industrielle et mécanique du problème sera présentée pour un problème continu: élasticité linéaire avec une contrainte unilatérale. Un système masse-ressort avec un contact unilatéral en découle par discrétisation. Le but de cette thèse est d'étudier ces systèmes à vibro-impact de N degrés de liberté avec un contact unilatéral. Le système résultant est linéaire en l'absence de contact; Il est régi par une loi d'impact autrement. L'auteur identifie les modes non linéaires qui présentent une phase de contact collant pour un modèle à deux degrés de liberté en présence d'un obstacle rigide. L'application de premier retour de Poincaré est un outil fondamental pour étudier la dynamique près de solutions périodiques. Étant donné que la section de Poincaré est un sous-ensemble de l'interface de contact dans l'espace des phases, elle peut être tangente aux orbites pour les contacts rasants et conduire à une singularité en « racine carrée » déjà connue en Mécanique. Cette singularité est revisitée dans un cadre mathématique rigoureux. Elle implique la discontinuité du temps de premier retour. Enfin, l’instabilité des modes linéaire rasants est abordée. / The mechanical motivation is presented for a PDE with a constraint. The purpose of this thesis is to study N degree-of-freedom vibro-impact systems with an unilateral contact. The resulting system is linear in the absence of contact; it is governed by an impact law otherwise. The author identifies some nonlinear modes that display a sticking phase. The First Return Map is a fundamental tool to explore periodic solutions. Since the Poincaré section is a subset of the contact interface in the phase-space, it can be tangent to orbits which yields the well-known square-root singularity. This singularity is here revisited in a rigorous mathematical framework. Moreover, the study of this singularity implies a more important singularity: the discontinuity of the first return time. Finally, the square-root dynamics near the linear grazing modes which may lead to the instability of these linear grazing modes is studied.
|
Page generated in 0.5551 seconds