• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 651
  • 331
  • 52
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1026
  • 386
  • 240
  • 185
  • 164
  • 155
  • 111
  • 104
  • 91
  • 87
  • 80
  • 79
  • 71
  • 71
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Characterization of biomedical used plasmas by IR and UV-VIS emission spectroscopy

Mavadat, Maryam 20 April 2018 (has links)
La modification de surface par plasma est une technique largement utilisée pour améliorer les propriétés de surface de polymères par le greffage de différents groupes fonctionnels. Dans ce projet de recherche, différentes méthodes pour améliorer les techniques de caractérisation de décharge micro-ondes de N2 et N2-H2 ont été étudiées dans le but d’optimiser le procédé de traitement de surface par plasma. Tout d'abord, un certain nombre de paramètres du plasma ont été mesurés à différentes conditions de traitement. Pour déterminer les paramètres du plasma, la spectroscopie d'émission optique a été utilisée dans la région l’ultraviolet, du visible et l’infrarouge (rarement utilisée dans la littérature scientifique). L’utilisation de la spectroscopie d'émission dans cette dernière région spectrale est avantageuse car elle permet d'éliminer les forts chevauchements entre les transitions atomiques et moléculaires et de pallier la faible intensité du signal observée dans la région de l’ultraviolet et du visible. Par la suite, la composition chimique de surface du PTFE a été analysée par XPS pour déterminer les concentrations en carbone, fluor, azote et des groupements amine suite à un traitement par plasma. Les résultats mentionnés ci-dessus ont été utilisés pour corréler les conditions de traitement et les paramètres de décharge micro-ondes à la composition chimique du PTFE modifié, dans l’objectif de mettre en évidence les paramètres expérimentaux du plasma et les espèces présentes dans le plasma qui jouent un rôle clé pour maximiser la fonctionnalisation de surface du polymère avec des groupements amine. En outre, un modèle mathématique a été développé en utilisant la technique de régression PLS. Pour construire ce modèle, un ensemble de données de variables d'entrée contenant les conditions de traitement et les paramètres spectroscopiques du plasma et une matrice de réponse contenant les propriétés de surface du polymère ont été générées. La base de données obtenue a été utilisée pour établir la relation entre les paramètres du plasma, les conditions de traitement et la chimie de surface du film. Cela a finalement permis de prédire la composition chimique de la surface à partir d’informations relatives au plasma, sans avoir à effectuer des analyses de surface après le traitement. / Plasma surface modification is a widely used technique for improving the surface properties ‎of ‎polymers through the introduction of different functional groups. In ‎the current research project, ‎different methods to improve the characterization techniques of ‎N2 and N2-H2 microwave discharge ‎were investigated with the aim of optimizing the ‎plasma surface process. First of all, a number of plasma parameters were measured at ‎different process conditions. To determine the plasma ‎parameters, optical emission spectroscopy was used ‎not only within the well-documented ‎UV-Visible region but also within the rarely ‎studied infrared zone. Using infrared optical emission ‎spectroscopy is advantageous as it ‎eliminates the strong overlap between atomic and molecular ‎transitions as well as the low ‎intensity UV-Visible emission spectroscopy limitations. In the next step, the PTFE surface chemical composition was analyzed via XPS to quantify the ‎concentrations of carbon, fluorine, and nitrogen after a plasma treatment in a N2-H2 gaseous ‎environment. The XPS analyses were also performed after chemical derivatization to quantify the ‎surface concentration of amino groups (%NH2) at different process conditions. The above-mentioned results were used to correlate process conditions and microwave N2-‎H2 ‎discharge‏ ‏parameters‏ ‏to the chemical composition of the modified ‎PTFE. The purpose was ‎to ‎determine the external plasma parameters and species present within the plasma ‎which ‎‎play a key ‎role in the introduction of amino groups to the polymer surface. ‎Furthermore, a mathematical model was developed using ‎the Partial Least Squares ‎Regression, ‎‎(PLSR) ‎using custom scripts written in MATLAB. A data set of ‎input variables including the process conditions ‎and plasma ‎parameters for each experiment ‎were generated along with the corresponding response ‎matrix which in turn contained the ‎surface ‎properties of the film.‎ ‎The resulting database was used to ‎build the relationship ‎between the plasma parameters, ‎process condition and the resulting film ‎surface chemistry. ‎This ultimately enabled to predict the PTFE surface chemistry from data originating ‎from the plasma, without having to proceed to post-plasma surface characterization.
382

Développement et caractérisation d'un biocapteur basé sur une nanoparticule multicouche et un transducteur polymérique pour des applications de génotypage rapide

Brouard, Danny 19 April 2018 (has links)
La détection d'ADN par fluorescence est un sujet chaud au cours des dernières années. Un bon nombre de méthodes sont aujourd'hui instaurées et jouent un rôle important dans divers domaines tels que les sciences judiciaires, le diagnostique de maladies infectieuses, l'identification de mutations génétiques ou encore la détection d'agents pathogènes biologiques pour n'en nommer que quelques uns. Dans la majorité des cas, le nombre de séquences cible est si faible qu'il faut avoir recours à l'amplification enzymatique (PCR) avant ou encore pendant le processus analytique afin d'amener la concentration de Panalyte au delà du seuil de détectabilité. Pour contourner la PCR, plusieurs méthodes alternatives ont été développées mettant plutôt l'emphase sur une amplification du signal analytique généré lors d'événements de reconnaissance. L'exaltation plasmonique de la fluorescence (MEF) se distingue au sein de ces nouvelles stratégies. En positionnant un fluorophore à proximité d'une nanoparticule métallique, il est possible de rehausser son efficacité d'excitation mais également d'améliorer son taux d'émission radiative. De plus, le temps de vie de l'état excité est diminué, ce qui conduit à une photostabilité améliorée mais surtout à une meilleure détectabilité optique de l'espèce luminescente. L'objectif principal de cette thèse est de combiner la plasmonique à un polymère transducteur de la réaction d'hybridation, afin de développer un biocapteur ultra sensible pour des applications de détection d'ADN et de génotypage. La première partie de ce document est consacrée à la présentation des différents concepts théoriques retrouvés dans cette thèse soient la fluorescence, les mécanismes de transfert énergétiques intermoléculaires, le génotypage et la plasmonique. Ensuite suit la section expérimentale, dans laquelle les principales techniques instrumentales utilisées dans le cadre de ce projet y compris celles dédiées à la caractérisation de systèmes nanoparticulaires sont présentées. Pour finir, les résultats obtenus pour le développement, la caractérisation et l'utilisation d'un nouveau biocapteur nanoparticulaire combinant le MEF et un polymère transducteur sont détaillés dans trois articles publiés récemment.
383

Shear contribution of fiber-reinforced lightweight concrete (FRLWC) reinforced with basalt fiber reinforced Polymer (BFRP) bars

Abbadi, Abdulrahman 22 October 2018 (has links)
Cette étude porte sur le comportement au cisaillement des poutres en béton léger fibré et renforcées par des barres de polymère renforcé de fibres de basalte (PRFB). Dix poutres (150x250x2400 mm) coulées avec du béton fibré ou non-fibré ont été testées en flexion. Deux poutres ont été coulées sans fibres (poutres contrôles) tandis que les huit autres poutres ont été coulées avec du béton contenant des différents types et pourcentages de fibres. Les paramètres étudiés comprenaient le type de fibres ajoutés au béton (fibres de basalte, de polypropylène et d’acier), la fraction volumique des fibres (0, 0,5 et 1,0%) et les taux de renforcement des barres de PRFB (0,95 et 1,37%). Une comparaison entre les résultats expérimentaux et les modèles analytiques actuellement disponibles dans la littérature a été réalisée pour évaluer l'applicabilité de tels modèles pour prévoir la capacité des poutres testées en cisaillement. Les résultats de la présente étude indiquent que la géométrie des fibres joue un rôle important dans l'augmentation du nombre de fissures que celles observées dans les poutres contrôles. L'ajout de fibres a entraîné une défaillance plus ductile et le taux d'ouverture des fissures était retardé. La largeur de la fissure a diminué avec l'augmentation des ratios de renforcement longitudinal et des fractions volumiques des fibres. L'augmentation du taux de renforcement longitudinal a entraîné une rigidité plus élevée et a diminué les flèches à tous les stades du chargement. Les poutres coulées avec 1% de fibres de basalte, de polypropylène et d'acier ont montré une augmentation dans leurs capacités de cisaillement par rapport aux poutres contrôles d'environ 11, 16 et 63%, respectivement. Le type de fibres affectait de manière significative le gain dans les capacités de cisaillement des poutres, ce qui était attribué aux différentes propriétés physiques et mécaniques des fibres utilisées, telles que leurs dimensions, leurs géométries, et leurs mécanismes de liaison avec le béton. Les poutres coulées avec des fibres en acier à 0,5% présentaient des capacités de cisaillement plus élevées que celles coulées avec des fibres de basalte et de polypropylène de 23 et 16% respectivement, alors que les poutres coulées avec des fibres en acier à 1% de volume présentaient un gain de 47 et 41%, respectivement, dans leurs capacités. Les capacités de cisaillement prévues selon les équations de la norme CSA-S806-12 étaient conservatrices avec un rapport moyen Vprév/Vexp de 0,80 (écart type, ÉT = 0,12) pour les poutres sans fibres. Les modèles établis par Shin (1994) et Gopinath (2016) ont fourni de bonnes prévisions quant aux capacités de cisaillement des poutres en béton renforcé de fibres de basalte avec des ratios moyens Vprév/Vexp de 1,34 (ÉT = 0,09) et de 1,35 (ÉT = 0,07), respectivement. De même, le modèle de Shin (1994) a bien prédit les capacités de cisaillement des poutres en béton armé de fibres de polypropylène avec un rapport Vprév/Vexp de 1,34 (ÉT = 0,18). Les modèles de Gopinath (2016), Ashour A (1992) et Shin (1994) ont prédit les capacités de cisaillement des poutres en béton armé de fibres d'acier assez raisonnablement avec des ratio Vprév/Vexp de 1,01 (ÉT = 0,06), 1,07 (ÉT = 0,01) et 1,20 (ÉT = 0,08), respectivement. Un nouveau modèle a été proposé pour prédire les capacités de cisaillement des poutres en béton léger fibré renforcées par des barres longitudinales PRFB. Le modèle proposé prédit bien les capacités de cisaillement des poutres en béton léger (avec des fibres de basalte) avec un rapport Vprév/Vexp de 1,01 (ÉT = 0,05) et celles des poutres en béton léger (avec des fibres de polypropylène) avec un rapport Vprév/Vexp de 0,99 (ÉT = 0,06). Le facteur de liaison et la matrice de liaison d'interface utilisés étaient respectivement 0,75 et 4,18 MPa. En même temps, le modèle proposé prédit bien les capacités de cisaillement des poutres coulées avec des fibres d’acier avec un rapport Vprév/Vexp de 0,9 (ÉT = 0,00) quand le facteur de liaison et la matrice de liaison d'interface utilisés étaient respectivement 1,0 et 6,8 MPa. / This study reports on the shear behavior of fiber-reinforced lightweight concrete (FRLWC) beams reinforced with basalt fiber-reinforced polymer (BFRP) bars. Ten beams (150x250x2400 mm) cast with concrete with and without fibers were tested under fourpoint loading configuration until failure occurred. Two beams were cast without fibers and acted as control while the other eight beams were cast with different types and percentages of fiber. The investigated parameters included the fiber type (basalt, polypropylene, and steel fibers), the fibers volume fraction (0, 0.5, and 1.0%), and the beams’ reinforcement ratios (0.95 and 1.37%). Comparison between the experimental results and the analytical models currently available in the literature was performed to assess the applicability of such models for LWC reinforced with BFRP bars. Based on the outcome of the current study, the geometry of fibers played an important role in increasing the number of cracks than those observed in the control beams. The addition of fibers led to a more ductile failure and the rate of crack opening was delayed. Crack width decreased with the increase of the longitudinal reinforcement ratios and the fibers’ volume fractions. Increasing the reinforcement ratio resulted in higher stiffness and decreased its deflection at all stages of loading. Beams cast with 1% of basalt, polypropylene, and steel fibers showed an increase in their shear capacities in compared to control beams about 11, 16, and 63%, respectively. The type of fibers significantly affected the gain in the shear capacities of the beams, which can be attributed to the different physical and mechanical properties of the fibers used such as aspect ratios, lengths, geometries, densities, and their bonding mechanisms. Beams cast with 0.5% steel fibers exhibited higher shear capacities than those cast with basalt and polypropylene fibers by 23 and 16%, respectively, whereas the beams cast with 1% steel fibers showed a gain by 47 and 41%, respectively. The predicted shear capacities according to CSA-S806-12 code provisions were conservative with an average ratio Vpred /Vexp of 0.80 (standard deviation, SD = 0.12) for beams without fibers. Good predictions for the shear capacities of the basalt-fiber reinforced concrete beams (BLWC) were provided by the models derived by Shin (1994) and Gopinath (2016) in which the ratios Vpred /Vexp were 1.34 (SD = 0.09) and 1.35 (SD = 0.07), respectively. Also, the model of Shin (1994) predicted well the shear capacities of the polypropylene-fiber reinforced concrete beams (PLWC) with a Vpred /Vexp ratio of 1.34 and SD of 0.18. The models of Gopinath (2016), Ashour A (1992), and Shin (1994) predicted the shear capacities of steel-fiber reinforced concrete beams (SLWC) fairly reasonable with a Vpred /Vexp ratio of 1.01 (SD = 0.06), 1.07 (SD = 0.01) and 1.20 (SD = 0.08), respectively. A new model was proposed to predict the shear capacities of FRWLC beams reinforced with BFRP longitudinal bars. The proposed model predicted well the shear capacities of BLWC beams with a Vpred /Vexp ratio of 1.01 (SD = 0.05) and those of PLWC beams with a Vpred /Vexp ratio of 0.99 (SD = 0.06). The bond factor and the interface bond matrix used were 0.75 and 4.18 MPa, respectively. The proposed model also predicted well the shear capacities of beams cast with SLWC with a Vpred /Vexp ratio of 0.9 when the bond factor and the interface bond matrix were taken equal to 1.00 and 6.8 MPa, respectively.
384

Study for the optimization of interfacial properties between metallic substrates and polymeric coatings by plasma-based surface modification methods to improve performance of vascular stents

Dorri, Megan Mahrokh 24 April 2018 (has links)
Au cours de 15 dernières années, les maladies coronariennes et les accidents vasculaires cérébraux demeurent les causes principales de décès dans le monde. Selon l'Organisation Mondiale de la Santé, en 2015, ces deux maladies ont causé 15 millions des décès sur les 56,4 millions dans le monde. Des traitements chirurgicaux ont été élaborés et améliorés pour soigner ces maladies en maintenant les vaisseaux sanguins ouverts. Parmi les traitements chirurgicaux, l'angioplastie avec utilisation d’un stent est le traitement le plus populaire et le moins invasif. Les stents, qui sont des tubes métalliques en treillis, vont soutenir mécaniquement les vaisseaux sanguins après l’implantation et les maintenir ouverts pour améliorer le flux sanguin. Ceux-ci sont principalement composés d’acier inoxydable AISI316L (SS316L), d'alliage de cobalt-chrome et d'alliage de titane. Depuis plus d'un demi-siècle, lorsqu'un stent a été implanté pour la première fois, ils ont été considérablement améliorés. Cependant, la libération d'ions métalliques, potentiellement toxiques, et la détérioration des propriétés mécaniques à cause de la corrosion ainsi que la diminution de l'adhérence des revêtements, dans le cas de stents avec les revêtements en polymère, constituent encore des préoccupations majeures lors de l’utilisation des stents. Dans le cas des stents en SS316L, afin d’éviter la libération d'ions métalliques, au laboratoire de biomatériaux et de bioingénierie de l'Université Laval (LBB), lors de précédentes recherches, un revêtement fluorocarboné (CFx) a été étudié pour isoler complètement le stent de l'environnement biologique. Ce revêtement permet également le greffage ultérieur de molécules bioactives pour améliorer son intégration dans le corps. Cependant, l'interface de SS316L / CFx devait être améliorée pour augmenter l’adhésion du revêtement CFx sur le SS316L. Dans mon projet de doctorat, l’oxydation au plasma a été utilisé pour élaborer une nouvelle interface entre le substrat SS316L et le revêtement. Les propriétés de cette nouvelle interface, qui est composée d’une couche d'oxyde, ont été modifiées en faisant varier les paramètres du procédé plasma afin de préserver les propriétés de cette couche d’oxyde lorsqu’elle subit une déformation plastique de 25%, c’est-à-dire le pourcentage de déformation maximale que subira le stent lors de son implantation. Cette interface a permis de diminuer la libération des ions du substrat SS316L en réduisant son taux de corrosion plus que trois fois et d’améliorer l’adhérence adéquate du revêtement CFx sur le substrat, après déformation et après immersion dans une solution aqueuse saline. La nouvelle couche d'oxyde sur SS316L est une couche d'oxyde amorphe avec une épaisseur d'environ 6 nm qui se distincte bien de la microstructure polycristalline du substrat. L'amélioration des propriétés de l'interface a été attribuée à cette couche d'oxyde amorphe nano-épaisse, qui est résistante aux déformations plastiques. Cette couche d'oxyde peut être appliquée sur des stents métalliques nus composés de métaux passivables. En outre, elle crée une interface favorable pour les revêtements en polymère, qui sont utilisés pour les stents à relargage de principes actifs ainsi que pour améliorer l'intégration des stents dans le corps humain. / Over the past 15 years, ischemic heart disease and stroke have remained the leading causes of death, worldwide. According to the World Health Organization, 15 million of the 56.4 million global deaths, in 2015, were caused only by ischemic heart disease or stroke. For the treatment of these diseases, surgical treatments have been introduced and improved to hold the blood vessels open. Among the surgical treatments, angioplasty with stenting is the most popular and the least invasive treatments. Stents, which are wire mesh tubes, prepare a mechanical support for blood vessels and hold them open to restore the blood flow. They are mostly made up of AISI316L stainless steel (SS316L), cobalt-chromium, and titanium alloys. More than half a century ago, when a stent first used, it has considerably evolved. However, release of potentially-toxic metallic ions and deterioration of mechanical properties due to corrosion, and decrease of polymeric coatings adhesion, in case of coated stents, still constitute major concerns in SS316L stents. In the case of SS316L stents, to circumvent the release of metallic ions, in the laboratory for biomaterials and bioengineering of Université Laval (LBB), a fluorocarbon (CFx) coating was previously investigated to isolate the stent completely from the biological environment. The coating also enables subsequent grafting of bioactive molecules to improve its integration in the body. The results were promising; however, the interface of SS316L/CFx needed to be modified to improve the adhesion of the CFx coating. In this Ph.D. research project, a new interface between the SS316L substrate and the CFx coating was created by plasma oxidation. The properties of this new interface, which was an oxide layer, was modified by varying the plasma-process parameters in order to preserve its properties after a 25% plastic deformation. This deformation is the maximum plastic deformation that imposes on a stent during its implantation. The new interface decreased the release of ions by decreasing the corrosion rate of the SS316L substrate by a factor of three. It was also found that the new interface produced an adequate adhesion of the CFx coating to the substrate after deformation as well as after immersion in an aqueous saline solution. The new oxide layer on SS316L was an amorphous oxide layer with an approximately 6 nm thickness, which was clearly distinguished from the polycrystalline microstructure of the substrate. The enhancement of the interface properties was ascribed to this nano-thick amorphous oxide layer, which was found to be more resistant to plastic deformation. This new oxide layer can be produced on bare-metal stents made of passivating metals. Moreover, it can create a favorable interface for coated stents, which have been used in drug-eluting stents, and also to improve stents integration in the human body.
385

Bio-conjugaison de la fibronectine sur surface de téflon pour applications dans le domaine vasculaire

Byad, Michaël 24 April 2018 (has links)
Depuis trente ans, des efforts ont été menés dans le domaine de l'ingénierie des matériaux afin de concevoir des appareils médicaux pouvant être en contact avec les tissus humains. Néanmoins l'interaction entre la surface du matériau et l'environnement physiologique entraine la plupart du temps des complications. Le laboratoire d'ingénierie des surfaces est spécialisé dans l'élaboration de surfaces biomimétiques capables d'interagir de manière proactive avec leur environnement. Pour des applications cardiovasculaires, une des stratégies consiste à utiliser des protéines de la matrice extracellulaire, comme la fibronectine, connue pour la promotion de l'adhésion des cellules endothéliales. Dans ce contexte, parce que la bioactivité de la fibronectine est fortement liée à sa conformation, l'objectif est de comparer différentes stratégies d'immobilisation en caractérisant la quantité de fibronectine immobilisée ainsi que son activité biologique. Les précédentes études menées au laboratoire ont souligné le fait que la fibronectine immobilisée par les cystéines présente une meilleur bioactivité que lorsque celle-ci est immobilisée par les groupements lysines qu'elle contient. L'actuel projet porte sur l'étude de l'influence de l'utilisation d'un bras d'ancrage hydrophile ou hydrophobe entre la protéine et la surface sur la bioactivité de la protéine. Les résultats ont d'une part montré l'efficacité des bras d'ancrage dans l'immobilisation de la fibronectine et d'autre part les limites de leur utilisation pour une étude comparative portant sur la quantification et la bioactivité de la protéine.
386

Synthèse et caractérisation de nouveaux matériaux de type n pour applications en dispositifs photovoltaïques

Rondeau-Gagné, Simon 17 April 2018 (has links)
Le PCBM (phenyl CÔI butyric methylester) est un dérivé très utilisé comme matériau de type n dans les piles solaires organiques (accepteur d'électrons). Avec les nombreuses recherches effectuées dans le domaine, il est désormais possible d'obtenir d'encourageants taux de conversion de l'énergie solaire en électricité (plus de 7 %). Bien que le PCBM donne de bons résultats, cet accepteur d'électrons n'est pas le composé optimal pour tous les polymères [Pi] -conjugués et une modulation du niveau énergétique de l'orbitale LUMO est souhaitable. L'objectif principal de ce projet est de synthétiser des dérivés solubles du C₆₀ dont l'orbitale LUMO se situe entre -3,7 et -4,0 eV (comparativement à -4,3 eV pour le PCBM) résultant en une augmentation de la valeur du Voc et conséquemment, de l'efficacité du dispositif. Quelques groupes de recherche se sont penchés sur la modulation de l'orbitale LUMO du C₆₀, mais les changements se sont avérés trop faibles pour avoir un impact significatif sur les performances des piles solaires. Cela peut s'expliquer par la faible communication électronique entre les groupements attachés au C₆₀ et le C₆₀ même. En effet, pour le PCBM, deux carbones sp³ lient le groupement au C₆₀, ce qui a comme effet d'empêcher une conduction directe des électrons au fullerène. Dans le cadre de ce projet, nous proposons d'utiliser une liaison conjuguée afin de lier des groupements électrodonneurs au C₆₀. Par cette liaison, seulement un carbone hybride sp est présent pour attacher le groupement. Ceci devrait donc permettre une meilleure conduction des électrons au C₆₀ et, par le fait même, permettre d'améliorer la modulation de l'orbitale LUMO de ce dernier. Nous avons donc effectué la synthèse de plusieurs dérivés contenant divers groupements électro-donneurs et électro-accepteurs pour étudier leur influence sur les niveaux énergétiques du fullerène. La synthèse de ces dérivés a été faite par la réaction d'éthynylation. Les composés obtenus ont été purifiés par chromatographie en phase liquide et complètement caractérisés par spectroscopie UV-visible et électrochimie. De plus, en utilisant la méthode DFT, nous avons comparé les niveaux énergétiques théoriques des nouveaux dérivés aux résultats expérimentaux.
387

Développement et caractérisation de nouveaux nanocomposites polymères électriquement conductueurs pour plaques bipolaires de piles à combustible à membrane échangeuse de protons, PEMFC

Athmouni, Nafaa 24 April 2018 (has links)
Face à la diminution des ressources énergétiques et à l’augmentation de la pollution des énergies fossiles, de très nombreuses recherches sont actuellement menées pour produire de l’énergie propre et durable et pour réduire l’utilisation des sources d’énergies fossiles caractérisées par leur production intrinsèque des gaz à effet de serre. La pile à combustible à membrane échangeuse de protons (PEMFC) est une technologie qui prend de plus en plus d’ampleur pour produire l’énergie qui s’inscrit dans un contexte de développement durable. La PEMFC est un dispositif électrochimique qui fonctionne selon le principe inverse de l’électrolyse de l’eau. Elle convertit l’énergie de la réaction chimique entre l’hydrogène et l’oxygène (ou l’air) en puissance électrique, chaleur et eau; son seul rejet dans l’atmosphère est de la vapeur d’eau. Une pile de type PEMFC est constituée d’un empilement Électrode-Membrane-Électrode (EME) où la membrane consiste en un électrolyte polymère solide séparant les deux électrodes (l’anode et la cathode). Cet ensemble est intégré entre deux plaques bipolaires (BP) qui permettent de collecter le courant électrique et de distribuer les gaz grâce à des chemins de circulation gravés sur chacune de ses deux faces. La plupart des recherches focalisent sur la PEMFC afin d’améliorer ses performances électriques et sa durabilité et aussi de réduire son coût de production. Ces recherches portent sur le développement et la caractérisation des divers éléments de ce type de pile; y compris les éléments les plus coûteux et les plus massifs, tels que les plaques bipolaires. La conception de ces plaques doit tenir compte de plusieurs paramètres : elles doivent posséder une bonne perméabilité aux gaz et doivent combiner les propriétés de résistance mécanique, de stabilité chimique et thermique ainsi qu’une conductivité électrique élevée. Elles doivent aussi permettre d’évacuer adéquatement la chaleur générée dans le cœur de la cellule. Les plaques bipolaires métalliques sont pénalisées par leur faible résistance à la corrosion et celles en graphite sont fragiles et leur coût de fabrication est élevé (dû aux phases d’usinage des canaux de cheminement des gaz). C’est pourquoi de nombreuses recherches sont orientées vers le développement d’un nouveau concept de plaques bipolaires. La voie la plus prometteuse est de remplacer les matériaux métalliques et le graphite par des composites à matrice polymère. Les plaques bipolaires composites apparaissent attrayantes en raison de leur facilité de mise en œuvre et leur faible coût de production mais nécessitent une amélioration de leurs propriétés électriques et mécaniques, d’où l’objectif principal de cette thèse dans laquelle on propose: i) un matériau nanocomposite développé par extrusion bi-vis qui est à base de polymères chargés d’additifs solides conducteurs, incluant des nanotubes de carbone. ii) fabriquer un prototype de plaque bipolaire à partir de ces matériaux en utilisant le procédé de compression à chaud avec un refroidissement contrôlé. Dans ce projet, deux polymères thermoplastiques ont été utilisés, le polyfluorure de vinylidène (PVDF) et le polyéthylène téréphtalate (PET). Les charges électriquement conductrices sélectionnées sont: le noir de carbone, le graphite et les nanotubes de carbones. La combinaison de ces charges conductrices a été aussi étudiée visant à obtenir des formulations optimisées. La conductivité électrique à travers l’épaisseur des échantillons développés ainsi que leurs propriétés mécaniques ont été soigneusement caractérisées. Les résultats ont montré que non seulement la combinaison entre les charges conductrices influence les propriétés électriques et mécaniques des prototypes développés, mais aussi la distribution de ces charges (qui de son côté dépend de leur nature, leur taille et leurs propriétés de surface), avait aidé à améliorer les propriétés visées. Il a été observé que le traitement de surface des nanotubes de carbone avait aidé à l’amélioration de la conductivité électrique et la résistance mécanique des prototypes. Le taux de cristallinité généré durant le procédé de moulage par compression des prototypes de plaques bipolaires ainsi que la cinétique de cristallisation jouent un rôle important pour l’optimisation des propriétés électriques et mécaniques visées. / Faced to the declining of energy resources and the increase of energy pollution, many researches are focused on the production of clean and sustainable energy in order to reduce the use of fossil sources energy since they are the main source of greenhouse gases production. The Proton Exchange Membrane Fuel Cell (PEMFC) is a technology that is becoming increasingly important for clean and sustainable energy production. The PEMFC is an electrochemical device that operates according to the principle of inverse electrolysis of water. A PEMFC converts the chemical reaction between hydrogen and oxygen (or air) into electrical power, heat and water, while releasing only water steam into the atmosphere. A PEMFC consists of a bended multilayer Electrode-Membrane-Electrode (EME), where the membrane is a solid polymer electrolyte separating the anode and the cathode. This set is built between two bipolar plates used for collecting the electrical current and distributing the gas (hydrogen or oxygen) through gas flow paths etched on each face of the bipolar plates. Most of the recent research focused on the improvement of PEMFC performances, their durability and the reduction of their production cost. A lot of work was done on the development and characterization of the different elements of PEMFCs, including the bipolar plates, considered as one of the most expensive and most massive parts. The design of the bipolar plates must consider several parameters. They should combine good mechanical strength, good chemical and thermal stability, sufficient electrical conductivity and good ability to remove heat generated in the heart of the cell. Metal bipolar plates are penalized by their corrosion resistance, which causes a reduction of the cell life. Those obtained from graphite are brittle and their manufacturing cost is high (mainly due to channels machining cost). Therefore, much research is focused on the development of new concepts of bipolar plates in order to replace metals and graphite by new polymer based composites. The latter appear to be more attractive because of their good processing ability that could help reducing the production cost of PEMFCs. However, much more research has to be done on the improvement of their electrical and mechanical properties, which is the main objective of the present thesis in which we propose: i) To develop by twin-screw extrusion process an optimized polymer nanocomposite material in which conductive solid additives are incorporated, including carbon nanotubes. ii) Fabricate a bipolar plate prototype from theses optimized nanocomposites by using the compression molding process under controlled cooling. In this project, two thermoplastic polymers have been used as the matrix: polyvinylidene fluoride (PVDF) and polyethylene terephthalate (PET). Three electrically conductive fillers were also used: carbon black, graphite and carbon nanotubes. Various combinations of these conductive additives were also studied in order to develop optimized nanocomposite formulations. Through-plane electrical conductivity of the developed nanocomposites as well as their mechanical properties have been carefully characterized. The obtained results showed that not only the combination of the conductive additives influences the nanocomposites through-plane conductivity and their mechanical properties, but also the distribution of these solid additives (which in turn depends on their nature, their size and their surface properties) helped to improve these properties. It has been observed that the surface treatment of the carbon nanotubes used in this study helped to increase both through-plane conductivity and mechanical strength of the developed bipolar plate prototypes. It was also observed that the crystallinity generated during bipolar plate cooling inside the compression mold as well as the crystallization rate play an important role in the optimization of the through-plane electrical conductivity and mechanical properties.
388

Développement des cristaux liquides stabilisé par des polymères pour les applications en photonique

Zohrabyan, Larisa 13 April 2018 (has links)
The aim of the present project is to develop and investigate new types of polymer stabilized liquid crystals (PSLC), based on non-mesogenic monomers. The PSLC system is composed of few percent of monomer dissolved in the nematic liquid crystal (NLC) matrix. The photo-induced radical polymerization results in the formation of polymer network, the morphology of which depends on the functionality of the monomer used as well as on the polymerization conditions. Thus, linear, 2D and 3D polymer networks are created, changing the elastic properties of the NLC, which can be used for the stabilization and control of liquid crystal (LC) cell's alignment and electro optical properties. Most importantly, the morphology of the polymer network near to the surface, in a sub-micrometric distances from the boundary of the cell and its interaction with the cell substrate plays crucial role in the electric field induced planar or 2D (in the plane of the electric field) and 3D molecular reorientations. We will investigate a rich variety of PSLCs to find and demonstrate their unique electro-optic responses for different photonic applications. / De nouveaux types de cristaux liquides stabilisés par les réseaux de polymère (PSLC) sont étudiés, en utilisant des monomères non-mesogenic. Le système de PSLC est compose de quelque pourcent de monomère dissous dans la matrice à cristal liquide nematique (NLC). La polymérisation radicalaire photo-induite a comme conséquence la formation de réseau de polymère, la morphologie duquel dépend de la fonctionnalité du monomère utilisé. Ainsi, des réseaux du polymère linéaire, 2D et 3D sont créés en changeant les propriétés élastiques du NLC, qui peuvent être employées efficacement pour la stabilisation et le contrôle de l'alignement et des propriétés électro-optiques des cellules (LC) à cristal liquide. D'une manière plus importante, la morphologie du réseau de polymère qui se forme près de la surface dans des distances sub-micrométriques de la frontière de la cellule et son interaction avec le substrat de la cellule joue un rôle crucial dans la réorientation moléculaire induite 2D (dans le plan du champ électrique) et 3D. Une riche variété de PSLCs ont été étudiées. Des propriétés électro-optiques prometteuses de PSLCs ont été obtenues pour différentes applications photoniques.
389

Conception, synthèse et caractérisation de poly(2,7-carbazole)s et poly(indolo[3,2-B]carbazole)s pour des applications en électronique organique

Blouin, Nicolas 13 April 2018 (has links)
Le développement récent de deux nouvelles classes de matériaux, les 2,7-carbazoles et les indolo[3,2 b]carbazoles, a ouvert la porte à de multiples applications. Nous nous sommes plus particulièrement intéressés aux polymères dérivés de ces structures pour une application dans le domaine des transistors organiques à effet de champ (TOEC) et des cellules photovoltaïques organiques (CPO). Les synthèses des premiers poly(indolo[3,2 b]carbazole)s ont permis de mieux comprendre les propriétés électroniques de cette classe de polymères. Des études électrochimiques ont permis de mieux comprendre le mécanisme de conduction des charges dans ces polymères. Par l'optimisation de la structure des monomères de 2,7 carbazole et d'indolo[3,2 b]carbazole, nous avons augmenté la solubilité et l'organisation structurale des polymères correspondants. L'optimisation des systèmes catalytiques de polymérisation nous a permis d'augmenter les masses molaires des polymères résultants. L'effet combiné de la masse molaire élevée et de l'organisation structurale a été étudié par TOEC. Dans une configuration optimale, une mobilité de 2.2 ¿ 10-3 cm2.V-1.s-1 a été atteinte pour des poly(2,7-carbazole)s et de 2.3 ¿ 10-2 cm2.V-1.s-1 pour des poly(indolo[3,2 b]carbazole)s. Ces résultats prometteurs ont mené au développement de polymères pour les CPOs. Les structures des monomères développées pour les TEOCs ont été reprises. Seul le 2,7 carbazole portant une chaîne latérale spécifique (9-heptadécanyle) même à des polymères intéressants en CPO. L'ajout d'unités pauvres en électrons par copolymérisation a permis de réduire la largeur de bandes interdite de différents polymères. On obtient ainsi d'excellents candidats couvrant une vaste partie du spectre solaire (650 ? 1200 nm) pour une collecte idéale des photons. Par des calculs de chimie quantique (DFT), les meilleurs candidats ont été choisis en fonction de la position du niveau énergétique HOMO et LUMO idéale pour les CPOs. L'ajustement des niveaux énergétique favorise un transfert optimal d'électrons du polymère à l'ester méthylique de l'acide [6,6]-phényl C61 butyrique (PCBM). Cette étude a démontré l'importance de la solubilité, des masses molaires, de la morphologie, des prédictions théoriques et surtout de l'organisation structurale des polymères dérivés du poly(2,7-carbazole) pour obtenir d'excellentes performances (5.8 % AM 1.5G, 1000 W.m-2) en cellules photovoltaïques.
390

Quality control of complex polymer materials using hyperspectral imaging associated with multivariate statistical analysis

Ghasemzadeh-Barvarz, Massoud 23 April 2018 (has links)
Dans la première étape de ce travail, des composites formulés à partir d'anhydride maléique greffé polyéthylène (MAPE) et de différentes charges de fibres de chanvre (entre 0 et 60%) ont été produits et analysés par imagerie NIR. Trois méthodes chimiométriques ont été utilisées puis comparées pour la prédiction des propriétés mécaniques, cartographier la distribution des constituants et détecter les défauts physiques des matériaux: la calibration multivariée traditionnelle basée sur la régression PLS, la résolution multivariée de courbes (MCR) et l’analyse d’images et la régression sur les images multivariées (MIA/MIR). Dans la deuxième partie de ce projet, une série de films multicouches complexes (échantillons industriels) ont été étudiés par imagerie NIR combinée à l’analyse d’images multivariée. Le potentiel et l'efficacité de la méthode proposée pour détecter les défauts causés par la (les) couche(s) manquant(es) ont été étudiés pour des films non imprimés et imprimés. Dans la dernière partie, les composites hybrides polypropylène (PP) / fibre de verre / fibre de lin ont été étudiés. L'effet de la teneur en fibres (0 à 40% en volume) et de la composition sur les propriétés mécaniques ont été investigués, ainsi que l’effet de l’exposition à l’eau et la dégradation thermique et aux rayons UV (vieillissement accéléré des matériaux). Les images de microscopie électronique à balayage (MEB) des composites non vieillis ont été analysées en combinant des méthodes d’analyse de texture et des méthodes multivariées. Enfin, l'imagerie NIR a été mise en œuvre sur des composites non vieillis et vieillis afin de prédire leurs propriétés finales ainsi que pour modéliser les variations de composition chimique et celles dues au vieillissement accéléré. En résumé, les résultats montrent que la combinaison de l'imagerie hyperspectrale et des méthodes statistiques multivariées est un outil puissant pour le contrôle de la qualité des composites polymères complexes. De plus, la méthode proposée est rapide et non destructive, elle peut être mise en œuvre en ligne, pour le contrôle de la qualité des matériaux composites. D'autre part, il a été démontré que l'analyse de la texture des images peut être appliquée à la quantification de la dispersion et du degré d’homogénéité de la distribution des charges dans des matériaux composites. / In the first step of this work, maleic anhydride grafted polyethylene (MAPE)/hemp fiber composites with different filler concentration between 0 to 60% were analyzed by NIR imaging. Three chemometrics methods including Partial Least Squares (PLS), Multivariate Curve Resolution (MCR) and Multivariate Image Analysis/Multivariate Image Regression (MIA/MIR) were implemented and compared for predicting mechanical properties as well as mapping chemical compositions and material physical variations. In the second part of this project, a series of complex multilayer films (industrial samples) were investigated using NIR hyperspectral imaging and Multivariate Image Analysis (MIA). The potential and effectiveness of the proposed method for detecting defects caused by missing layer(s) were studied for unprinted and printed films. In the final part, polypropylene (PP)/glass/flax hybrid composites were studied. The effect of composition (fiber content between 0 and 40 vol%), as well as water, thermal and UV aging on mechanical properties was investigated. Then, Scanning Electron Microscopy (SEM) images of unaged hybrid composites were analyzed using texture analysis and multivariate methods. Finally, NIR imaging was implemented on unaged and aged composites to predict their final properties as well as to capture chemical composition and aging variations. In summary, the results show that combining hyperspectral imaging and multivariate statistical methods is a powerful tool for quality control of complex polymer composites. Since the proposed method is rapid and nondestructive, one can implement it for on-line quality control of finished plastic products. On the other hand, texture analysis and multivariate methods can be applied for quantifying the mixing aspects of composites.

Page generated in 0.4347 seconds