• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 10
  • 1
  • Tagged with
  • 28
  • 28
  • 27
  • 15
  • 14
  • 12
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes d'apprentissage pour la classification multi label / Learning methods for multi-label classification

Kanj, Sawsan 06 May 2013 (has links)
La classification multi-label est une extension de la classification traditionnelle dans laquelle les classes ne sont pas mutuellement exclusives, chaque individu pouvant appartenir à plusieurs classes simultanément. Ce type de classification est requis par un grand nombre d’applications actuelles telles que la classification d’images et l’annotation de vidéos. Le principal objectif de cette thèse est la proposition de nouvelles méthodes pour répondre au problème de classification multi-label. La première partie de cette thèse s’intéresse au problème d’apprentissage multi-label dans le cadre des fonctions de croyance. Nous développons une méthode capable de tenir compte des corrélations entre les différentes classes et de classer les individus en utilisant le formalisme de représentation de l’incertitude pour les variables multi-valuées. La deuxième partie aborde le problème de l’édition des bases d’apprentissage pour la classification multi-label. Nous proposons un algorithme basé sur l’approche des k-plus proches voisins qui permet de détecter les exemples erronés dans l’ensemble d’apprentissage. Des expérimentations menées sur des jeux de données synthétiques et réelles montrent l’intérêt des approches étudiées. / Multi-label classification is an extension of traditional single-label classification, where classes are not mutually exclusive, and each example can be assigned by several classes simultaneously . It is encountered in various modern applications such as scene classification and video annotation. the main objective of this thesis is the development of new techniques to adress the problem of multi-label classification that achieves promising classification performance. the first part of this manuscript studies the problem of multi-label classification in the context of the theory of belief functions. We propose a multi-label learning method that is able to take into account relationships between labels ant to classify new instances using the formalism of representation of uncertainty for set-valued variables. The second part deals withe the problem of prototype selection in the framework of multi-label learning. We propose an editing algorithm based on the k-nearest neighbor rule in order to purify training dataset and improve the performances of multi-label classification algorithms. Experimental results on synthetic and real-world datasets show the effectiveness of our approaches.
2

SELECTION DE VARIABLES POUR LA DISCRIMINATION EN GRANDE DIMENSION ET CLASSIFICATION DE DONNEES FONCTIONNELLES

Tuleau, Christine 05 December 2005 (has links) (PDF)
Cette thèse s'inscrit dans le cadre de la statistique non paramétrique et porte sur la classification et la discrimination en grande dimension, et plus particulièrement sur la sélection de variables. Une première partie traite de la sélection de variables à travers CART, dans un cadre de régression et de classification binaire. La procédure exhaustive développée s'appuie sur le principe de la sélection de modèle qui permet d'obtenir des inégalités ``oracle'' et de réaliser la sélection de variables par contraste pénalisé. Une seconde partie est motivée par un problème industriel. Il s'agit de déterminer parmi les signaux temporels, mesurés au cours d'essais, ceux capables d'expliquer le ressenti de confort du conducteur, puis d'identifier les pages temporelles responsables de cette pertinence. La démarche adoptée s'articule autour du prétraitement des signaux, de la réduction de la dimension par projection dans une base d'ondelettes commune, et de la sélection de variables en mêlant CART et une stratégie pas à pas. Une dernière partie aborde le thème de la classification de données fonctionnelles au moyen des k-plus proches voisins. La procédure consiste à appliquer les k-plus proches voisins sur les coordonnées de la projection des données dans un espace fini dimensionnel. Cette procédure implique de déterminer simultanément la dimension de l'espace de projection et le nombre de voisins. La version usuelle des k-plus proches voisins et une version légèrement pénalisée sont considérées théoriquement. Un travail sur données réelles et simulées semble montrer qu'un faible terme de pénalité stabilise la sélection en conservant de bonnes performances.
3

Evaluation du risque de maladie : conception d'un processus et d'un système d'information permettant la construction d'un score de risque adapté au contexte, application au cancer du sein

GAUTHIER, Emilien 29 January 2013 (has links) (PDF)
Bien que de nombreux scores existent dans le domaine de la santé pour prédire un risque de maladie, ceux-ci sont peu utilisés alors qu'ils pourraient servir à individualiser la prévention pour la renforcer en fonction du niveau de risque estimé. Pour faciliter la production de scores performants dans la détection des profils à risque et adaptés au contexte d'utilisation, nous proposons un processus de construction de scores de risque. Afin de mener des expérimentations, nous spécifions l'architecture d'un système d'information qui supporte les processus de production et d'utilisation de scores de risque. Grâce à la mise en oeuvre d'une partie de cette architecture, nous utilisons notre processus pour expérimenter la création de scores de risque du cancer du sein basés sur une base de données américaine publique et sur les données françaises de l'étude de cohorte E3N. Sur l'exemple du cancer du sein, nous montrons qu'il est possible d'obtenir des performances comparables en termes de discrimination et supérieures en termes de calibration à celles de la littérature avec l'algorithme des plus proches voisins qui est compréhensible par les médecins et patients, tout en utilisant moins d'attributs.
4

Indexation dans les espaces métriques Index arborescent et parallélisation

Kouahla, Zineddine 14 February 2013 (has links) (PDF)
L'indexation et la recherche efficiente de données complexes constitue un besoin croissant face à la taille et à la variété des bases de données actuelles. Nous proposons une structure d'index arborescent basée sur un partitionnement d'un espace métrique à base de boules et d'hyper-plans. Les performances de cet index sont évaluées expérimentalement sur des collections de complexités intrinsèques différentes. La parallélisation de l'algorithme de recherche des k plus proches voisins est également effectuée afin d'encore améliorer les performances.
5

Mesures de similarité statistiques et estimateurs par k plus proches voisins : une association pour gérer des descripteurs de haute dimension en traitement d'images et de vidéos

Debreuve, Eric 08 July 2009 (has links) (PDF)
Mesures de similarité statistiques et estimateurs par k plus proches voisins : une association pour gérer des descripteurs de haute dimension en traitement d'images et de vidéos
6

Sur quelques problèmes d'apprentissage supervisé et non supervisé

Laloë, Thomas 27 November 2009 (has links) (PDF)
L'objectif de cette Thèse est d'apporter une contribution au problème de l'apprentissage statistique, notamment en développant des méthodes pour prendre en compte des données fonctionnelles. Dans la première partie, nous développons une approche de type plus proches voisins pour la régression fonctionnelle. Dans la deuxième, nous étudions les propriétés de la méthode de quantification dans des espaces de dimension infinie. Nous appliquons ensuite cette méthode pour réaliser une étude comportementale de bancs d'anchois. Enfin, la dernière partie est dédiée au problème de l'estimation des ensembles de niveaux de la fonction de régression dans un cadre multivarié.
7

Mesures de similarité et cosinus généralisé : une approche d'apprentissage supervisé fondée sur les k plus proches voisins

Qamar, Ali Mustafa 19 November 2010 (has links) (PDF)
Les performances des algorithmes d'apprentissage automatique dépendent de la métrique utilisée pour comparer deux objets, et beaucoup de travaux ont montré qu'il était préférable d'apprendre une métrique à partir des données plutôt que se reposer sur une métrique simple fondée sur la matrice identité. Ces résultats ont fourni la base au domaine maintenant qualifié d'apprentissage de métrique. Toutefois, dans ce domaine, la très grande majorité des développements concerne l'apprentissage de distances. Toutefois, dans certaines situations, il est préférable d'utiliser des similarités (par exemple le cosinus) que des distances. Il est donc important, dans ces situations, d'apprendre correctement les métriques à la base des mesures de similarité. Il n'existe pas à notre connaissance de travaux complets sur le sujet, et c'est une des motivations de cette thèse. Dans le cas des systèmes de filtrage d'information où le but est d'affecter un flot de documents à un ou plusieurs thèmes prédéfinis et où peu d'information de supervision est disponible, des seuils peuvent être appris pour améliorer les mesures de similarité standard telles que le cosinus. L'apprentissage de tels seuils représente le premier pas vers un apprentissage complet des mesures de similarité. Nous avons utilisé cette stratégie au cours des campagnes CLEF INFILE 2008 et 2009, en proposant des versions en ligne et batch de nos algorithmes. Cependant, dans le cas où l'on dispose de suffisamment d'information de supervision, comme en catégorisation, il est préférable d'apprendre des métriques complètes, et pas seulement des seuils. Nous avons développé plusieurs algorithmes qui visent à ce but dans le cadre de la catégorisation à base de k plus proches voisins. Nous avons tout d'abord développé un algorithme, SiLA, qui permet d'apprendre des similarités non contraintes (c'est-à-dire que la mesure peut être symétrique ou non). SiLA est une extension du perceptron par vote et permet d'apprendre des similarités qui généralisent le cosinus, ou les coefficients de Dice ou de Jaccard. Nous avons ensuite comparé SiLA avec RELIEF, un algorithme standard de re-pondération d'attributs, dont le but n'est pas sans lien avec l'apprentissage de métrique. En effet, il a récemment été suggéré par Sun et Wu que RELIEF pouvait être considéré comme un algorithme d'apprentissage de métrique avec pour fonction objectif une approximation de la fonction de perte 0-1. Nous montrons ici que cette approximation est relativement mauvaise et peut être avantageusement remplacée par une autre, qui conduit à un algorithme dont les performances sont meilleurs. Nous nous sommes enfin intéressés à une extension directe du cosinus, extension définie comme la forme normalisée d'un produit scalaire dans un espace projeté. Ce travail a donné lieu à l'algorithme gCosLA. Nous avons testé tous nos algorithmes sur plusieurs bases de données. Un test statistique, le s-test, est utilisé pour déterminer si les différences entre résultats sont significatives ou non. gCosLA est l'algorithme qui a fourni les meilleurs résultats. De plus, SiLA et gCosLA se comparent avantageusement à plusieurs algorithmes standard, ce qui illustre leur bien fondé.
8

Recherche approximative de plus proches voisins avec contrôle probabiliste de la précision ; application à la recherche d'images par le contenu

Berrani, Sid-Ahmed 06 February 2004 (has links) (PDF)
Cette thèse s'intéresse aux systèmes de recherche d'images par le contenu, où le but est de rechercher les images les plus similaires à une image requête fournie en exemple. Pour cela, il est d'abord nécessaire de décrire les images stockées dans la base. L'objectif est de traduire la similarité visuelle entre images en une simple notion de proximité spatiale entre descripteurs. Ainsi, pour retrouver les images similaires à l'image requête, il suffit de retrouver les descripteurs les plus proches du descripteur de l'image requête. Ce mode de recherche, appelé recherche de plus proches voisins, est cependant extrêmement coûteux même lorsque les techniques s'indexation multidimensionnelles sont utilisées. Les performances de celles-ci se dégradent exponentiellement lorsque la dimension des descripteurs augmente (phénomène de la malédiction de la dimension). Il s'avère toutefois que l'on peut fortement réduire le coût de ces recherches en effectuant des recherches approximatives. Le principe est alors de négocier une réduction du temps de réponse contre l'introduction d'imprécisions durant la recherche. Ce travail reprend ce principe et propose une nouvelle méthode de recherche approximative de plus proches voisins qui permet un contrôle fin et intuitif de la précision de la recherche. Ce contrôle s'exprime au travers d'un seul paramètre qui indique la probabilité maximale de ne pas trouver un des plus proches voisins recherchés. Dans le but d'évaluer rigoureusement ses performances dans le cadre d'un système réel, la méthode proposée a été ensuite intégrée dans un système de recherche d'images pour la détection de copies. Les expérimentations effectuées montrent que la méthode proposée est efficace, fiable et son imprécision n'a qu'un impact mineur sur la qualité des résultats finaux.
9

Géo-localisation en environnement fermé des terminaux mobiles

Dakkak, Mustapha 29 November 2012 (has links) (PDF)
Récemment, la localisation statique et dynamique d'un objet ou d'une personne est devenue l'un des plus importantes fonctionnalités d'un système de communication, du fait de ses multiples applications. En effet, connaître la position d'un terminal mobile (MT), en milieu extérieur ou intérieur, est généralement d'une importance majeure pour des applications fournissant des services basés sur la localisation. Ce développement des systèmes de localisation est dû au faible coût des infrastructures de réseau sans fil en milieu intérieur (WLAN). Les techniques permettant de localiser des MTs diffèrent selon les paramètres extraits des signaux radiofréquences émis entre des stations de base (BSs) et des MTs. Les conditions idéales pour effectuer des mesures sont des environnements dépourvus de tout obstacle, permettant des émissions directes entre BS et MT. Ce n'est pas le cas en milieu intérieur, du fait de la présence continuelle d'obstacles dans l'espace, qui dispersent les rayonnements. Les mesures prises dans ces conditions (NLOS, pour Non Line of Sight) sont imprévisibles et diffèrent de celles prises en condition LOS. Afin de réduire les erreurs de mesure, différentes techniques peuvent être utilisées, comme la mitigation, l'approximation, la correction à priori, ou le filtrage. En effet, l'application de systèmes de suivi (TSs) constitue une base substantielle pour la navigation individuelle, les réseaux sociaux, la gestion du trafic, la gestion des ressources mobiles, etc. Différentes techniques sont appliquées pour construire des TSs en milieu intérieur, où le signal est bruité, faible voire inexistant. Bien que les systèmes de localisation globaux (GPS) et les travaux qui en découlent fonctionnent bien hors des bâtiments et dans des canyons urbains, le suivi d'utilisateurs en milieu intérieur est bien plus problématique. De ce fait, le problème de prédiction reste un obstacle essentiel à la construction de TSs fiable dans de tels environnements. Une étape de prédiction est inévitable, en particulier, dans le cas où l'on manque d'informations. De multiples approches ont été proposées dans la littérature, la plupart étant basées sur un filtre linéaire (LF), un filtre de Kalman (KF) et ses variantes, ou sur un filtre particulaire (PF). Les filtres de prédiction sont souvent utilisés dans des problèmes d'estimation et l'application de la dérivation non entière peut limiter l'impact de la perte de performances. Ce travail présente une nouvelle approche pour la localisation intérieure par WLAN utilisant un groupement des coordonnées. Ensuite, une étude comparative des techniques déterministes et des techniques d'apprentissage pour la localisation intérieure est présentée. Enfin, une nouvelle approche souple pour les systèmes de suivi en milieu intérieur, par application de la dérivation non entière, est présentée
10

Processus empiriques, estimation non paramétrique et données censurées.

Viallon, Vivian 01 December 2006 (has links) (PDF)
La théorie des processus empiriques joue un rôle central en statistique, puisqu'elle concerne l'ensemble des résultats limites généraux se rapportant aux échantillons aléatoires. En particulier, des lois uniformes du logarithme ont permis d'aborder de manière systématique la convergence en norme sup des estimateurs à noyau. Dans cette thèse, nous obtenons premièrement des lois fonctionnelles uniformes du logarithme pour les incréments du processus des quantiles normé, qui permettent d'établir des propriétés nouvelles des estimateurs basés sur les k-plus proches voisins. Le même type de résultat est ensuite obtenu pour les incréments du processus empirique de Kaplan-Meier, conduisant naturellement à des lois du logarithme uniformes pour des estimateurs de la densité et du taux de mortalité en présence de censure à droite. Dans le cas de la régression multivariée, des lois analogues sont obtenues pour des estimateurs à noyau, notamment dans le cas censuré. Enfin, nous développons un estimateur non paramétrique de la régression sous l'hypothèse du modèle additif dans le cas de censure à droite, permettant de se défaire du fléau de la dimension. Cet estimateur repose essentiellement sur la méthode d'intégration marginale.

Page generated in 0.0708 seconds