• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 38
  • 22
  • 1
  • Tagged with
  • 174
  • 64
  • 51
  • 31
  • 28
  • 26
  • 25
  • 24
  • 23
  • 22
  • 20
  • 19
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Etude et construction de schémas de subdivision quasi-linéaires sur des maillages bi-réguliers / Study and construction of the quasi-linear subdivision schemes over bi-regular meshs

Boumzaid, Yacine 20 December 2012 (has links)
Les schémas de subdivision et les schémas de subdivision inverse sont largement utilisés en informatiquegraphique; les uns pour lisser des objets 3D, et les autres pour minimiser le coût d’encodagede l’information. Ce sont les deux aspects abordés dans cette thèse.Les travaux présentés dans le cadre de la subdivision décrivent l’études et la construction d’un nouveautype de schémas de subdivision. Celui-ci unifie deux schémas de subdivision de type géométriquesdifférents. Cela permet de modéliser des objets 3D composés de zones issues de l’applicationd’un schéma approximant et de zones issues de l’application d’un schéma interpolant. Dans le cadrede la subdivision inverse, Nous présentons une méthode de construction des schémas de subdivisionbi-réguliers inverses (quadrilatères et triangles) / Subdivision schemes are commonly used to generate a smooth shape from a much more coarseone. The reverse subdivision is designed to describe a high resolution mesh from a coarse one. Bothof these tools are used in numerous graphical modelisation domains. In this thesis, we focused ontwo distinct aspects: on one hand the construction of quasi-linear subdivision schemes and on theother hand the construction of reverse quad/triangle subdivision schemes. The work, presented inthe context of the subdivision, describes the construction of a new type of subdivision schemes, andtheirs applications to solve some problems coming from the application of linear subdivision schemes.The work presented in the context of the reverse subdivision describes a new method to reverse thequad/triangle subdivision schemes
82

Développements théoriques et empiriques des tests lisses d'ajustement des modèles ARMA vectoriels

Desrosiers, Gabriel 12 1900 (has links)
Lors de la validation des modèles de séries chronologiques, une hypothèse qui peut s'avérer importante porte sur la loi des données. L'approche préconisée dans ce mémoire utilise les tests lisses d'ajustement. Ce mémoire apporte des développements théoriques et empiriques des tests lisses pour les modèles autorégressifs moyennes mobiles (ARMA) vectoriels. Dans des travaux précédents, Ducharme et Lafaye de Micheaux (2004) ont développé des tests lisses d'ajustement reposant sur les résidus des modèles ARMA univariés. Tagne Tatsinkou (2016) a généralisé les travaux dans le cadre des modèles ARMA vectoriels (VARMA), qui s'avèrent potentiellement utiles dans les applications avec données réelles. Des considérations particulières au cas multivarié, telles que les paramétrisations structurées dans les modèles VARMA sont abordées. Les travaux de Tagne Tatsinkou (2016) sont complétés selon les angles théoriques et des études de simulations additionnelles sont considérées. Les nouveaux tests lisses reposent sur des familles de polynômes orthogonaux. Dans cette étude, une attention particulière est accordée aux familles de Legendre et d'Hermite. La contribution théorique majeure est une preuve complète que la statistique de test est invariante aux transformations linéaires affines lorsque la famille d'Hermite est adoptée. Les résultats de Tagne Tatsinkou (2016) représentent une première étape importante, mais ils sont incomplets quant à l'utilisation des résidus du modèle. Les tests proposés reposent sur une famille de densités sous les hypothèses alternatives d'ordre k. La sélection automatique de l'ordre maximal, basée sur les résultats de Ledwina (1994), est discutée. La sélection automatique est également implantée dans nos études de simulations. Nos études de simulations incluent des modèles bivariés et un modèle trivarié. Dans une étude de niveaux, on constate la bonne performance des tests lisses. Dans une étude de puissance, plusieurs compétiteurs ont été considérés. Il est trouvé que les tests lisses affichent des propriétés intéressantes de puissance lorsque les données proviennent de modèles VARMA avec des innovations dans la classe de lois normales contaminées. / When validating time series models, the distribution of the observations represents a potentially important assumption. In this Master's Thesis, the advocated approach uses smooth goodness-of-fit test statistics. This research provides theoretical and empirical developments of the smooth goodness of fit tests for vector autoregressive moving average models (VARMA). In previous work, Ducharme and Lafaye de Micheaux (2004) developed smooth goodness-of-fit tests designed for the residuals of univariate ARMA models. Later, Tagne Tatsinkou (2016) generalized the work within the framework of vector ARMA (VARMA) models, which prove to be potentially useful in real applications. Structured parameterizations, which are considerations specific to the multivariate case, are discussed. The works of Tagne Tatsinkou (2016) are completed, according to theoretical angles, and additional simulation studies are also considered. The new smooth tests are based on families of orthogonal polynomials. In this study, special attention is given to Legendre's family and Hermite's family. The major theoretical contribution in this work is a complete proof that the test statistic is invariant to linear affine transformations when the Hermite family is adopted. The results of Tagne Tatsinkou (2016) represent an important first step, but they were incomplete with respect to the use of the model residuals. The proposed tests are based on a family of densities under alternative hypotheses of order k. A data driven method to choose the maximal order, based on the results of Ledwina (1994), is discussed. In our simulation studies, the automatic selection is also implemented. Our simulation studies include bivariate models and a trivariate model. In the level study, we can appreciate the good performance of the smooth tests. In the power study, several competitors were considered. We found that the smooth tests displayed interesting power properties when the data came from VARMA models with innovations in the class of contaminated normal distributions.
83

Opérateur de Heun et ansatz de Bethe

Carcone, Gauvain 08 1900 (has links)
La méthode de l’ansatz de Bethe est introduite et utilisée dans ce mémoire. Elle est employée afin de diagonaliser un opérateur dit de Heun. Cette méthode est appliquée en construisant directement, dans les cas des polynômes de Racah et de q–Racah, les opérateurs dynamiques à partir de leurs formes génériques et de leurs relations de commutation. Il devient alors possible d’obtenir les équations de Bethe, qui si elles sont respectées, conduisent à des vecteurs propres de l’opérateur de Heun. Avec cet opérateur, qui commute avec la matrice de corrélation tronquée, nous pouvons alors déterminer l’entropie d’intrication d’une chaîne fermionique basée sur les polynômes de q–Racah. / A Bethe ansatz method is introduced in this master’s thesis. This method is used to diagonalize a Heun operator. It is applied by directly building the dynamical operators from the commutation relations and their general form, in connection with the Racah and the q–Racah polynomials. We can then find the Bethe equations, and when these are satisfied, eigenvectors of the Heun operator are obtained. With this operator, which commutes with the truncated correlation matrix, it becomes possible to find the entanglement entropy of a free fermion chain based on the q–Racah polynomials.
84

Polynômes de Kazhdan-Lusztig et cohomologie d'intersection des variétés de drapeaux

Chênevert, Gabriel January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
85

Propagation d'incertitudes et analyse de sensibilité pour la modélisation de l'infiltration et de l'érosion / Uncertainty propagation and sensitivity analysis for infiltration and erosion modeling

Rousseau, Marie 17 December 2012 (has links)
Nous étudions la propagation et la quantification d'incertitudes paramétriques au travers de modèles hydrologiques pour la simulation des processus d'infiltration et d'érosion en présence de pluie et/ou de ruissellement. Les paramètres incertains sont décrits dans un cadre probabiliste comme des variables aléatoires indépendantes dont la fonction de densité de probabilité est connue. Cette modélisation probabiliste s'appuie sur une revue bibliographique permettant de cerner les plages de variations des paramètres. L'analyse statistique se fait par échantillonage Monte Carlo et par développements en polynômes de chaos. Nos travaux ont pour but de quantifier les incertitudes sur les principales sorties du modèle et de hiérarchiser l'influence des paramètres d'entrée sur la variabilité de ces sorties par une analyse de sensibilité globale. La première application concerne les effets de la variabilité et de la spatialisation de la conductivité hydraulique à saturation du sol dans le modèle d'infiltration de Green--Ampt pour diverses échelles spatiales et temporelles. Notre principale conclusion concerne l'importance de l'état de saturation du sol. La deuxième application porte sur le modèle d'érosion de Hairsine--Rose. Une des conclusions est que les interactions paramétriques sont peu significatives dans le modèle de détachement par la pluie mais s'avèrent importantes dans le modèle de détachement par le ruissellement / We study parametric uncertainty propagation and quantification in hydrological models for the simulation of infiltration and erosion processes in the presence of rainfall and/or runoff. Uncertain input parameters are treated in a probabilistic framework, considering them as independent random variables defined by a fixed probability density function. This probabilistic modeling is based on a literature review to identify the range of variation of input parameters. The output statistical analysis is realized by Monte Carlo sampling and by polynomial chaos expansions. Our analysis aims at quantifying uncertainties in model outputs and establishing a hierarchy within input parameters according to their influence on output variability by means of global sensitivity analysis. The first application concerns the variability and spatial localization of the soil saturated hydraulic conductivity in the Green-Ampt infiltration model at different spatial and temporal scales. Our main conclusion is the importance of the soil saturation state. The second application deals with the Harisine--Rose erosion model. One conclusion is that the parametric interactions are not significant in the rainfall detachment model, but they prove to be important in the runoff detachment model
86

Opérateurs de Hankel et théorie spectrale locale.

Hachadi, Hicham 28 June 2013 (has links)
Cette thèse est constituée de deux volets principaux, le premier volet est consacré à l'étude des opérateurs de Hankel de symboles antiméromorphes, plus précisément, on s'intéresse à la possibilité d'obtenir des opérateurs de Hankel bornés (resp. compacts, dans les classes de Schatten) dont les symboles ne sont pas nécessairement des polynômes.Nous allons donner dans un premier temps, des conditions nécessaires et suffisantes pour que l'opérateur H_{f} définit sur une couronne dans le plan complexe, soit borné (resp. compact, dans la p-ième classe de Schatten) et nous allons traiter des exemples sur les quels nous montrons que les opérateurs de Hankel H_{f} et H_{Uf} sont bornés simultanément (resp. compacts, dans les classes de Schatten) si et seulement si f est un polynôme de Laurent et les conditions établies portent sur son L-degré.Le deuxième volet traite les propriétés spectrales en commun des opérateurs A et B vérifiant l'équation A²=ABA et B²=BAB. Nous allons généraliser les résultats de Christopher Schmoeger sur l'égalité des différents spectres de ces opérateurs, ensuite nous allons élargir le champ d'étude de ces opérateurs dans la direction de la théorie spectrale locale (Propriété de l'extension unique, décomposabilité...). / This thesis consists of two main parts, the first part is devoted to the study of Hankel operators of antiméromorphes symbols, more precisely, we are interested in the possibility of obtaining Hankel operators bounded (resp. compact, in Schatten classes) which the symbols are not necessarily polynomials.We will give in first step, the necessary and sufficient conditions for the operator H_ {f} defined on a ring in the complex plane is bounded (resp. compact in the p-th Schatten class) and we treat examples on which we show that the Hankel operators H_ {f} and H_ {Uf} are simultaneously bounded (resp. compact, in the Schatten classes) if and only if f is a Laurent polynomial and conditions set relate to its L-degree.The second part deals with common spectral properties of operators A and B satisfying the equation A ² = ABA and B ² = BAB. We will generalize the results of Christopher Schmoeger on equality different spectra of these operators, then we will expand the field of study of these operators in the direction of the local spectral theory (SVEP, Decomposability).
87

Statistique d’extrêmes de variables aléatoires fortement corrélées / Extreme value statistics of strongly correlated random variables

Perret, Anthony 22 June 2015 (has links)
La statistique des valeurs extrêmes est une question majeure dans divers contextes scientifiques. Cependant, bien que la description de la statistique d'un extremum global soit certainement une caractéristique importante, celle-ci ne se concentre que sur une seule variable parmi un grand nombre de variables aléatoires. Une question naturelle qui se pose alors est la suivante: ces valeurs extrêmes sont-elles isolées, loin des autres variables ou bien au contraire existe-t-il un grand nombre d'autres variables proches de ces valeurs extrêmes ? Ces questions ont suscité l'étude de la densité d'état de ces événements quasi-extrêmes. Il existe pour cette quantité peu de résultats pour des variables fortement corrélées, qui est pourtant le cas rencontré dans de nombreux modèles fondamentaux. Deux pistes de modèles physiques de variables fortement corrélées pouvant être étudiés analytiquement se démarquent alors: les positions d’une marche aléatoire et les valeurs propres de matrice aléatoire. Cette thèse est ainsi consacrée à l’étude de statistique d’extrêmes pour ces deux modèles de variables fortement corrélées. Dans une première partie, j’étudie le cas où la collection de variables aléatoires est la position au cours du temps d’un mouvement brownien, qui peut être contraint à être périodique, positif... Ce mouvement brownien est vu comme la limite d’un marcheur aléatoire classique après un grand nombre de pas. Il est alors possible d’interprèter ce problème comme celui d’une particule quantique dans un potentiel ce qui permet d’utiliser des méthodes puissantes issues de la mécanique quantique comme l’utilisation de propagateurs et de l’intégrale de chemin. Ces outils permettent de calculer la densité moyenne à partir du maximum pour les différents mouvements browniens contraints et même la distribution complète de cette quantité pour certains cas. Il est également possible de généraliser cette démarche à l’étude de plusieurs marches aléatoires indépendantes ou avec interaction. Cette démarche permet également d’effectuer une étude temporelle, ainsi que de généraliser à l’étude d’autres fonctionnelle du maximum. Dans la seconde partie, j’étudie le cas où la collection de variables aléatoires est composée des valeurs propres d’une matrice aléatoire. Ce travail se concentre sur l’études des matrices des ensembles gaussiens (GOE, GUE et GSE) ainsi qu’à l’étude des matrices de Wishart. L’étude du voisinage de la valeur propre maximale pour ces deux modèles est faite en utilisant une méthode fondée sur les propriétés des polynômes orthogonaux. Dans le cas des matrices gaussiennes unitaires GUE, j’ai obtenu une formule analytique pour la distribution à partir du maximum ainsi qu’une nouvelle expression de la statistique du gap entre les deux plus grandes valeurs propres en termes d’une fonction transcendante de Painlevé. Ces résultats, et plus particulièrement leurs généralisations aux cas GOE, sont alors appliqués à un modèle de verre de spin sphérique en champs moyen. Dans le cas des matrices de Wishart, l’analyse des polynômes orthogonaux dans le régime de double échelle m’a permis de retrouver les différentes statistiques de la valeur propre minimale et également de prouver une conjecture sur la première correction de taille finie pour des grandes matrices de la distribution de la valeur propre minimale dans la limite dite de «hard edge». / Extreme value statistics plays a keyrole in various scientific contexts. Although the description of the statistics of a global extremum is certainly an important feature, it focuses on the fluctuations of a single variable among many others. A natural question that arises is then the following: is this extreme value lonely at the top or, on the contrary, are there many other variables close to it ? A natural and useful quantity to characterize the crowding is the density of states near extremes. For this quantity, there exist very few exact results for strongly correlated variables, which is however the case encountered in many situations. Two physical models of strongly correlated variables have attracted much attention because they can be studied analytically : the positions of a random walker and the eigenvalues of a random matrix. This thesis is devoted to the study of the statistics near the maximum of these two ensembles of strongly correlated variables. In the first part, I study the case where the collection of random variables is the position of a Brownian motion, which may be constrained to be periodic or positive. This Brownian motion is seen as the limit of a classical random walker after a large number of steps. It is then possible to interpret this problem as a quantum particle in a potential which allows us to use powerful methods from quantum mechanics as propagators and path integral. These tools are used to calculate the average density from the maximum for different constrained Brownian motions and the complete distribution of this observable in certain cases. It is also possible to generalize this approach to the study of several random walks, independent or with interaction, as well as to the study of other functional of the maximum. In the second part, I study the case of the eigenvalues of random matrices, belonging to both Gaussian and Wishart ensembles. The study near the maximal eigenvalues for both models is performed using a method based on semi-classical orthogonal polynomials. In the case of Gaussian unitary matrices, I have obtained an analytical formula for the density near the maximum as well as a new expression for the distribution of the gap between the two largest eigenvalues. These results, and in particular their generalizations to different Gaussian ensembles, are then applied to the relaxational dynamics of a mean-field spin glass model. Finally, for the case of Wishart matrices I proposed a new derivation of the distribution of the smallest eigenvalue using orthogonal polynomials. In addition, I proved a conjecture on the first finite size correction of this distribution in the «hard edge» limit.
88

Algorithmes de multiplication : complexité bilinéaire et méthodes asymptotiquement rapides / Multiplication algorithms : bilinear complexity and fast asymptotic methods

Covanov, Svyatoslav 05 June 2018 (has links)
Depuis 1960 et le résultat fondateur de Karatsuba, on sait que la complexité de la multiplication (d’entiers ou de polynômes) est sous-quadratique : étant donné un anneau R quelconque, le produit sur R[X] des polynômes a_0 + a_1 X et b_0 + b_1 X, pour tous a_0, a_1, b_0 et b_1 dans R, peut être calculé en seulement trois et non pas quatre multiplications sur R : (a_0 + a_1 X)(b_0 + b_1 X) = m_0 + (m_2 - m_0 - m_1)X + m_1 X^2, avec les trois produits m_0 = a_0b_0, m_1 = a_1b_1 et m_2 = (a_0 + a_1)(b_0 + b_1). De la même manière, l’algorithme de Strassen permet de multiplier deux matrices 2nx2n en seulement sept produits de matrices nxn. Les deux exemples précédents tombent dans la catégorie des applications bilinéaires : des fonctions de la forme Phi : K^m x K^n -> K^l, pour un corps donné K, linéaires en chacune des deux variables. Parmi les applications bilinéaires les plus classiques, on trouve ainsi la multiplication de polynômes, de matrices, ou encore d’éléments d’extensions algébriques de corps finis. Étant donnée une application bilinéaire Phi, calculer le nombre minimal de multiplications nécessaires au calcul de cette application est un problème NP-difficile. L'objectif de cette thèse est de proposer des algorithmes minimisant ce nombre de multiplications. Deux angles d'attaques ont été suivis. Un premier aspect de cette thèse est l'étude du problème du calcul de la complexité bilinéaire sous l'angle de la reformulation de ce problème en termes de recherche de sous-espaces vectoriels de matrices de rang donné. Ce travail a donné lieu à un algorithme tenant compte de propriétés intrinsèques aux produits considérés tels que les produits matriciels ou polynomiaux sur des corps finis. Cet algorithme a permis de trouver toutes les décompositions possibles, sur F_2, pour le produit de polynômes modulo X^5 et le produit de matrices 3x2 par 2x3. Un autre aspect de ma thèse est celui du développement d’algorithmes asymptotiquement rapides pour la multiplication entière. Une famille particulière d'algorithmes récents ont été proposés suite à un article de Fürer publié en 2007, qui proposait un premier algorithme, reposant sur la transformée de Fourier rapide (FFT) permettant de multiplier des entiers de n bits en O(n log n 2^{O(log^* n)}), où log^* est la fonction logarithme itéré. Dans cette thèse, un algorithme dont la complexité dépend d'une conjecture de théorie des nombres est proposé, reposant sur la FFT et l'utilisation de premiers généralisés de Fermat. Une analyse de complexité permet d'obtenir une estimation en O(n log n 4^{log^* n}) / Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials a_0 + a_1 X and b_0 + b_1 X, for any a_0, a_1, b_0 and b_1 in R, can be computed with three and not four multiplications over R: (a_0 + a_1X)(b_0 + b_1X) = m_0 + (m_2 - m_0 - m_1)X + m_1X^2, with the three multiplications m_0 = a_0b_0, m_1 = a_1b_1 et m_2 = (a_0 + a_1)(b_0 + b_1). In the same manner, Strassen's algorithm allows one to multiply two matrices 2nx2n with only seven products of matrices nxn. The two previous examples fall in the category of bilinear maps: these are functions of the form Phi : K^m x K^n -> K^l, given a field K, linear in each variable. Among the most classical bilinear maps, we have the multiplication of polynomials, matrices, or even elements of algebraic extension of finite fields. Given a bilinear map Phi, computing the minimal number of multiplications necessary to the evaluation of this map is a NP-hard problem. The purpose of this thesis is to propose algorithms minimizing this number of multiplications. Two angles of attack have been studied. The first aspect of this thesis is to study the problem of the computation of the bilinear complexity under the angle of the reformulation of this problem in terms of research of matrix subspaces of a given rank. This work led to an algorithm taking into account intrinsic properties of the considered products such as matrix or polynomial products over finite fields. This algorithm allows one to find all the possible decompositions, over F_2, for the product of polynomials modulo X^5 and the product of matrices 3x2 by 2x3. Another aspect of this thesis was the development of fast asymptotic methods for the integer multiplication. There is a particular family of algorithms that has been proposed after an article by Fürer published in 2007. This article proposed a first algorithm, relying on fast Fourier transform (FFT), allowing one to multiply n-bit integers in O(n log n 2^{O(log^* n)}), where log^* is the iterated logarithm function. In this thesis, an algorithm, relying on a number theoretical conjecture, has been proposed, involving the use of FFT and generalized Fermat primes. With a careful complexity analysis of this algorithm, we obtain a complexity in O(nlog n 4^{log^* n})
89

Inégalités d'Oracle pour l'Estimation de la Régression

Cao, Yun 03 April 2008 (has links) (PDF)
Dans cette thèse, on s'intéresse à l'estimation des fonctions de régression par polynômes et par splines dans le cadre des statistiques non-paramétriques. L'objectif est d'estimer la fonction cible f, à partir des observations Y=f+ϵ, où ϵ est un bruit gaussien. En appuyant sur la méthode d'estimation du risque sans biais, l'idée consiste à obtenir des inégalités d'oracle pour des familles d'estimateurs par polynômes et par splines. Etant donnée une famille d'estimateurs M, une telle inégalité permet de comparer, sans aucune hypothèse sur la fonction cible f, les performances de l'estimateur f ̂^* à l'estimateur d'oracle f ̂_or. Le point essentiel de notre approche consiste à sélectionner, à l'aide des données, un paramètre d'estimation adapté : lorsque on considère le problème de l'estimation par projection, ce paramètre est le degré du polynôme ; dans le cas de l'estimation par splines, ce paramètre correspond à un paramètre de lissage. Ainsi, on en déduit des bornes supérieures non-asymptotiques pour les risques quadratiques de notre adaptation.<br /> Afin d'obtenir des inégalités d'oracle, on applique l'inégalité de Doob pour le processus de Wiener pour l'estimation par polynômes ; dans le cas de l'estimation par splines, on introduit le processus ordonné en généralisant le processus de Wiener.
90

Reconnaissance d'objets polyédriques par indexation dans une base de modèles

Sossa, Humberto 09 December 1992 (has links) (PDF)
Cette thèse s'intéresse au probleme de la reconnaissance d'objets en présence d'une vaste base de modèles. L'indexation de modèles peut être décrite comme suit: étant donne un groupe d'indices image, extraire rapidement de la base de modèles, les modèles contenant le groupe d'indices. La combinatoire du paradigme classique d'appariement indices-modèles étant prohibitive dans ce cas, nous proposons une methode d'indexation par une technique de hachage de graphes. Nous décrivons d'abord les principes: codage d'image et des modelés sous une forme de graphes, gestion d'une base de modèles par tables hash-codees, comparaison de graphes sur la base de leur caractérisation polynomiale, accès a la base de modèles. Ensuite, nous décrivons le système mis en œuvre selon ces principes, et nous présentons quelques résultats d'expérimentation

Page generated in 0.0589 seconds