• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Complex structures

Ezeddin, Leila January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Cohomologie de Floer, hyperbolicités symplectique et pseudocmplexe.

Biolley, Anne-Laure 19 December 2008 (has links) (PDF)
D'une part, á partir des propriétés de la cohomologie de Floer, invariant associé á une variété symplectique, je définis et étudie une notion d'hyperbolicité symplectique et une capacité symplectique la mesurant. D'autre part, pour une variété , on dispose des notions classiques d'hyperbolicités complexes, définies à partir des courbes pseudo-holomorphes. J'étudie donc les liens entre ces deux notions d'hyperbolicités quand une variété est munie de structures pseudo-complexe et symplectique compatibles. J'explique principalement comment la non-hyperbolicité symplectique implique l'existence de courbes pseudo-holomorphes, et donc ainsi la non-hyperbolicité complexe. Cette analyse me permet à la fois de mieux comprendre la cohomologie de Floer, et d'obtenir de nouveaux résultats sur l'hyperbolicité complexe. J'établis notamment des résultats de stabilité pour la non-hyperbolicité complexe par déformation de la structure pseudo-complexe dans l'ensemble des structures pseudo-complexes compatibles à une structure symplectique non-hyperbolique fixée, généralisant ainsi un théorème de Bangert énoncant ce même résultat dans le cas particulier du tore standard. Par ailleurs, j'aborde la question de l'hyperbolicité complexe des feuilletages: en exhibant un tenseur invariant associé au feuilletage, j'étudie l'existence de cylindres holomorphes feuilletés.
3

Morphismes harmoniques et déformation de surfaces minimales dans des variétés de dimension 4 / Harmonic morphisms and deformation of minimal surfaces in manifolds of dimension 4

Makki, Ali 26 May 2014 (has links)
Dans cette thèse, nous étudions la structure d’un morphisme harmonique F d’une variété riemannienne M4 dans une surface N2 au voisinage d’un point critique mO. Si mO est un point I critique isolé ou si M4 est compact sans bord, nous montrons que F est pseudo-Holomorphe par rapport à une structure presque hermitienne definie dans un voisinage de mO. Si M4 est compact sans bord, les fibres singuliers de F sont des surfaces minimales avec points de branchement. Ensuite, nous étudions des exemples de morphismes harmoniques due a Burel de (S4, gk,l) dans S2 où (gk,I) est une famille de métriques conforme à la métrique canonique. Nous construisons tout d’abord une application semi-Conforme Φk,l de S4 dans S2 en composant deux applications semi-Conformes régulières, F de S4 dans S3 et Φk,i, de S3 dans S2. II résulte de Baird-Eells que le fibres régulier de øk,l pour tout k, I sont minimales. Si [k] = [l] = 1, l’ensemble des points critiques est donnée par l’image réciproque du pâle nord: il consiste en deux 2-Sphères ayant deux points d’intersection. Si k, I 6= 1 l’ensemble des points critiques sont les images réciproques du pôle nord (de la même façon que pour k = t = 1 deux sphères, mais avec une multiplicité I) ainsi que la pré-Image du pôle sud (un tore) avec multiplicité k. Enfin, nous étudions une construction due à Baird-Ou de morphismes harmoniques d’une ensembles ouverts de (S2×S2, can) dans S2. Nous vérifions qu’ils sont holomorphe par rapport à une des quatre structures complexes canoniques hermitiennes. / In this thesis, we are interested in harmonic morphisms between Riemannian manifolds (Mm, g) and (Nn, h) for m > n. Such a smooth map is a harmonic morphism if it pulls back local harmonic functions to local harmonic functions: if ƒ : V → ℝ is a harmonic function on an open subset V on N and Φ-1(V) is non-Empty, then the composition ƒ ∘ Φ : Φ-1(V) → ℝ is harmonic. The conformal transformations of the complex plane are harmonic morphisms. In the late 1970's Fuglede and Ishihara published two papers ([Fu]) and ([Is]), where they discuss their results on harmonic morphisms or mappings preserving harmonic functions. They characterize non-Constant harmonic morphisms F : (M,g) → (N,h) between Riemannian manifolds as those harmonic maps, which are horizontally conformal, where F horizontally conformal means : for any x ∈ M with dF(x) ≠ 0, the restriction of dF(x) to the orthogonal complement of kerdF(x) in TxM is conformal and surjective. This means that we are dealing with a special class of harmonic maps.
4

Trois problèmes géométriques d'hyperbolicité complexe et presque complexe.

Saleur, Benoit 22 November 2011 (has links) (PDF)
Cette thèse est consacrée à l'étude de trois problèmes d'hyperbolicité complexe et presque complexe. La première partie est dédiée à la recherche d'une conséquence quantitative de l'hyperbolicité au sens de Kobayashi, qui est une propriété qualitative. Le résultat obtenu prend la forme d'une inégalité isopérimétrique qui évoque l'inégalité d'Ahlfors relative aux recouvrements des surfaces de surfaces. Sa démonstration est purement riemannienne.La deuxième partie de la thèse est consacrée à la démonstration d'une version presque complexe du théorème de Borel, qui affirme que les courbes entières dans le plan projectif complexe évitant quatre droites en position générale sont linéairement dégénérées. Dans un plan projectif presque complexe, les J-droites substituent aux droites projectives et nous disposons d'un énoncé analogue pour les J-courbes entières. La démonstration de ce résultat repose sur l'utilisation de projections centrales et sur la théorie de recouvrement des surfaces d'Ahlfors.La dernière partie est consacrée à la démonstration d'une version presque complexe du théorème de Bloch, qui affirme qu'une suite non normale de disques holomorphes du plan projectif évitant quatre droites en position générale converge, en un certain sens, vers une réunion de trois droites. Notre résultat implique en particulier l'hyperbolicité du complémentaire dans le plan projectif presque complexe de quatre J-droites modulo trois J-droites.
5

Analyse locale dans les variétés presque complexes

Bertrand, Florian 07 December 2007 (has links) (PDF)
Dans cette thèse, nous abordons certains aspects de l'analyse locale dans les variétés presque complexes. Dans un premier temps, nous étudions le fibré cotangent qui est un outil important pour l'analyse et la géométrie complexe. Nous construisons un relevé de structure presque complexe, à l'aide d'une connexion, qui unifie les relevés complets de I.Sato et horizontaux de S.Ishihara et K.Yano. Par ailleurs, nous dégageons les principales propriétés analytiques et symplectiques du relevé ainsi construit. <br />Dans les deux études qui suivent, nous nous intéressons aux propriétés locales des domaines pseudoconvexes de type de D'Angelo fini d'une variété presque complexe de dimension réelle quatre. Nous construisons des fonctions locales pic plurisousharmoniques, généralisant des travaux de J.E.Fornaess et N.Sibony. La construction d'une telle famille de fonctions permet d'établir des propriétés d'attraction et de localisation des disques pseudoholomorphes. En particulier, elle réduit l'étude de la pseudométrique de Kobayashi à un problème purement local. Le comportement asymptotique de cette pseudométrique est relié à certaines questions fascinantes d'analyse locale dans les variétés comme les phénomènes de prolongement au bord des difféomorphismes ou encore la classification des domaines, et fournit des informations intéressantes sur les propriétés géométriques et dynamiques de la variété. Nous donnons alors des estimées locales de cette pseudométrique au voisinage du bord. De plus, dans le cas de stricte pseudoconvexité, nous obtenons des estimées très fines nous permettant d'étudier les liens entre l'hyperbolicité au sens de Kobayashi et l'hyperbolicité au sens de Gromov ; nous généralisons ainsi, au cadre presque complexe, un résultat dû à Z.M.Balogh et M.Bonk.
6

Invariants de Gromov-Witten et fibrations hamiltoniennes

Hyvrier, Clément January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
7

Trois problèmes géométriques d'hyperbolicité complexe et presque complexe / Three geometric problems of complex and almost complex hyperbolicity

Saleur, Benoît 22 November 2011 (has links)
Cette thèse est consacrée à l'étude de trois problèmes d'hyperbolicité complexe et presque complexe. La première partie est dédiée à la recherche d'une conséquence quantitative de l'hyperbolicité au sens de Kobayashi, qui est une propriété qualitative. Le résultat obtenu prend la forme d'une inégalité isopérimétrique qui évoque l'inégalité d'Ahlfors relative aux recouvrements des surfaces de surfaces. Sa démonstration est purement riemannienne.La deuxième partie de la thèse est consacrée à la démonstration d'une version presque complexe du théorème de Borel, qui affirme que les courbes entières dans le plan projectif complexe évitant quatre droites en position générale sont linéairement dégénérées. Dans un plan projectif presque complexe, les J-droites substituent aux droites projectives et nous disposons d'un énoncé analogue pour les J-courbes entières. La démonstration de ce résultat repose sur l'utilisation de projections centrales et sur la théorie de recouvrement des surfaces d'Ahlfors.La dernière partie est consacrée à la démonstration d'une version presque complexe du théorème de Bloch, qui affirme qu'une suite non normale de disques holomorphes du plan projectif évitant quatre droites en position générale converge, en un certain sens, vers une réunion de trois droites. Notre résultat implique en particulier l'hyperbolicité du complémentaire dans le plan projectif presque complexe de quatre J-droites modulo trois J-droites. / This thesis is dedicated to the study of three problems of complex and almost complex hyperbolicity. Its first part is dedicated to the research of a quantitative consequence to Kobayashi hyperbolicity, which is a qualitative property. The result we obtain has the form of an isoperimetric inequality that suggests Ahlfors' inequality, the central result of the theory of covering surfaces. Its proof uses only riemannian tools.The second part of the thesis is dedicated to the proof of an almost complex version of Borel's theorem, which says that an entire curve in the compex preojective plane missing four lines in general position is degenerate. In an almost compex context, we can obtain a similar result for entire J-curves just by replacing projective lines by J-lines. The proof of this result uses central projections and Ahlfors' theory of covering surfaces.The last part is dedicated to the proof of an almost complex version of Bloch's theorem, which says that given a sequence of holomorphic discs in the projective plane, either it is normal, either it converges in some sens to a reunion of three lines. Our result will show in particular that the complementary set of four J-lines in general position is hyperbolic modulo three J-lines.
8

Estimations spectrales asymptotiques en géométrie hermitienne

LAENG, Laurent 30 October 2002 (has links) (PDF)
L'objet de cette thèse est l'étude de quelques problèmes de géométrie différentielle, dans les cadres complexe et presque complexe. Nous donnons d'abord des formules de type Bochner-Kodaira-Nakano pour des fibrés hermitiens au-dessus de variétés respectivement hermitiennes, presque kählériennes et presque complexes. Puis dans un deuxième temps, à l'aide d'une des formules précédentes, nous obtenons dans le cas complexe des estimées asymptotiques d'une partie du spectre de certains opérateurs différentiels : considérant une $(1,1)$-forme réelle fermée $\alpha$ (non nécessairement entière) sur une variété complexe compacte de dimension $n$, nous construisons une suite (indexée par $k$) de fibrés en droites hermitiens dont les formes de courbure approchent $k\alpha$. Les estimées asymptotiques portent sur le bas du spectre des laplaciens antiholomorphes associés aux fibrés, et la plus significative fait intervenir l'intégrale de $\alpha^n$ au-dessus des points d'indice 0 ou 1 de la variété. Elle n'est pertinente que si cette dernière intégrale est strictement positive.
9

Invariants de Gromov-Witten et fibrations hamiltoniennes

Hyvrier, Clément January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
10

Espaces twistoriels et structures complexes exotiques

Deschamps, Guillaume 15 November 2005 (has links) (PDF)
Dans cette thèse, nous utilisons la théorie des espaces twistoriels afin de construire des structures complexes non standards (en un sens bien précis) sur des produits de 4-variétés réelles avec la sphère de dimension deux. Pour cela nous explicitons l'ensemble des surfaces complexes dont le fibré twistoriel est topologiquement trivial. Dans un deuxième temps nous déterminons parmi ces surfaces celles qui peuvent être munies d'une métrique riemannienne anti-autoduale. De ces résultats, nous déduisons une famille d'exemples simples de 4-variétés réelles parallélisables sans structure complexe. L'espace twistoriel associé à ces variétés admet une structure complexe. C'est notre première classe de 6-variétés munies d'une structure complexe non standard. Une deuxième classe d'exemple sera construite à partir de ces travaux. Enfin, et de façon indépendante, nous étudions brièvement les propriétés de connexités rationnelles des espaces twistoriels.

Page generated in 0.0612 seconds