• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 8
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 98
  • 98
  • 38
  • 20
  • 17
  • 13
  • 13
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Pre-stretched Recast Nafion for Direct Methanol Fuel Cells

Wu, Pin-Han 05 June 2008 (has links)
No description available.
32

Design and Assessment of Vertical Axis Wind Turbine Farms

Shaheen, Mohammed Mahmoud Zaki Mohammed 12 October 2015 (has links)
No description available.
33

Evaluation of TiO2 as a Pt-Catalyst Support in a Direct Ethanol Fuel Cell

Gordon, Ashley Rebecca 02 April 2012 (has links)
Direct ethanol fuel cells are of interest due to the high energy density, ease of distribution and handling, and low toxicity of ethanol. Difficulties lie in finding a catalyst that can completely oxidize ethanol and resist poisoning by intermediate reaction species. Degradation of the catalyst layer over time is also an issue that needs to be addressed. In this work, niobium doped-titanium dioxide (Nb-TiO2) is investigated as a platinum (Pt) support due to its increased resistance to corrosion compared to the common catalyst support, carbon. It has also been seen in the literature that TiO2 is able to adsorb OH and assist in freeing Pt sites by further oxidizing COad to CO2 and thereby increasing the catalytic activity of catalysts toward ethanol oxidation. The TiO2 support is mixed with carbon, forming Nb-TiO2-C, in order to increase the conductivity throughout the support. The electrochemical activity and direct ethanol fuel cell (DEFC) performance of this novel catalyst is investigated and compared to that of two common catalysts, carbon supported Pt (Pt/C) and carbon supported platinum-tin (PtSn/C). While the conductivity of the Pt/Nb-TiO2-C electrodes was low compared to that of the carbon supported electrodes, the overall catalytic activity and performance of the TiO2 supported catalyst was comparable to that of the Pt/C catalyst based on the electrochemically active surface area. / Master of Science
34

High Power Density and Overcurrent Protection Challenges in the Design of a Three-Phase Voltage Source Inverter for Motor Drive Applications

Lugo Núñez, David Rush 04 February 2010 (has links)
The voltage source inverter (VSI) is certainly the most popular topology used in dc to ac power conversion. Virtually every commercial electric motor is driven by a VSI. There is a need for smaller and more efficient drives in high performance applications that is dictating unprecedented power density requirements on airborne motor drive systems. In reply to this need, higher switching frequencies are being sought and new switching devices like Silicon Carbide (SiC) JFETs have emerged. Although faster switching rates favor a reduction in the size of passive components and alleviate the current ripple in the inverter, a penalty is paid on switching losses. Owing to their low switching energy profile, SiC JFETs stand as promising candidates in high switching frequency environments. Their normally-on nature, however, raises a level of discomfort among designers due to the added complexities in the gate drive circuitry and the increased risk of dc bus shoot-through faults in voltage source inverters. Despite of these challenges the use of SiC JFETs continues proliferating in high power density applications. In an effort to study the new challenges introduced by this trend a 2 kW IGBT-based three-phase voltage source inverter operating at 65 kHz was designed, built, and tested. In addition a novel overcurrent protection residing in the inverter dc link is proposed in response to the concern of using normally-on devices in voltage source inverters. Successful hardware validation of both the VSI and the overcurrent protection circuit is supported with experimental results. / Master of Science
35

Investigation of Power Semiconductor Devices for High Frequency High Density Power Converters

Wang, Hongfang 03 May 2007 (has links)
The next generation of power converters not only must meet the characteristics demanded by the load, but also has to meet some specific requirements like limited space and high ambient temperature etc. This needs the power converter to achieve high power density and high temperature operation. It is usually required that the active power devices operate at higher switching frequencies to shrink the passive components volume. The power semiconductor devices for high frequency high density power converter applications have been investigated. Firstly, the methodology is developed to evaluate the power semiconductor devices for high power density applications. The power density figure of merit (PDFOM) for power MOSFET and IGBT are derived from the junction temperature rise, power loss and package points of view. The device matrices are generated for device comparison and selection to show how to use the PDFOM. A calculation example is given to validate the PDFOM. Several semiconductor material figures of merit are also proposed. The wide bandgap materials based power devices benefits for power density are explored compared to the silicon material power devices. Secondly, the high temperature operation characteristics of power semiconductor devices have been presented that benefit the power density. The electrical characteristics and thermal stabilities are tested and analyzed, which include the avalanche breakdown voltage, leakage current variation with junction temperature rise. To study the thermal stability of power device, the closed loop thermal system and stability criteria are developed and analyzed. From the developed thermal stability criterion, the maximum switching frequency can be derived for the converter system design. The developed thermal system analysis approach can be extended to other Si devices or wide bandgap devices. To fully and safely utilize the power devices the junction temperature prediction approach is developed and implemented in the system test, which considers the parasitic components inside the power MOSFET module when the power MOSFET module switches at hundreds of kHz. Also the thermal stability for pulse power application characteristics is studied further to predict how the high junction temperature operation affects the power density improvement. Thirdly, to develop high frequency high power devices for high power high density converter design, the basic approaches are paralleling low current rating power MOSFETs or series low voltage rating IGBTs to achieve high frequency high power output, because power MOSFETs and low voltage IGBTs can operate at high switching frequency and have better thermal handling capability. However the current sharing issues caused by transconductance, threshold voltage and miller capacitance mismatch during conduction and switching transient states may generate higher power losses, which need to be analyzed further. A current sharing control approach from the gate side is developed. The experimental results indicate that the power MOSFETs can be paralleled with proper gate driver design and accordingly the switching losses are reduced to some extent, which is very useful for the switching loss dominated high power density converter design. The gate driving design is also important for the power MOSFET module with parallel dice inside thus increased input capacitance. This results in the higher gate driver power loss when the traditional resistive gate driver is implemented. Therefore the advanced self-power resonant gate driver is investigated and implemented. The low gate driver loss results in the development of the self-power unit that takes the power from the power bus. The overall volume of the gate driver can be minimized thus the power density is improved. Next, power semiconductor device series-connection operation is often used in the high power density converter to meet the high voltage output such as high power density boost converter. The static and dynamic voltage balancing between series-connected IGBTs is achieved using a hybrid approach of an active clamp circuit and an active gate control. A Scalable Power Semiconductor Switch (SPSS) based on series-IGBTs is developed with built-in power supply and a single optical control terminal. An integrated package with a common baseplate is used to achieve a better thermal characteristic. These design features allow the SPSS unit to function as a single optically controlled three-terminal switching device for users. Experimental evaluation of the prototype SPSS shows it fully achieved the design objectives. The SPSS is a useful power switch concept for building high power density, high switching frequency and high voltage functions that are beyond the capability of individual power devices. As conclusions, in this dissertation, the above-mentioned issues and approaches to develop high density power converter from power semiconductor devices standpoint are explored, particularly with regards to high frequency high temperature operation. To realize such power switches the related current sharing, voltage balance and gate driving techniques are developed. The power density potential improvements are investigated based on the real high density power converter design. The power semiconductor devices effects on power density are investigated from the power device figure of merit, high frequency high temperature operation and device parallel operation points of view. / Ph. D.
36

High Frequency, High Power Density Integrated Point of Load and Bus Converters

Reusch, David Clayton 26 April 2012 (has links)
The increased power consumption and power density demands of modern technologies combined with the focus on global energy savings have increased the demands on DC/DC power supplies. DC/DC converters are ubiquitous in everyday life, found in products ranging from small handheld electronics requiring a few watts to warehouse sized server farms demanding over 50 megawatts. To improve efficiency and power density while reducing complexity and cost the modular building block approach is gaining popularity. These modular building blocks replace individually designed specialty power supplies, providing instead an optimized complete solution. To meet the demands for lower loss and higher power density, higher efficiency and higher frequency must be targeted in future designs. The objective of this dissertation is to explore and propose methods to improve the power density and performance of point of load modules ranging from 10 to 600W. For non-isolated, low current point of load applications targeting outputs ranging from one to ten ampere, the use of a three level converter is proposed to improve efficiency and power density. The three level converter can reduce the voltage stress across the devices by a factor of two compared to the traditional buck; reducing switching losses, and allowing for the use of improved low voltage lateral and lateral trench devices. The three level can also significantly reduce the size of the inductor, facilitating 3D converter integration with a low profile magnetic by doubling the effective switching frequency and reducing the volt-second across the inductor. This work also proposes solutions for the drive circuit, startup, and flying capacitor balancing issues introduced by moving to the three level topology. The emerging technology of gallium nitride can offer the ability to push the frequency of traditional buck converters to new levels. Silicon based semiconductors are a mature technology and the potential to further push frequency for improved power density is limited. GaN transistors are high electron mobility transistors offering a higher band gap, electron mobility, and electron velocity than Si devices. These material characteristics make the GaN device more suitable for higher frequency and voltage operation. This work will discuss the fundamentals of utilizing the GaN transistor in high frequency buck converter design; addressing the packaging of the GaN transistor, fundamental operating differences between GaN and Si devices, driving of GaN devices, and the impact of dead time on loss in the GaN buck converter. An analytical loss model for the GaN buck converter is also introduced. With significant improvements in device technology and packaging, the circuit layout parasitics begins to limit the switching frequency and performance. This work will explore the design of a high frequency, high density 12V integrated buck converter, identifying the impact of parasitics on converter performance, propose design improvements to reduce critical parasitics, and assess the impact of frequency on passive integration. The final part of this research considers the thermal design of a high density 3D integrated module; this addresses the thermal limitations of standard PCB substrates for high power density designs and proposes the use of a direct bond copper (DBC) substrate to improve thermal performance in the module. For 48V isolated applications, the current solutions are limited in frequency by high loss generated from the use of traditional topologies, devices, packaging, and transformer design. This dissertation considers the high frequency design of a highly efficient unregulated bus converter targeting intermediate bus architectures for use in telecom, networking, and high end computing applications. This work will explore the impact of switching frequency on transformer core volume, leakage inductance, and winding resistance. The use of distributed matrix transformers to reduce leakage inductance and winding resistance, improving high frequency transformer performance will be considered. A novel integrated matrix transformer structure is proposed to reduce core loss and core volume while maintaining low leakage inductance and winding resistance. Lastly, this work will push for higher frequency, higher efficiency, and higher power density with the use of low loss GaN devices. / Ph. D.
37

Design of High-density Transformers for High-frequency High-power Converters

Shen, Wei 29 September 2006 (has links)
Moore's Law has been used to describe and predict the blossom of IC industries, so increasing the data density is clearly the ultimate goal of all technological development. If the power density of power electronics converters can be analogized to the data density of IC's, then power density is a critical indicator and inherent driving force to the development of power electronics. Increasing the power density while reducing or keeping the cost would allow power electronics to be used in more applications. One of the design challenges of the high-density power converter design is to have high-density magnetic components which are usually the most bulky parts in a converter. Increasing the switching frequency to shrink the passive component size is the biggest contribution towards increasing power density. However, two factors, losses and parasitics, loom and compromise the effect. Losses of high-frequency magnetic components are complicated due to the eddy current effect in magnetic cores and copper windings. Parasitics of magnetic components, including leakage inductances and winding capacitances, can significantly change converter behavior. Therefore, modeling loss and parasitic mechanism and control them for certain design are major challenges and need to be explored extensively. In this dissertation, the abovementioned issues of high-frequency transformers are explored, particularly in regards to high-power converter applications. Loss calculations accommodating resonant operating waveform and Litz wire windings are explored. Leakage inductance modeling for large-number-of-stand Litz wire windings is proposed. The optimal design procedure based on the models is developed. / Ph. D.
38

Design and Development of High Density High Temperature Power Module with Cooling System

Ning, Puqi 01 June 2010 (has links)
In recent years, the SiC power semiconductor has emerged as an attractive alternative that pushes the limitations of junction temperature, power rating, and switching frequency of Si devices. These advanced properties will lead converters to higher power density. However, the reliability of the SiC semiconductor is still under investigation, and at the same time, the standard Si device packages do not meet the requirement of high temperature operation. In order to take full advantage of SiC semiconductor devices, high density, high temperature device packaging needs to be developed. In this dissertation, a high temperature wirebond package for multi-chip phase-leg power module using SiC devices was designed, developed, fabricated and tested. The details of the material selection and thermo-mechanical reliability evaluation are described. High temperature power test shows that the presented package can perform well at the high junction temperature. In order to increase the power density, reduce the parasitic parameters, and enhance the electrical, thermo-mechanical performance over wirebond packages, planar package is utilized to better take advantages of SiC device. This dissertation proposed a novel package, in which the interconnections can be formed on small dimensional pads and enclosed pads that may baffle the regular solder based connection in other planar packages. Electrical and thermo-mechanical tests of the prototype module demonstrate the functionality and reliability of the presented planar packaging methodology. In this dissertation, together with the design example, the manual module layout design and automatic module layout design process are also presented. Furthermore, a systematic optimal design process and parametric study of the heatsink-fan cooling system by applying the analytical model is described. This dissertation also established a systematic testing procedure which can rapidly detect defects and reduce the risk in high temperature packaging testing. Finally, a wirebond module and a planar module are designed for 175 ºC junction temperature and 250 ºC junction temperatures. All the key concepts and ideas developed in this work are implemented in the prototype module development and then verified by the experimental results. / Ph. D.
39

A High Power Density Three-level Parallel Resonant Converter for Capacitor Charging

Sheng, Honggang 28 May 2009 (has links)
This dissertation proposes a high-power, high-frequency and high-density three-level parallel resonant converter for capacitor charging. DC-DC pulsed power converters are widely used in military and medical systems, where the power density requirement is often stringent. The primary means for reducing the power converter size has been to reduce loss for reduced cooling systems and to increase the frequency for reduced passive components. Three-level resonant converters, which combine the merits of the three-level structure and resonant converters, are an attractive topology for these applications. The three-level configuration allows for the use of lower-voltage-rating and faster devices, while the resonant converter reduces switching loss and enhances switching capability. This dissertation begins with an analysis of the influence of variations in the structure of the resonant tank on the transformer volume, with the aim of achieving a high power density three-level DC-DC converter. As one of the most bulky and expensive components in the power converter, the different positions of the transformer within the resonant tank cause significant differences in the transformer's volume and the voltage and current stress on the resonant elements. While it does not change the resonant converter design or performance, the improper selection of the resonant tank structure in regard to the transformer will offset the benefits gained by increasing the switching frequency, sometimes even making the power density even worse than the power density when using a low switching frequency. A methodology based on different structural variations is proposed for a high-density design, as well as an optimized charging profile for transformer volume reduction. The optimal charging profile cannot be perfectly achieved by a traditional output-voltage based variable switching frequency control, which either needs excess margin to guarantee ZVS, or delivers maximum power with the danger of losing ZVS. Moreover, it cannot work for widely varied input voltages. The PLL is introduced to overcome these issues. With PLL charging control, the power can be improved by 10% with a narrow frequency range. The three-level structure in particular suffers unbalanced voltage stress in some abnormal conditions, and a fault could easily destroy the system due to minimized margin. Based on thoroughly analysis on the three-level behaviors for unbalanced voltage stress phenomena and fault conditions, a novel protection scheme based on monitoring the flying capacitor voltage is proposed for the three-level structure, as well as solutions to some abnormal conditions for unbalanced voltage stresses. A protection circuit is designed to achieve the protection scheme. A final prototype, built with a custom-packed MOSFET module, a SiC Schottky diode, a nanocrystalline core transformer with an integrated resonant inductor, and a custom-designed oil-cooled mica capacitor, achieves a breakthrough power density of 140W/in3 far beyond the highest-end power density reported (<100 W/in3) in power converter applications. / Ph. D.
40

Enzymatic fuel cells via synthetic pathway biotransformation

Zhu, Zhiguang 11 June 2013 (has links)
Enzyme-catalyzed biofuel cells would be a great alternative to current battery technology, as they are clean, safe, and capable of using diverse and abundant renewable biomass with high energy densities, at mild reaction conditions. However, currently, three largest technical challenges for emerging enzymatic fuel cell technologies are incomplete oxidation of most fuels, limited power output, and short lifetime of the cell. Synthetic pathway biotransformation is a technology of assembling a number of enzymes coenzymes for producing low-value biocommodities. In this work, it was applied to generate bioelectricity for the first time. Non-natural enzymatic pathways were developed to utilize maltodextrin and glucose in enzymatic fuel cells. Three immobilization approaches were compared for preparing enzyme electrodes. Thermostable enzymes from thermophiles were cloned and expressed for improving the lifetime and stability of the cell. To further increase the power output, non-immobilized enzyme system was demonstrated to have higher power densities compared to those using immobilized enzyme system, due to better mass transfer and retained native enzyme activities. With the progress on pathway development and power density/stability improvement in enzymatic fuel cells, a high energy density sugar-powered enzymatic fuel cell was demonstrated. The enzymatic pathway consisting of 13 thermostable enzymes enabled the complete oxidation of glucose units in maltodextrin to generate 24 electrons, suggesting a high energy density of such enzymatic fuel cell (300 Wh/kg), which was several folds higher than that of a lithium-ion battery. Maximum power density was 0.74 mW/cm2 at 50 deg C and 20 mM fuel concentration, which was sufficient to power a digital clock or a LED light. These results suggest that enzymatic fuel cells via synthetic pathway biotransformation could achieve high energy density, high power density and increased lifetime. Future efforts should be focused on further increasing power density and enzyme stability in order to make enzymatic fuel cells commercially applicable. / Ph. D.

Page generated in 0.0857 seconds