• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 123
  • 59
  • 11
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 468
  • 370
  • 194
  • 168
  • 144
  • 103
  • 65
  • 65
  • 61
  • 52
  • 52
  • 49
  • 48
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Hooked Bar Anchorages and their Use in Noncontact Lap Splices

Coleman, Zachary Wyatt 21 May 2024 (has links)
Lap splices are used in reinforced concrete structures to transfer tension forces across discontinuous reinforcing bars to allow for continuity of load path in structural elements. Lap splices of straight reinforcing bars present a number of disadvantages when used in connections of large precast concrete elements typical of bridge substructure. Most importantly, lap splices of large (e.g., No. 11) straight bars are substantially long. Since the closure joint connecting two precast elements must be at least long enough to fit the lap splice, traditional lap splices result in impractically large closure joints, offsetting the benefits of using precast concrete elements. To address this problem, bridge designers are using hooked bars in noncontact lap splices to connect precast elements, presuming that hooked bars will allow for shorter required splice lengths. However, there exists neither substantial design guidance nor studies of the behavior of hooked bar lap splices in large precast elements justifying this design philosophy. To develop design guidance permitting the use of noncontact hooked bar lap splices and address the knowledge gap regarding the behavior of such splices, an extensive experimental and computational research program was conducted which is described in this dissertation. Fifty-eight large-scale beam-splice specimens containing hooked bar lap splices were tested to physically study the behavior of hooked bar lap splices and develop a dataset to justify design guidance permitting the use of such splices in practice. Bond variables were parametrically varied among the test specimens to produce guidance applicable over the wide range of geometric configurations and material properties expected in bridge design. The specimens were subjected to monotonic, four-point loading and were designed to fail in a mode related to anchorage to study splice behavior. Nonlinear finite element analyses were conducted to examine the mechanism of force transfer in hooked bar lap splices and numerically assess splice configurations not experimentally studied. A simple approach to modelling hooked reinforcing bars in solid concrete elements which accounts for conditions of imperfect bond was developed and validated using the experimental results. Test results from the 58 specimens were used to assess the appropriateness of using existing guidance for hooked bar anchorages to design hooked bar lap splices. Because the existing guidance was found to be deficient for this application, descriptive and design equations characterizing hooked bar lap splices were developed using power regression analyses. The results demonstrated that all else being equal, a bottom-cast hooked bar lap splice can develop approximately 40% greater stress than contact lap splices of straight bars. Accordingly, hooked bars can be used to splice bars over a substantially shorter length than straight bars. Noncontact hooked bar lap splices without secondary reinforcement (e.g., ties) can fail due to a mode termed "hook side bulging", resulting from eccentricity between the lapped bars. Splices with secondary reinforcement typically fail due to more typical modes observed in the literature, such as side-face blowout and concrete crushing. Unlike as suggested by code authorities and some researchers for noncontact lap splices of straight bars, noncontact hooked bar lap splices were found to exhibit weaker splice strengths than contact splices as the splice spacing increased. The use of steel fibers and increases in lap length, concrete compressive strength, cover depth, amount of secondary reinforcement, or the number of lap splices allowed for greater stress on average to be developed in spliced bars. All else being equal, an increase in either bar size or the number of spliced reinforcement layers decreased the stress that could be developed in the spliced bars. A descriptive equation characterizing splice strength with an average test-to-calculation ratio and coefficient of variation of 6% was developed. The descriptive equation was adapted to develop a design equation for the minimum required lap length of hooked bars which uniformly characterizes the influence of the bond variables over the ranges explored in this study. Design examples and code language facilitating technology transfer of the design equation into immediate practice were developed. / Doctor of Philosophy / Precast concrete is widely used in highway bridges to enable more rapid and economical construction than could be achieved using cast-in-place concrete. However, the connection of two or more precast, prefabricated bridge elements introduces several difficulties which may inhibit construction, thereby reducing overall economy. One of the most significant difficulties is that connections of substructure elements supporting the superstructures are impractically long using a common, code-approved detail―lap splices of straight reinforcing bars. Such splices are quite long (e.g., 5 ft in length) since large bars are typically used in substructure elements, requiring long splice lengths to transfer the large forces in each bar across the connection. Details which would shorten the required splice length would consequently reduce the required connection length, thereby reducing the amount of cast-in-place concrete construction required in the field. Consequently, the speed of construction, economy, and worker safety would increase. This dissertation thus summarizes an extensive experimental and numerical study aimed at validating the use of noncontact hooked bar lap splices to shorten the required splice length of large precast elements. In support of this objective, the anchorage behavior of noncontact hooked bar lap splices was studied through static load testing of 58 large-scale beam-splice specimens and nonlinear finite element models accounting for bond-slip behavior. These efforts revealed that hooked bar lap splices can develop on average approximately 40% more stress over the same lap length than contact splices of straight bars. Existing design provisions which might presently be used to design hooked bar lap splices were evaluated against the experimental results and were found to be deficient in characterizing splice strength. Thus, a design equation was developed for the splice length of hooked bars which accurately characterizes anchorage behavior and allows for significantly shorter splices lengths than what could be achieved with straight bars.
202

Capacities of headed stud shear connectors in composite steel beams with precast hollowcore slabs.

Lam, Dennis January 2007 (has links)
No / In steel¿concrete composite beams, the longitudinal shear force is transferred across the steel flange/concrete slab interface by the mechanical action of the shear connectors. The ability of the shear connectors to transfer these longitudinal shear forces depends on their strength, and also on the resistance of the concrete slab against longitudinal cracking induced by the high concentration of shear force. Most of the research in composite construction has concentrated on the more traditional reinforced concrete and metal deck construction, and little information is given on shear capacity of the headed studs in precast hollowcore slabs. In this paper, a standard push test procedure for use with composite beams with precast hollowcore slabs is proposed. Seven exploratory push tests were carried out on headed studs in solid RC slabs to validate the testing procedures, and the results showed that the new test is compatible with the results specified in the codes of practice for solid RC slabs. Once a standard procedure is established, 72 full-scale push tests on headed studs in hollowcore slabs were performed to determine the capacities of the headed stud connectors in precast hollowcore slabs and the results of the experimental study are analysed and findings on the effect of all the parameters on connectors¿ strength and ductility are presented. Newly proposed design equations for calculating the shear connectors¿ capacity for this form of composite construction are also be given.
203

Seismic response of prestressed precast reinforced concrete beam-column joints assembled by steel sleeves

Xue, H., Ashour, Ashraf, Ge, W., Cao, D., Sun, C., Cao, S. 25 October 2022 (has links)
Yes / A novel prestressed precast reinforced concrete (RC) beam-column joint, composed of prestressed tendons, stiffened steel sleeves, and high-strength bolts, having improved self-centring ability and assembly efficiency is proposed in this paper. Four prestressed precast RC joints assembled by steel sleeves and one cast-in-place RC joint were tested under cyclic loading to investigate the seismic response of the proposed joint. The main parameters studied are the axial compression ratio of columns, stirrup ratio in the core area of the proposed joint and effective prestress of tendons. The energy dissipation capacity, bearing capacity, and self-centring ability of the prestressed precast RC beam-column joints assembled by steel sleeves are higher than those measured for the cast-in-place RC joint. For the prestressed precast RC joints assembled by steel sleeves, both yield and ultimate displacements increase with the increase of the axial compression ratio, stirrup ratio and effective prestress, but the ductility decreases with the increase of the axial compression ratio and effective prestress. The increasing of axial compression ratio can lead to an increase in the energy dissipation capacity, shear capacity and residual displacement. Finally, formulae to predict the shear capacity of prestressed precast RC joint assembled by steel sleeves are proposed, being in good agreement with the experimental results. / The authors would like to thank the financial support provided by the Natural Science Foundation of Jiangsu Province, China (BK20201436), the Open Foundation of Jiangsu Province Engineering Research Center of Prefabricated Building and Intelligent Construction (2021), the Blue Project Youth Academic Leader of Colleges and Universities in Jiangsu Province (2020) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX21_3225).
204

Corrosion protection of thin precast concrete sections

Massie, Edgar Franklin January 1949 (has links)
M.S.
205

En analys av CO2e-utsläpp vid tillverkning och transport av prefabricerade betongelement / An analysis of CO2e emissions in the manufacturing and transportation of prefabricated concrete elements

Andersson, Jesper, Gard, Ludwig January 2019 (has links)
Purpose: The global concrete consumption amounts to 25 gigatons annually, making it the most widely used building material (Petek Gursel, et al. 2014). The continued increasing world population in connection with urbanization will lead to a greater demand for cement. The problem with the increased manufacturing process of cement is that carbon dioxide emissions in 2020 will account for 10-15 % of global CO2 emissions, compared with the values measured in 2016, which only reached 5-8 % (Habert & Ouellet-Plamondon, 2016). The aim of the thesis is to analyse stages in the manufacturing process of prefabricated concrete from an environmental point of view with consideration to CO2 emissions. This will later result in providing concrete improvement measures or alternatively only provide useful knowledge for the concrete industry’s future. The stages that will be analysed are transport, concrete, rebar (reinforcement) and cellular plastic production. Method: The methods chosen for the implementation of the thesis were Literature Studies and Interviews. The purpose of the literature study was to educate the authors on the subject and collect various results from current research. The interviews contributed to the necessary information to be able to carry out the analyses at work. Findings: The thesis has resulted in a total amount of CO2eq emissions in four different stages in the concrete manufacturing process. Cement proved to be the biggest contributing factor to CO2eq emissions. There are several different measures to reduce CO2eq emissions in the concrete manufacturing process. The measures discussed the most frequently concern the cement production, which is favourable for the concrete production as a whole. The discussion also highlights measures taken in action at a concrete factory level. Implications: This study shows that cement accounts for the majority of the total CO2 emissions for concrete production. Therefore, much focus placed on improving the cement production with consideration to CO2 emissions is necessary. This does not mean that less focus should aim on research for green transport, insulation production and steelmaking. All productions stages have potential for improvement. Hence, it is important to continue the research to reduce the total CO2 emissions in the production of prefabricated concrete elements. Limitations: The study was limited to the manufacturing process of prefabricated concrete. A specific project HUS F was analysed for CO2 emissions in four production stages; concrete, reinforcement, insulation materials and transport. / Syfte: Den globala betongkonsumtionen uppgår årligen till 25 gigaton vilket gör den till det mest använda byggnadsmaterialet (Petek, Masanet, Horvath & Stadel, 2014). Den fortsatt ökande världspopulationen i samband med urbaniseringen kommer att leda till en större efterfrågan av cement. Problemet med den ökade tillverkningsprocessen av cement är att koldioxidutsläppen år 2020 kommer att stå för 10-15 % av de globala CO2-utsläppen, jämfört med värdena uppmätta år 2016 på cirka 5–8 % (Habert & Ouellet-Plamondon, 2016). Målet med examensarbetet är att analysera skeden i tillverkningsprocessen av prefabricerad betong ur miljösynpunkt med avseende på CO2-utsläpp för att sedan kunna komma med konkreta förbättringsåtgärder alternativt enbart bidra med nyttig kunskap för betongindustrins framtid. Skedena som analyseras är transporter samt betong-, armering- och cellplasttillverkning. Metod: Metoderna som valdes för genomförandet av examensarbetet var Litteraturstudie samt Intervju. Litteraturstudien gjordes i syfte att fördjupa författarna i ämnet samt insamling av diverse resultat från aktuell forskning. Intervjuerna som genomfördes bidrog till nödvändig information för att kunna genomföra analyserna i arbetet. Resultat: Examensarbetet har resulterat i totala CO2-utsläpp i fyra olika skeden i betongtillverkningsprocessen. Cement visade sig vara den absolut största bidragande faktorn till CO2-utsläpp. Det finns flera olika åtgärder för att minska CO2-utsläppet i betongtillverkningsprocessen. De åtgärder som diskuteras flitigast berör cementtilllverkningen vilket är gynnsamt för betongtillverkningen som helhet. Diskussionen framhäver även åtgärder som kan vidtas på en betongfabriks nivå. Konsekvenser: Det konstaterades i denna studie att cement står för majoriteten av det totala CO2-utsläppet i betongproduktionen. Därför bör mycket fokus läggas vid förbättring av cementtillverkningsprocessen med avseende på CO2-utsläpp. Detta innebär inte att mindre fokus skall läggas vid forskning för miljövänligare transport, isolering- och stålproduktion. Samtliga områden bör förbättras och potential finns definitivt att hämta vid alla produktionsskeden. Begränsningar: Studien avgränsades till tillverkningsprocessen av prefabricerad betong. Ett specifikt projekt HUS F analyserades med avseende på CO2-utsläpp i fyra tillverkningsskeden; betong, armering, cellplast samt transport.
206

Seismic damage avoidance design of warehouse buildings constructed using precast hollow core panels

Abdul Hamid, Nor Hayati January 2006 (has links)
Precast prestressed hollow core units are commonly used in the construction of the flooring system in precast buildings. These units without transverse reinforcement bars are designed to resist seismic loading as replacement for fixed-base precast wall panels in the construction of warehouse buildings. Thus, this research seeks to investigate the seismic performance of the units constructed as a subassemblage (single wall) subjected to biaxial loading and as a superassemblage (multi-panel) subjected to quasi-static lateral loading. A design procedure for warehouse building using precast hollow core walls under Damage Avoidance Design (DAD) is proposed. In addition, a risk assessment under Performance-Based Earthquake Engineering (PBEE) is evaluated using the latest computational tool known as Incremental Dynamic Analysis (IDA). A comparative risk assessment between precast hollow core walls and fixed-base monolithic precast wall panels is also performed. Experimental results demonstrate that rocking precast hollow core walls with steelarmouring do not suffer any non-structural damage up to 2.0% drift and minor structural damage at 4.0% drift. Results revealed that the wall with unbonded fuse-bars and 50% initial prestressing of unbonded tendons performed the best compared with other types of energy dissipators. Furthermore, 12mm diameter of fuse-bar is recommended as there is no uplifting of the foundation beam during ground shaking. Hence, this type of energy dissipator is used for the construction of seismic wall panels in warehouse buildings. One of the significant findings is that the capacity reduction factor (Ø ) which relates to global uncertainty of seismic performance is approximately equal to 0.6. This value can be used to estimate the 90th percentile of the structures without performing IDA. Therefore, the structural engineers are only required to compute Rapid-IDA curve along with the proposed design procedure.
207

Montovaná konstrukce autosalonu / Prefabricated construction od car-showroom

Wolf, Jiří January 2018 (has links)
Aim of the final thesis is to create loadbearing prefabricated structure of building, which serve like office building and area for car-showroom, and creating static assessment of main supporting parts. For those parts will make drawing documentation of reinforcement and shapes. Computational 3D model for evaluation of internal forces is realized in Dlubal RFEM 5.07 software. For better check and comparison were create 2D spatial bar models of selected frames.
208

Tělocvična - prefabrikovaný skelet / Gym – Precast concrete frame construction

Čihák, Tomáš January 2015 (has links)
This master thesis deals with a draft of precast concrete frame structure on the case of gymnasium building. The major part of this work are transversal and longitudinal frames, consisted of footings, columns, girders and precast floor slab. Other parts of the building are not solved. Thesis consists both static calculations and drawings.
209

An investigation into the feasibility of hybrid concrete construction in South Africa

Jurgens, Christiaan Johannes 03 1900 (has links)
Thesis (MScEng (Civil Engineering))--Stellenbosch University, 2008. / Introduction South Africa is currently experiencing a significant increase in infrastructure investment. Forecasts by BMI-BRSCU have shown that the building and construction industry is expected to grow considerably to 2010, before languishing slightly to 2015. This growth will be driven in particular by investment in non-residential building (41% growth) and construction (73% growth) activities. Even beyond 2015 however, the demand will still be high on the construction industry to provide infrastructure for South Africa’s growing population. South Africa is also facing a serious shortage of engineers, technicians and other skilled workers in the construction industry. This places high demands on designers and contractors to provide services and to realise projects in ever-reducing time periods and at less cost. These conditions have made it increasingly difficult to maintain the required quality of construction in an industry where mistakes can lead to disastrous consequences. Recent advances in structural materials, structural systems and the way in which projects are handled, now enables a new look at the possibilities of combining pre-fabrication with on site work. This method, known as Hybrid Concrete Construction (HCC), has the potential to revolutionize the South African construction industry if applied correctly. Local research into this technique is however required and it is the aim of this thesis to draw attention to this subject. Key Findings Hybrid Concrete Construction (HCC) can be applied to any structural project, it will however not necessarily be successful. A structure needs to be adapted from the very start to suit a particular construction method. This ensures that all the advantages of the selected construction method may be achieved. Adapting a structure to a different construction method requires a mutual understanding and commitment from all project participants, including the architect, engineer, contractor and client. HCC also requires a certain degree of repetition in a project to be financially viable. A theoretical cost exercise was performed where only the material and erection costs were considered. In this exercise, HCC was found to be slightly less expensive than other construction methods for the Office Building of more than 10 storeys. HCC was also found to be significantly faster than other construction methods for the Office Building of more than 3 storeys. The time calculation was however based on the simplified time estimates from one source. Because of HCC’s shorter estimated construction period, the client can expect to earn revenue from a much earlier date. This decreases the relative cost of a HCC project. This advantage, however, needs to be quantified for chosen South African projects. On-site safety is still an important issue with HCC projects. Labourers are not accustomed to this construction method and it may be necessary to alter current skill development programs to include a crane safety course. The training of qualified riggers and crane operators should receive priority if HCC is to develop in South Africa. This preliminary investigation has shown that Hybrid Concrete Construction (HCC) can be feasible for the South African market. Further investigation is however required to determine the parameters for which HCC would be the preferred construction method. Recommendations Based on the findings and conclusions of this investigation, the following recommendations are made. The following actions should be undertaken by individual South African companies: · Develop relationships with external project partners · Train competent riggers and crane operators The South African concrete industry should invest in the following actions: · Invest in mass-producing precast concrete facilities · Develop a central database of South African projects with information on time, costs, project concepts and layouts to be used as a guideline for decision making · Develop local guidelines for the production and application of self compacting concrete · Compile guidelines for the design and construction of HCC and precast concrete construction in South Africa · Develop a local hidden corbel type connection to its full potential
210

A Knowledge-based system framework for semantic enrichment and automated detailed design in the AEC projects

Aram, Shiva 08 June 2015 (has links)
Adoption of a streamlined BIM workflow throughout the AEC projects’ lifecycle will provide the project stakeholders with the rich information embedded in the parametric design models. Users can incorporate this rich information in various activities, improving efficiency and productivity of project activities and potentially enhancing accuracy and reducing errors and reworks. Two main challenges for such a streamlined information flow throughout the AEC projects that haven’t been sufficiently addressed by previous research efforts include lack of semantic interoperability and a large gap and misalignment of information between available BIM information provided by design activities and the required information for performing preconstruction and construction activities. This research effort proposes a framework for a knowledge-based system (KBS) that encapsulates domain experts’ knowledge and represents it through modularized rule set libraries as well as connected design automation and optimization solutions. The research attempts to provide a methodology for automatic semantic enrichment of design models as well as automated detailed design to fill the information gap between design and preconstruction project activities, streamlining BIM workflow and enhancing its value in the AEC projects.

Page generated in 0.0637 seconds