• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 7
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 13
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modification des liposomes cationiques en utilisant des dérivés de poly(éthylène glycol)

Saoud, Mireille 11 1900 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal. / Les liposomes ayant des lipides cationiques (liposomes cationiques) sont évalués dans plusieurs domaines thérapeutiques pour la libération intracellulaire des oligonucléotides antisenses et des plasmides ayant différents gènes humains. La majorité de ces liposomes sont composés de dioléoylphosphatidyléthanolamine (DOPE) pour assurer la déstabilisation de l'endosome suite à l'endocytose, et d'un lipide cationique pour assurer l'interaction avec les molécules d'ADN négativement chargés. Bien que les liposomes cationiques ont été administrés via les voies orale, pulmonaire et systémique, leur problème de stabilité dans différents milieux biologiques n'était pas complètement résolu. Il était déjà démontré que les liposomes cationiques ayant des ADN plamidiques sont déstabilisés par les protéines anioniques se trouvant dans le plasma. Les liposomes ayant une couche de poly(éthylène glycol) (PEG) à la surface ont largement contribué au développement des liposomes à longue circulation à cause de l'interaction réduite avec les protéines plasmatiques et les membranes cellulaires. Les liposome-PEG sont normalement préparés en faisant dissoudre le lipide-PEG avec les autres lipides et les phospholipides dans la phase organique avant l'hydratation et l'association des lipides en liposomes. Cette méthode conventionnelle d'incorporation de PEG possède plusieurs inconvénients. D'une part, les chaînes polymériques sont incorporées dans l'espace interne aqueux et entre les bicouches lipidiques où l'eau est normalement enfermée. Ceci réduit significativement le volume aqueux interne et nuit à l'incorporation des médicaments dans les liposomes. D'autre part, les molécules d'ADN sont reconnues pour se lier aux lipides cationiques dans les liposomes par des forces électrostatiques en formant des complexes ADN/liposome assez stables. Dans cette étude, nous présentons deux méthodes de modification des liposomes pré-formés, l'une est une réaction chimique ayant lieu dans le milieu aqueux et l'autre est une insertion des dérivés pégylés connus pour être non-toxiques et économiques. Ces nouvelles procédures de postmodification liposonnique s'effectuent dans des conditions douces et dans des temps très courts. L'efficacité de ces nouvelles méthodes a été prouvée par les mesures du changement de diamètre et de la charge apparente à la surface des liposomes. Les liposomes classiques DOPE/DOTAP (1:1) ont un potentiel zéta (Ç) moyen de +33 mV et l'incorporation par la méthode conventionnelle de 1 et 0.5 mol% de PE-PEG2000 (Phosphatidyléthanolamine-PEG2000) et PE-PEG5000réduit complètement la charge des liposomes. Une concentration cinquante fois plus grande de M-SC-PEG (N-hydroxysuccinimidyl carbonate méthoxy-PEG) et BTC-PEG (Benzotriazolyl carbonate PEG) était nécessaire pour réduire la charge des liposomes pré-formés d'une façon significative. La méthode d'insertion membranaire du PEG1760-nnonostéarate s'avère beaucoup plus avantageuse vu le temps très minime qu'elle requiert (1 minute) d'une part, et l'efficacité d'insertion proche de 95% d'autre part, une efficacité jamais préalablement atteinte.
12

Nanostructure des particules polymériques : aspects physiques, chimiques et biologiques

Rabanel, Jean-Michel 04 1900 (has links)
Les nanotechnologies appliquées aux sciences pharmaceutiques ont pour but d’améliorer l’administration de molécules actives par l’intermédiaire de transporteurs nanométriques. Parmi les différents types de véhicules proposés pour atteindre ce but, on retrouve les nanoparticules polymériques (NP) constituées de copolymères “en bloc”. Ces copolymères permettent à la fois l’encapsulation de molécules actives et confèrent à la particule certaines propriétés de surface (dont l’hydrophilicité) nécessaires à ses interactions avec les milieux biologiques. L’architecture retenue pour ces copolymères est une structure constituée le plus fréquemment de blocs hydrophiles de poly(éthylène glycol) (PEG) associés de façon linéaire à des blocs hydrophobes de type polyesters. Le PEG est le polymère de choix pour conférer une couronne hydrophile aux NPs et son l’efficacité est directement liée à son organisation et sa densité de surface. Néanmoins, malgré les succès limités en clinique de ces copolymères linéaires, peu de travaux se sont attardés à explorer les effets sur la structure des NPs d’architectures alternatives, tels que les copolymères en peigne ou en brosse. Durant ce travail, plusieurs stratégies ont été mises au point pour la synthèse de copolymères en peigne, possédant un squelette polymérique polyesters-co-éther et des chaines de PEG liées sur les groupes pendants disponibles (groupement hydroxyle ou alcyne). Dans la première partie de ce travail, des réactions d’estérification par acylation et de couplage sur des groupes pendants alcool ont permis le greffage de chaîne de PEG. Cette méthode génère des copolymères en peigne (PEG-g-PLA) possédant de 5 à 50% en poids de PEG, en faisant varier le nombre de chaînes branchées sur un squelette de poly(lactique) (PLA). Les propriétés structurales des NPs produites ont été étudiées par DLS, mesure de charge et MET. Une transition critique se situant autour de 15% de PEG (poids/poids) est observée avec un changement de morphologie, d’une particule solide à une particule molle (“nanoagrégat polymére”). La méthode de greffage ainsi que l’addition probable de chaine de PEG en bout de chaîne principale semblent également avoir un rôle dans les changements observés. L’organisation des chaînes de PEG-g-PLA à la surface a été étudiée par RMN et XPS, méthodes permettant de quantifier la densité de surface en chaînes de PEG. Ainsi deux propriétés clés que sont la résistance à l’agrégation en conditions saline ainsi que la résistance à la liaison aux protéines (étudiée par isothermes d’adsorption et microcalorimétrie) ont été reliées à la densité de surface de PEG et à l’architecture des polymères. Dans une seconde partie de ce travail, le greffage des chaînes de PEG a été réalisé de façon directe par cyclo-adition catalysée par le cuivre de mPEG-N3 sur les groupes pendants alcyne. Cette nouvelle stratégie a été pensée dans le but de comprendre la contribution possible des chaines de PEG greffées à l’extrémité de la chaine de PLA. Cette librairie de PEG-g-PLA, en plus d’être composée de PEG-g-PLA avec différentes densités de greffage, comporte des PEG-g-PLA avec des PEG de différent poids moléculaire (750, 2000 et 5000). Les chaines de PEG sont seulement greffées sur les groupes pendants. Les NPs ont été produites par différentes méthodes de nanoprécipitation, incluant la nanoprécipitation « flash » et une méthode en microfluidique. Plusieurs variables de formulation telles que la concentration du polymère et la vitesse de mélange ont été étudiées afin d’observer leur effet sur les caractéristiques structurales et de surface des NPs. Les tailles et les potentiels de charges sont peu affectés par le contenu en PEG (% poids/poids) et la longueur des chaînes de PEG. Les images de MET montrent des objets sphériques solides et l'on n’observe pas d’objets de type agrégat polymériques, malgré des contenus en PEG comparable à la première bibliothèque de polymère. Une explication possible est l’absence sur ces copolymères en peigne de chaine de PEG greffée en bout de la chaîne principale. Comme attendu, les tailles diminuent avec la concentration du polymère dans la phase organique et avec la diminution du temps de mélange des deux phases, pour les différentes méthodes de préparation. Finalement, la densité de surface des chaînes de PEG a été quantifiée par RMN du proton et XPS et ne dépendent pas de la méthode de préparation. Dans la troisième partie de ce travail, nous avons étudié le rôle de l’architecture du polymère sur les propriétés d’encapsulation et de libération de la curcumine. La curcumine a été choisie comme modèle dans le but de développer une plateforme de livraison de molécules actives pour traiter les maladies du système nerveux central impliquant le stress oxydatif. Les NPs chargées en curcumine, montrent la même transition de taille et de morphologie lorsque le contenu en PEG dépasse 15% (poids/poids). Le taux de chargement en molécule active, l’efficacité de changement et les cinétiques de libérations ainsi que les coefficients de diffusion de la curcumine montrent une dépendance à l’architecture des polymères. Les NPs ne présentent pas de toxicité et n’induisent pas de stress oxydatif lorsque testés in vitro sur une lignée cellulaire neuronale. En revanche, les NPs chargées en curcumine préviennent le stress oxydatif induit dans ces cellules neuronales. La magnitude de cet effet est reliée à l’architecture du polymère et à l’organisation de la NP. En résumé, ce travail a permis de mettre en évidence quelques propriétés intéressantes des copolymères en peigne et la relation intime entre l’architecture des polymères et les propriétés physico-chimiques des NPs. De plus les résultats obtenus permettent de proposer de nouvelles approches pour le design des nanotransporteurs polymériques de molécules actives. / The goal set to nanotechnologies applied to pharmaceutical sciences is to improve drug delivery and benefits with the help of nanometer-sized vehicles. At this time different types of drug carriers had been proposed. Amongst them, block copolymer nanoparticles (NP) have been designed to allow, at the same time, efficient drug encapsulation and provide surface properties (hydrophilic layer) to the NP which are necessary for its interactions with biological systems by preventing the opsonisation and the subsequent recognition by the mononuclear macrophage system (MPS) and the rapid elimination of the drug carrier. The most prominent polymer architecture in drug delivery application is the linear di-block copolymer architecture, such as poly(ethylene glycol) blocks (PEG) linked to a polyester hydrophobic chain. PEG is the gold standard to add a hydrophilic corona to drug carrier’s surface, but its efficacy is directly linked to its surface organization and surface densities. In spite of limited success of diblock at the clinical stage, few studies have been devoted to other type of architecture such as comb-like copolymers, either for the exploration of new synthesis routes or for the characterization of particles prepared from alternative architecture polymers. We attempted in preamble of this work to define more closely the conceptual and technical framework allowing quantitative determination of PEG surface densities. This review work has been used in the experimental work to define the characterization methods. Several synthesis strategies have been developed for the preparation of comb copolymers in this work. All strategies are based on random copolymerization of dilactide with small epoxy molecules with a pendant group suitable for subsequent PEG grafting, yielding a polyester-co-ether backbone. In a second step, PEG chains have been grafted on available pendant groups (alcohol groups or alkyne) to produce the final comb copolymers. In the first part of the experimental work, esterification reaction by acylation and coupling (the Steglish reaction) allowed the preparation of a first comb-like copolymer library with PEG content varying from 5 to 50 % (w/w). The number of PEG chains (PEG grafting density) was varying while the lengths of the PEG chains and the hydrophobic PLA backbone were kept constant. The library of comb-like polymers was used to prepare nanocarriers with dense PEG brushes at their surface, stability in suspension, and resistance to protein adsorption. The structural properties of nanoparticles (NPs) produced from these polymers by a surfactant-free method were assessed by DLS, zeta potential, and TEM and were found to be controlled by the amount of PEG present in the polymers. A critical transition from a solid NP structure to a soft particle with either a “micelle-like” or “polymer nano-aggregate” structure was observed when the PEG content was between 15 to 25% w/w. This structural transition was found to have a profound impact on the size of the NPs, their surface charge, their stability in suspension in presence of salts as well as on the binding of proteins to the surface of the NPs. The arrangement of the PEG-g-PLA chains at the surface of the NPs was investigated by 1H NMR and X-ray photoelectron spectroscopy (XPS). NMR results confirmed that the PEG chains were mostly segregated at the NP surface. Moreover, XPS and NMR allowed the quantification of the PEG chain coverage density at the surface of the solid NPs. Concordance of the results between the two methods was found to be remarkable. Physical-chemical properties of the NPs such as resistance to aggregation in saline environment as well as anti-fouling efficacy, assessed by isothermal titration calorimetry (ITC), were related to the PEG surface density and ultimately to polymer architecture. In the second part of this work, grafting of PEG chains on a polyester-co-ether backbone was directly performed using cyclo-addition of PEG azide on pendant alkyne groups. The new strategy was designed to understand the contribution of PEG chains grafted on PLA backbone ends. The new polymer library was composed of PEG-g-PLA with different PEG grafting densities and PEG molecular weights (750, 2000 and 5000 D). PEG chain grafting could only take place on pendant groups with this approach. NPs were produced by different methods of nanoprecipitation, including “flash nanoprecipitation” and microfluidic technology. Some formulation variables such as polymer concentration and speed of mixing were studied in order to observe their effects on NP surface characteristics. Unlike for the first copolymer library, here the NPs size and zeta potential were found to not be much affected by the PEG content (% w/w in polymer). Sizes were also not affected by the PEG chains length. TEM images show round shaped object and as expected sizes were found to decrease with polymer concentration in the organic phase and with a decrease in mixing time of the two phases (for flash nanoprecipitation and microfluidic technology). PEG chain surface densities were assessed by quantitative 1H NMR and XPS. In the third experimental part, we explored the role of polymer architecture on drug encapsulation and release of curcumin from NPs. Curcumin has been chosen as a model with a view to develop a delivery platform to treat diseases involving oxidative stress affecting the CNS. As previously observed with blank NPs, a sharp decrease in curcumin-loaded NP size and morphology change occurred between 15 to 20 % w/w of PEG. Drug loading, Drug loading efficiency and the diffusion coefficients of curcumin in NPs are showing a dependence over the polymer architecture. NPs did not present any significant toxicity when tested in vitro on a neuronal cell line. Moreover, the ability of NPs carrying curcumin to prevent oxidative stress was evidenced and linked to polymer architecture and NPs organization. In a nutshell, our study showed the intimate relationship between the polymer architecture and the biophysical properties of the resulting NPs and sheds light on new approaches to design efficient NP-based drug carriers. The results obtained lead us to propose PEG-g-PLA comb architecture copolymers for nanomedecine development as an alternative to the predominant polyester-PEG diblock polymers.
13

Administration de substances actives dans la peau : rôle de la composition hydrophile de nanoparticules polymériques / Skin drug delivery : influence of the hydrophilic composition of polymeric nanoparticles

Lalloz Faivre, Augustine 18 February 2019 (has links)
La conception de nanoparticules (NPs) polymériques pour le transport de médicaments dans la peau repose sur la compréhension du rôle de leurs compositions chimiques sur leurs interactions avec la peau, notamment la peau pathologique. Ce travail s'est attaché à définir le rôle de la composante hydrophile des NPs sur l'administration cutanée d'un principe actif lipophile modèle (cholécalciférol). Il a été remarqué que la composition hydrophile de polymères amphiphiles à base de PLA conditionnait les propriétés physicochimiques des NPs, notamment la taille, la surface, et la structure, tout comme la protection du cholécalciférol. Concernant l'absorption cutanée sur peau intacte, la composante hydrophile de NPs de 100 nm a eu peu d'influence. Une absorption cutanée du cholécalciférol légèrement plus importante a toutefois été obtenue à partir des NPs très riches en PEG hydrophile en comparaison aux NPs peu PEGylées. A l'inverse sur peau lésée, les NPs hydrophobes et négativement chargées de PLA seul ont permis la meilleure absorption du cholécalciférol. D'une part, la dynamique de la structure des NPs très PEGylées a permis une meilleure mouillabilité de la peau et une possible extraction de lipides cutanés, pouvant faciliter l'absorption sur peau intacte. D'autre part, la composition de la peau a conditionné la structure des NPs, puisque, sur peau lésée, les espèces ioniques libérées de la peau ont déstabilisé les NPs peu ou non PEGylées. Par adhésion à la surface de la peau, les agrégats de PLA ont pu ainsi faciliter l'absorption sur peau lésée.Lors du développement de formulations de NPs, leur composition chimique est donc à optimiser selon l'état pathologique de la peau / The design of clinically efficient polymeric nanoparticles (NPs) for skin drug delivery is based on the understanding of the influence of NPs chemical composition on their interactions with the skin tissue, notably the pathological skin. The aim of this work was to determine the influence of the hydrophilic component of polymeric NPs on the delivery of a lipophilic model drug (cholecalciferol).It was noticed that the polymeric hydrophilic composition of amphiphilic PLA-based NPs conditioned the NPs physico-chemical properties, notably in terms of size, surface properties, structure and drug protection. With regard to absorption into intact skin, the hydrophilic composition of 100 nm NPs had little impact. Only a slightly greater skin absorption was obtained from NPs with high hydrophilic PEG content compared to weakly PEGylated NPs. On the contrary in impaired skin, hydrophobic and negatively charged non-PEGylated NPs (PLA NPs) provided the best drug absorption. On the one hand, the dynamic structure of highly PEGylated NPs providing better skin wettability and potential skin lipids extraction may have contributed for increased absorption in intact skin. On the other hand, skin condition altered the NPs structure since it was observed that a non-negligible quantity of ionic species was released from impaired skin, triggering the destabilization of weakly or non-PEGylated charged NPs. However, only PLA aggregates sedimented/adhered onto the skin surface, which could have facilitated absorption in impaired skin. The polymeric hydrophilic composition of NPs and the pathological skin condition are therefore essential points to consider when designing nanoformulations
14

Conception, réalisation et évaluation d'un implant diffractif bifocal intracornéen pour la correction de la presbytie / Design, elaboration and implementation of a diffractive bifocal intracorneal implant to correct presbyopia

Castignoles, Fannie 25 November 2011 (has links)
Actuellement, la presbytie peut être corrigée chirurgicalement à l’aide d’implants intraoculaires réfractifs ou diffractifs multifocaux (chirurgie endoculaire invasive et irréversible) ou en intracornéen avec une correction multifocale réfractive (correction laser irréversible, ou insertion d’un implant dans le stroma). L’objectif de ce travail est de développer un nouvel implant permettant de corriger la presbytie, qui allie l’innocuité et la réversibilité d’une correction intracornéenne, à l’efficacité du diffractif. Le design des profils optiques bifocaux a été permis grâce au développement d’outils de simulation optique. Les efficacités de diffraction sont calculées à partir de la propagation du champ électrique par spectre angulaire. La qualité optique est déterminée d’après les simulations de Fonction de Transfert de Modulation obtenues sous Zemax. Des simulations de rendu d’images permettent de visualiser les effets de différents profils envisagés. Les paramètres critiques du design optique sont déterminés. Le choix du matériau dépend des contraintes de biocompatibilité de l’implant et des techniques de fabrication. La solution retenue est un hydrogel à forte teneur en eau, couplé à une nouvelle architecture de l’implant. L’hydrogel est obtenu par polymérisation radicalaire de macromonomères difonctionnels de poly(éthylène glycol) de masses molaires de l’ordre de 8000 g.mol‐1 qui conduisent à des propriétés mécaniques et une perméabilité aux nutriments compatibles avec l’application. La réalisation, la stérilisation et la caractérisation optique de prototypes ont abouti à la preuve du concept d’un implant bifocal diffractif intracornéen / Presbyopia can be corrected with surgery by means of refractive or diffractive multifocal intraocular lenses (which imply an irreversible and invasive endocular surgery) or by intracorneal multifocal refractive correction (irreversible laser correction, or insertion of an intrastromal implant). This work aims at developing a new implant to correct presbyopia, which takes advantage of both the harmlessness and the reversibility of an intracorneal correction, and the efficiency of diffractive optics. The design of the bifocal optical profiles was based on the development of optical simulation tools. The diffractive efficiencies are calculated from the distribution of the electric field with the method of angular spectrum. The optical quality is determined according to the simulations of Modulation Transfer Function obtained with Zemax. Images simulations show the effects of the different profiles studied. The critical parameters of the optical design are also determined. The choice of the material depends on several constraints such as biocompatibility and techniques of manufacturing. The adopted solution relies on the used of an hydrogel with high water content and the design of a new implant architecture. The hydrogel is obtained by radical polymerization of difunctional macromonomers of poly(ethylene glycol) with molar masses around 8000 g.mol‐1, allowing mechanical properties and permeability to nutriments compatible with the application. The realization, the sterilization and the characterization of prototypes showed the proof of the concept of a diffractive bifocal intracorneal implant
15

Towards designing composite membranes for CO2 separation : the inclusion of hybrid TiO2-PEG structures and study of their interfaces / Vers la conception de membranes composites pour la séparation du CO2 : Inclusion de structures hybrides TiO2-PEG et études de leurs interfaces

Cao, Edgar 26 October 2015 (has links)
Ce travail de thèse vise à concevoir de nouvelles membranes performantes pour la séparation de gaz (CO2) dans le procédé de post-combustion. La stratégie proposée repose sur la préparation de membranes hybrides organiques/inorganiques, combinant des supports poreux de dioxyde de titane (TiO2) intégrés dans une couche dense de polymère à base de poly-oxyde d'éthylène. L'un des points important de cette étude est l'ancrage de la phase organique sur le support inorganique. Deux agents de couplage : le propyl phosphonique acide 2-bromo-2-méthyl propanoate et le 3--propylamino triéthoxy silan ont été sélectionnés et greffés sur trois surface de TiO2 différentes : des nanoparticules, des surfaces denses et des surfaces poreuses. Pour chacune des deux molécules d'ancrage les meilleurs résultats ont été obtenus avec les nanoparticules. Les nanoparticules de TiO2 ainsi fonctionnalisées, ont dans une seconde étape, servi de semences pour l'élaboration de particules coeur-écorce. Deux voies de polymérisation ont été explorées avec succès : la si-ATRP et la si-ROMP. Dans le premier cas des greffons de poly-poly-éthylène glycol méthyl éther méthacrylate ont été introduits sur les nanoparticules de TiO2. Pour la si-ROMP les greffons incorporés sont à base de polynorbonène. Les résultats obtenus sur les nanoparticules de TiO2 ont été exploités afin de créer des couches polymères sur des supports poreux céramiques tubulaires commerciaux. Deux modes de conception ont été développés : la voie dite "coating onto" et celle dite "Grafting from". Les membranes composites obtenues par ces deux voies ont été testées en perméabilité des gaz afin de déterminer la qualité des couches polymères. Des essais préliminaires de séparation des gaz ont été également effectués. / This thesis work aims towards designing hybrid membranes for CO2 separation in the post-combustion process. The different methods of existing technologies are compared ans assessed for their merit, and the decision of using inorganic titanium dioxide supports integrated with a grown polymeric/PEG layer is made. First, the structure of the interfacing group is determined and narrowed down to phosphonic-based anchoring groups. The modification of various titanium oxide surfaces (i.e. particle, flat and porous) is performed with each group, and particles were found to yield the highest surface modification. Secondly, the functionalized particles of titania were then studied for their potential with si-ATRP and si-ROMP. in the case of phosphonic acid functionalized titania, the particles yielded a bromine terminus that could be used for si-ATPR. In the case of the silane grafted titania particles, further fonctionalization was required to ultimately yield a norbornenyl group that can be used for Si-ROMP. Both teechniques were shown to work, and were thus applied to longer ceramic tubes. Finally the development of two pathways ("Coating onto" and "Grafting from") were assessed for their ability to modify the tubular ceramic support and preliminary gas separation tests were performed.
16

Caractérisation de la pharmacocinétique de formulations sensibles au pH et de formulations destinées au traitement des intoxications médicamenteuses

Bertrand, Nicolas 04 1900 (has links)
La préparation de formulations à libération contrôlée est le domaine des sciences pharmaceutiques qui vise à modifier l’environnement immédiat des principes actifs pour en améliorer l’efficacité et l’innocuité. Cet objectif peut être atteint en modifiant la cinétique de circulation dans le sang ou la distribution dans l’organisme. Le but de ce projet de recherche était d’étudier le profil pharmacocinétique (PK) de différentes formulations liposomales. L’analyse PK, généralement employée pour représenter et prédire les concentrations plasmatiques des médicaments et de leurs métabolites, a été utilisée ici pour caractériser in vivo des formulations sensibles au pH servant à modifier la distribution intracellulaire de principes actifs ainsi que des liposomes destinés au traitement des intoxications médicamenteuses. Dans un premier temps, la PK d’un copolymère sensible au pH, à base de N-isopropylacrylamide (NIPAM) et d’acide méthacrylique (MAA) a été étudiée. Ce dernier, le p(NIPAM-co-MAA) est utilisé dans notre laboratoire pour la fabrication de liposomes sensibles au pH. L’étude de PK conduite sur les profils de concentrations sanguines de différents polymères a défini les caractéristiques influençant la circulation des macromolécules dans l’organisme. La taille des molécules, leur point de trouble ainsi que la présence d’un segment hydrophobe à l’extrémité des chaînes se sont avérés déterminants. Le seuil de filtration glomérulaire du polymère a été évalué à 32 000 g/mol. Finalement, l’analyse PK a permis de s’assurer que les complexes formés par la fixation du polymère à la surface des liposomes restaient stables dans le sang, après injection par voie intraveineuse. Ces données ont établi qu’il était possible de synthétiser un polymère pouvant être adéquatement éliminé par filtration rénale et que les liposomes sensibles au pH préparés avec celui-ci demeuraient intacts dans l’organisme. En second lieu, l’analyse PK a été utilisée dans le développement de liposomes possédant un gradient de pH transmembranaire pour le traitement des intoxications médicamenteuses. Une formulation a été développée et optimisée in vitro pour capturer un médicament modèle, le diltiazem (DTZ). La formulation liposomale s’est avérée 40 fois plus performante que les émulsions lipidiques utilisées en clinique. L’analyse PK des liposomes a permis de confirmer la stabilité de la formulation in vivo et d’analyser l’influence des liposomes sur la circulation plasmatique du DTZ et de son principal métabolite, le desacétyldiltiazem (DAD). Il a été démontré que les liposomes étaient capables de capturer et de séquestrer le principe actif dans la circulation sanguine lorsque celui-ci était administré, par la voie intraveineuse. L’injection des liposomes 2 minutes avant l’administration du DTZ augmentait significativement l’aire sous la courbe du DTZ et du DAD tout en diminuant leur clairance plasmatique et leur volume de distribution. L’effet de ces modifications PK sur l’activité pharmacologique du médicament a ensuite été évalué. Les liposomes ont diminué l’effet hypotenseur du principe actif administré en bolus ou en perfusion sur une période d’une heure. Au cours de ces travaux, l’analyse PK a servi à établir la preuve de concept que des liposomes possédant un gradient de pH transmembranaire pouvaient modifier la PK d’un médicament cardiovasculaire et en diminuer l’activité pharmacologique. Ces résultats serviront de base pour le développement de la formulation destinée au traitement des intoxications médicamenteuses. Ce travail souligne la pertinence d’utiliser l’analyse PK dans la mise au point de vecteurs pharmaceutiques destinés à des applications variées. À ce stade de développement, l’aspect prédictif de l’analyse n’a pas été exploité, mais le côté descriptif a permis de comparer adéquatement diverses formulations et de tirer des conclusions pertinentes quant à leur devenir dans l’organisme. / Drug delivery is the field of pharmaceutical sciences which focuses on altering the immediate environment of drug molecules to improve their efficacy and safety. Drug delivery systems can potentiate the effect of active principles or alleviate their side effects by modifying their circulation profiles and/or biodistribution. The objective of this research project was to investigate the role of pharmacokinetic (PK) analysis in the development of novel drug delivery systems. PK analysis is generally applied to describe and predict the blood concentration profiles of low molecular weight drugs and their metabolites. Nevertheless, it is herein used to characterize the circulation of 2 liposomal formulations: pH-sensitive liposomes designed to alter the intracellular distribution of drugs and liposomes with transmembrane pH gradient for drug detoxification. The first series of experiments were designed to study the circulation kinetics of a pH-sensitive polymer prepared with N-isopropylacrylamide (NIPAM) and methacrylic acid (MAA). The copolymer p(NIPAM-co-MAA) is used in our laboratory to prepare serum-stable, PEGylated, pH-sensitive liposomes. The circulation profiles of polymers with different characteristics were characterized. The parameters which impacted the fate of the macromolecules were the length of the polymer chain, its cloud point and the presence of a hydrophobic anchor at one extremity of the molecule. The glomerular filtration cut-off of the polymer was determined to be around 32,000 g/mol. PK analysis allowed to conclude that the complexes prepared by anchoring the polymer on the surface of the liposomes remained stable in the bloodstream. This data established that pH-sensitive vesicular formulations could be produced using a polymer which could be excreted through renal filtration. It also confirmed that the formulation remained intact in the bloodstream. The second part of this work involved the development of liposomes with a transmembrane pH gradient designed to treat cardiovascular drug intoxications. Liposomes were designed and optimized in vitro to capture a model cardiovascular drug, diltiazem (DTZ). In vitro, the liposome uptake capacity was 40-fold higher than the lipid emulsion used in the clinic. PK analysis was used to verify the stability of the formulation in vivo, and to assess the impact of the liposomes on the plasma concentration of DTZ and its principal active metabolite, deacetyl-diltiazem (DAD). It was shown that the vesicles were able to capture and sequester DTZ and DAD. Injection of liposomes 2 min prior to administration of DTZ significantly increased the area under the plasma-concentration vs. time curve of both DTZ and DAD, while lowering their clearance and volume of distribution. The impact of the changes in PK on the pharmacological effect of the drug was also investigated. Liposomes tempered the hypotensive effect of the drug when the latter was administered via an intravenous bolus or a 1-h perfusion. Throughout this work, PK analysis proved to be an efficient tool to study the ability of transmembrane pH gradient liposomes to alter the blood circulation profiles of a cardiovascular drug, and to reduce its pharmacological effect. This proof of concept establishes firm ground for the further development of this colloidal formulation to treat drug intoxications. This work pointed out the relevance of PK analysis for the development of multi-purpose, colloidal drug delivery systems. At this stage, the predictive nature of the analysis was not exploited, but its descriptive properties allowed objective comparison of the circulation profiles of distinct systems and pertinent conclusions concerning their fate in vivo.
17

Development of a Phase Separation Strategy in Macrocyclization Reactions

Bédard, Anne-Catherine 04 1900 (has links)
La réaction de macrocyclisation est une transformation fondamentale en chimie organique de synthèse. Le principal défi associcé à la formation de macrocycles est la compétition inhérente avec la réaction d’oligomérisation qui mène à la formation de sousproduits indésirables. De plus, l’utilisation de conditions de dilutions élevées qui sont nécessaires afin d’obtenir une cyclisation “sélective”, sont souvent décourageantes pour les applications à l’échelle industrielle. Malgré cet intérêt pour les macrocycles, la recherche visant à développer des stratégies environnementalement bénignes, qui permettent d’utiliser des concentrations normales pour leur synthèse, sont encore rares. Cette thèse décrit le développement d’une nouvelle approche générale visant à améliorer l’efficacité des réactions de macrocyclisation en utilisant le contrôle des effets de dilution. Une stratégie de “séparation de phase” qui permet de réaliser des réactions à des concentrations plus élevées a été developpée. Elle se base sur un mélange de solvant aggrégé contrôlé par les propriétés du poly(éthylène glycol) (PEG). Des études de tension de surface, spectroscopie UV et tagging chimique ont été réalisées afin d’élucider le mécanisme de “séparation de phase”. Il est proposé que celui-ci fonctionne par diffusion lente du substrat organique vers la phase ou le catalyseur est actif. La nature du polymère co-solvant joue donc un rôle crutial dans le contrôle de l’aggrégation et de la catalyse La stratégie de “séparation de phase” a initiallement été étudiée en utilisant le couplage oxidatif d’alcynes de type Glaser-Hay co-catalysé par un complexe de cuivre et de nickel puis a été transposée à la chimie en flux continu. Elle fut ensuite appliquée à la cycloaddition d’alcynes et d’azotures catalysée par un complexe de cuivre en “batch” ainsi qu’en flux continu. / Macrocyclization is a fundamentally important transformation in organic synthetic chemistry. The main challenge associated with the synthesis of large ring compounds is the competing oligomerization processes that lead to unwanted side-products. Moreover, the high dilution conditions needed to achieved “selective” cyclization are often daunting for industrial applications. Despite the level of interest in macrocycles, research aimed at developing sustainable strategies that focus on catalysis at high concentrations in macrocyclization are still rare. The following thesis describes the development of a novel approach aimed at improving the efficiency of macrocyclization reactions through the control of dilution effects. A “phase separation” strategy that allows for macrocyclization to be conducted at higher concentrations was developped. It relies on an aggregated solvent mixture controlled by a poly(ethylene glycol) (PEG) co-solvent. Insight into the mechanism of “phase separation” was probed using surface tension measurments, UV spectroscopy and chemical tagging. It was proposed to function by allowing slow diffusion of an organic substrate to the phase where the catalyst is active. Consequently, the nature of the polymer co-solvent plays a role in controlling both aggregation and catalysis. The “phase separation” strategy was initially developed using the copper and nickel co-catalyzed Glaser-Hay oxidative coupling of terminal alkynes in batch and was also transposed to continuous flow conditions. The “phase separation” strategy was then applied to the copper-catalyzed alkyne-azide cycloaddition in both batch and continuous flow.
18

Ligands dérivés de saccharides et, ou supportés par un bras poly(éthylène) glycol : synthèse et applications en catalyse organométallique / Ligands derived from saccharides and, or supported on poly(ethylene) glycol arm : synthesis and applications in organometallic catalysis

Adidou, Ouissam 16 October 2009 (has links)
La synthèse de deux familles de ligands a été envisagée. La première famille de ligands concerne la préparation de nouveaux ligands dérivés de la D-glucosamine ou du D-glucose qui seront engagés dans la réaction de substitution allylique de type Tsuji-Trost en phase homogène. La deuxième famillede ligands concerne la préparation de ligand supportés par un bras poly(éthylène) glycol et dérivés dela D-glucosamine ou de la di-(2-pyridyl)méthylamine. Ces ligands hydrosolubles ont été engagés dans deux réactions pallado-catalysées en phase aqueuse à savoir la substitution allylique de type Tsuji-Trost et la réaction de couplage croisé de type Suzuki-Miyaura, respectivement. / Ligands derived from saccharides and, or supported on poly(ethylene) glycol arm: synthesis and applications in organometallic catalysis. The synthesis of two types of ligands has been investigated. The first family of ligands has been the preparation of new ligands derived from D-glucosamine or D-glucose, which have been tested in the allylic substitution of Tsuji-Trost in homogeneous phase. The second one has een the preparation of ligand supported on poly(ethylene) glycol arm and derived from D-glucosamine or di-(2- pyridyl)methylamine. These last hydrosoluble ligands have been tested in two Pd-catalyzed reactions in aqueous phase: the allylic substitution of Tsuji-Trost and the cross-coupling Suzuki-Miyaura reaction, respectively.
19

Caractérisation de la pharmacocinétique de formulations sensibles au pH et de formulations destinées au traitement des intoxications médicamenteuses

Bertrand, Nicolas 04 1900 (has links)
La préparation de formulations à libération contrôlée est le domaine des sciences pharmaceutiques qui vise à modifier l’environnement immédiat des principes actifs pour en améliorer l’efficacité et l’innocuité. Cet objectif peut être atteint en modifiant la cinétique de circulation dans le sang ou la distribution dans l’organisme. Le but de ce projet de recherche était d’étudier le profil pharmacocinétique (PK) de différentes formulations liposomales. L’analyse PK, généralement employée pour représenter et prédire les concentrations plasmatiques des médicaments et de leurs métabolites, a été utilisée ici pour caractériser in vivo des formulations sensibles au pH servant à modifier la distribution intracellulaire de principes actifs ainsi que des liposomes destinés au traitement des intoxications médicamenteuses. Dans un premier temps, la PK d’un copolymère sensible au pH, à base de N-isopropylacrylamide (NIPAM) et d’acide méthacrylique (MAA) a été étudiée. Ce dernier, le p(NIPAM-co-MAA) est utilisé dans notre laboratoire pour la fabrication de liposomes sensibles au pH. L’étude de PK conduite sur les profils de concentrations sanguines de différents polymères a défini les caractéristiques influençant la circulation des macromolécules dans l’organisme. La taille des molécules, leur point de trouble ainsi que la présence d’un segment hydrophobe à l’extrémité des chaînes se sont avérés déterminants. Le seuil de filtration glomérulaire du polymère a été évalué à 32 000 g/mol. Finalement, l’analyse PK a permis de s’assurer que les complexes formés par la fixation du polymère à la surface des liposomes restaient stables dans le sang, après injection par voie intraveineuse. Ces données ont établi qu’il était possible de synthétiser un polymère pouvant être adéquatement éliminé par filtration rénale et que les liposomes sensibles au pH préparés avec celui-ci demeuraient intacts dans l’organisme. En second lieu, l’analyse PK a été utilisée dans le développement de liposomes possédant un gradient de pH transmembranaire pour le traitement des intoxications médicamenteuses. Une formulation a été développée et optimisée in vitro pour capturer un médicament modèle, le diltiazem (DTZ). La formulation liposomale s’est avérée 40 fois plus performante que les émulsions lipidiques utilisées en clinique. L’analyse PK des liposomes a permis de confirmer la stabilité de la formulation in vivo et d’analyser l’influence des liposomes sur la circulation plasmatique du DTZ et de son principal métabolite, le desacétyldiltiazem (DAD). Il a été démontré que les liposomes étaient capables de capturer et de séquestrer le principe actif dans la circulation sanguine lorsque celui-ci était administré, par la voie intraveineuse. L’injection des liposomes 2 minutes avant l’administration du DTZ augmentait significativement l’aire sous la courbe du DTZ et du DAD tout en diminuant leur clairance plasmatique et leur volume de distribution. L’effet de ces modifications PK sur l’activité pharmacologique du médicament a ensuite été évalué. Les liposomes ont diminué l’effet hypotenseur du principe actif administré en bolus ou en perfusion sur une période d’une heure. Au cours de ces travaux, l’analyse PK a servi à établir la preuve de concept que des liposomes possédant un gradient de pH transmembranaire pouvaient modifier la PK d’un médicament cardiovasculaire et en diminuer l’activité pharmacologique. Ces résultats serviront de base pour le développement de la formulation destinée au traitement des intoxications médicamenteuses. Ce travail souligne la pertinence d’utiliser l’analyse PK dans la mise au point de vecteurs pharmaceutiques destinés à des applications variées. À ce stade de développement, l’aspect prédictif de l’analyse n’a pas été exploité, mais le côté descriptif a permis de comparer adéquatement diverses formulations et de tirer des conclusions pertinentes quant à leur devenir dans l’organisme. / Drug delivery is the field of pharmaceutical sciences which focuses on altering the immediate environment of drug molecules to improve their efficacy and safety. Drug delivery systems can potentiate the effect of active principles or alleviate their side effects by modifying their circulation profiles and/or biodistribution. The objective of this research project was to investigate the role of pharmacokinetic (PK) analysis in the development of novel drug delivery systems. PK analysis is generally applied to describe and predict the blood concentration profiles of low molecular weight drugs and their metabolites. Nevertheless, it is herein used to characterize the circulation of 2 liposomal formulations: pH-sensitive liposomes designed to alter the intracellular distribution of drugs and liposomes with transmembrane pH gradient for drug detoxification. The first series of experiments were designed to study the circulation kinetics of a pH-sensitive polymer prepared with N-isopropylacrylamide (NIPAM) and methacrylic acid (MAA). The copolymer p(NIPAM-co-MAA) is used in our laboratory to prepare serum-stable, PEGylated, pH-sensitive liposomes. The circulation profiles of polymers with different characteristics were characterized. The parameters which impacted the fate of the macromolecules were the length of the polymer chain, its cloud point and the presence of a hydrophobic anchor at one extremity of the molecule. The glomerular filtration cut-off of the polymer was determined to be around 32,000 g/mol. PK analysis allowed to conclude that the complexes prepared by anchoring the polymer on the surface of the liposomes remained stable in the bloodstream. This data established that pH-sensitive vesicular formulations could be produced using a polymer which could be excreted through renal filtration. It also confirmed that the formulation remained intact in the bloodstream. The second part of this work involved the development of liposomes with a transmembrane pH gradient designed to treat cardiovascular drug intoxications. Liposomes were designed and optimized in vitro to capture a model cardiovascular drug, diltiazem (DTZ). In vitro, the liposome uptake capacity was 40-fold higher than the lipid emulsion used in the clinic. PK analysis was used to verify the stability of the formulation in vivo, and to assess the impact of the liposomes on the plasma concentration of DTZ and its principal active metabolite, deacetyl-diltiazem (DAD). It was shown that the vesicles were able to capture and sequester DTZ and DAD. Injection of liposomes 2 min prior to administration of DTZ significantly increased the area under the plasma-concentration vs. time curve of both DTZ and DAD, while lowering their clearance and volume of distribution. The impact of the changes in PK on the pharmacological effect of the drug was also investigated. Liposomes tempered the hypotensive effect of the drug when the latter was administered via an intravenous bolus or a 1-h perfusion. Throughout this work, PK analysis proved to be an efficient tool to study the ability of transmembrane pH gradient liposomes to alter the blood circulation profiles of a cardiovascular drug, and to reduce its pharmacological effect. This proof of concept establishes firm ground for the further development of this colloidal formulation to treat drug intoxications. This work pointed out the relevance of PK analysis for the development of multi-purpose, colloidal drug delivery systems. At this stage, the predictive nature of the analysis was not exploited, but its descriptive properties allowed objective comparison of the circulation profiles of distinct systems and pertinent conclusions concerning their fate in vivo.
20

Synthèse de latex de poly(fluorure de vinylidène) (PVDF) sans tensioactif à l’aide de la polymérisation radicalaire contrôlée de type RAFT / Synthesis of surfactant-free poly(vinylidene fluoride) (PVDF) latexes via RAFT emulsion polymerization

Fuentes-Exposito, Mathieu 26 September 2019 (has links)
Les travaux réalisés portent sur la synthèse de nanoparticules de PVDF à l’aide de la polymérisation radicalaire contrôlée (PRC) par transfert de chaîne réversible par addition-fragmentation (RAFT) en émulsion. Dans un premier temps, un méthoxy poly(éthylène glycol) commercial porteur d’une fonction hydroxyle (PEG-OH) a été employé pour la stabilisation des particules de PVDF. Cette stabilisation est assurée par des réactions de transfert irréversible opérant le long des chaînes de PEG conduisant à la formation in situ d’un stabilisant de type copolymère greffé. Par la suite, un PEG modifié chimiquement à partir du PEG-OH, portant à son extrémité de chaîne une fonction xanthate (macroRAFT, PEG-X), réactive et réactivable, a été utilisé. Les expériences réalisées en présence de ce macroRAFT ont démontré une forte implication de l’extrémité xanthate dans le procédé de polymérisation en émulsion du VDF. En effet, des particules stables de l’ordre de 70 nm de diamètre sont obtenues, alors que l’utilisation de PEG-OH conduit à des tailles beaucoup plus importantes (200 nm). Cette tendance est confirmée lors de l’étude de l’impact de divers paramètres comme la masse molaire de la chaîne PEG ou encore la quantité d’amorceur. Des analyses complémentaires (tension de surface et calorimétrie différentielle à balayage) ont permis de comparer le taux d’ancrage de PEG-X et de PEG-OH. Les quantités en macroRAFT ont ensuite été augmentées dans le but d’obtenir des particules composées de copolymères à blocs. Des analyses RMN approfondies ont été menées pour identifier les espèces créées lors de la polymérisation en émulsion du VDF lorsque PEG-OH et PEG-X sont utilisés en tant que stabilisant. Par comparaison, des PEG portant des fonctions réactives de types (méth)acrylate et thiol ont également été employés comme stabilisant et leurs efficacités comparées à celles de PEG-OH et de PEG-X. Par ailleurs, d’autres architectures à base de PEG ont été évaluées en utilisant un macroRAFT difonctionnel (X-PEG-X) et un polymère greffé (PPEGA-X). Enfin, des latex de PVDF ont été synthétisés en présence de macroRAFT de type poly(acide (méth)acrylique) obtenus par polymérisation RAFT de l’acide acrylique ou méthacrylique en présence d’un trithiocarbonate ou d’un xanthate. Comme précédemment, plusieurs paramètres ont été variés comme la masse molaire des chaînes macromoléculaires, la quantité d’amorceur et la quantité de macroRAFT. Ces études ont encore une fois démontré la forte implication des extrémités RAFT dans la stabilisation des particules de PVDF / This work describes the synthesis of self-stabilized PVDF particles by combining the advantages of emulsion polymerization with those of controlled radical polymerization (CRP) using the RAFT process. First, a commercial methoxy poly(ethylene glycol) carrying a hydroxyl function (PEG-OH) was used for the stabilization of PVDF particles. The stabilization is provided by irreversible transfer reactions occurring along the PEG-OH chains leading to the formation of a grafted copolymer stabilizer in situ. This PEG-OH was then chain-end functionalized to introduce a xanthate group (macroRAFT, PEG-X). The experiments carried out in the presence of this macroRAFT demonstrated a strong implication of the xanthate chain-end in the VDF emulsion polymerization process. Indeed, particle sizes of 200 nm and 70 nm were obtained in the presence of PEG-OH and PEG-X, respectively. This trend was confirmed during the study of the impact of various parameters such as the molar mass of the PEG chain or the initiator amount. Additional analyses (surface tension measurement and differential scanning calorimetry) allowed to compare the anchoring efficiency of PEG-X and PEG-OH. The macroRAFT amount was then increased to form particles composed of block copolymer. In-depth NMR analyses were then conducted to identify the species created during the VDF emulsion polymerization process in the presence of PEG-OH and PEG-X. In comparison, PEGs carrying reactive functions such as (meth)acrylate and thiol were used as stabilizers and their efficiencies compared to those of PEG-OH and PEG-X. The macroRAFT architecture was also varied using a difunctional macroRAFT (X-PEG-X) and a grafted polymer (PPEGA-X). Finally, PVDF latexes were synthesized with poly((meth)acrylic acid) (P(M)AA) functionalized by either a trithiocarbonate or a xanthate. Like previously, several parameters were varied such as the macromolecular chain length, the initiator amount and the macroRAFT amount. Again, these studies demonstrated the strong impact of the RAFT chain-end in the stabilization of PVDF particles

Page generated in 0.0821 seconds