• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 11
  • 5
  • Tagged with
  • 123
  • 123
  • 96
  • 75
  • 66
  • 59
  • 59
  • 59
  • 44
  • 43
  • 38
  • 31
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Rôle de GINIP, une nouvelle protéine régulatrice des protéines G inhibitrices, dans la modulation de la douleur neuropathique / Role of GINIP, a new regulatory G inhibitory protein, in the modulation of neuropathic pain

Lo re, Laure 27 November 2014 (has links)
Le système somato-sensoriel permet à l'organisme de percevoir une large palette de stimuli externes/internes, qui peuvent être soit agréables, soit nocifs. Le corps cellulaire des neurones somato-sensoriels, responsables de ces processus et qui innervent tous les organes du corps, est situé dans les ganglions de la racine dorsale. La douleur est perçue par les nocicepteurs qui constituent un ensemble hétérogène de neurones, aussi bien d'un point de vue fonctionnel, électrophysiologique que moléculaire. Afin de mieux comprendre la spécialisation fonctionnelle des nocicepteurs, une des stratégies de l'équipe a été d'identifier de nouveaux marqueurs moléculaires exprimés par des sous-populations des neurones du DRG et de mettre en place des outils génétiques pour étudier leur fonction spécifique. Nous avons mis en évidence un nouveau gène, qui définit une sous-population de nocicepteurs. Suite à mes travaux de thèse, qui ont révélés la fonction moléculaire de la protéine associée à ce gène, nous l'avons nommé GINIP pour Galpha INhibitory Interacting Protein. Au cours de ma thèse, j'ai montré que : - GINIP interagit physiquement avec les protéines G-alpha inhibitrices- la perte de fonction de GINIP (souris GINIP KO) amplifie les douleurs de type neuropathique- le mécanisme sous-jacent fait intervenir la signalisation GABAergique Les douleurs pathologiques sont, entre autres, dues à un disfonctionnement des nocicepteurs, et leurs mécanismes restent mal connus. Dans ce contexte, l'ensemble de mes résultats met en évidence une nouvelle voie impliquée dans la régulation négative des nocicepteurs, qui pourra à l'avenir être la cible de stratégies thérapeutiques. / The somato-sensory system allows our organism to detect a myriad of external and internal stimuli that can range from innocuous stimuli (pleasant touch,etc) to noxious ones (burns, tissue injury, etc). The somato-sensory neurons involved in these processes innervate the entire organism and have their cell bodies clustered within the dorsal root ganglion. Pain is a modality of the somatosensory system, sensed through nociceptors. Nociceptors represent a heterogeneous class of somato-sensory neurons with respect to functional, electrophysiological and molecular criteria. In order to expand the knowledge of the functional specialization of nociceptors, our team's strategy aimed at identifying new molecular markers of nociceptors subsets. Subsequent design of the corresponding genetic tools allowed us investigating their specific function. Therefore, we found a gene that was never described before and that marks a specific subset of nociceptors. We named it GINIP (Gaplha Inhibitory Interacting Protein) as during my thesis I showed that:- GINIP physically interacts with inhibitory G-proteins- GINIP loss of function (GINIP knock out mouse) leads to the amplification of neuropathic pain- the associated mechanism involves GABAergic signalingPathological pain (chronic inflammatory pain and neuropathic pain) is, among others, a consequence of nociceptor dysfunction. Importantly, the mechanisms leading to this aberrant function are still not totally understood. Altogether, my results underscore a new pathway involved in the negative control of nociceptors under neuropathic pain conditions, and this opens a path for new therapeutic strategies.
22

Signalisation cellulaire et formation de complexes protéiques lors de l'étirement des cardiomyocytes de rats nouveaux-nés / Cellular signaling and protein complexes formation during neonatal rat cardiomyocytes stretch

Duquesnes, Nicolas 18 April 2008 (has links)
L'étirement est un stimulus hypertrophique qui active de nombreuses voies de signalisation similaires à celles mises en évidence lors de l'étude de l'hypertrophie cellulaire. L'objectif principal de mon travail de thèse était de caractériser les évènements moléculaires impliqués dans l'activation des MAPKinases (MAPK), ERK et JNK lors de l'étirement. Nous avons étudié ces protéines par 2 approches différentes. D'une part, nous nous sommes intéressés aux rôles de protéines potentiellement nécessaires à l'activation des MAPK. D'autre part, nous avons cherché à mettre en évidence des interconnexions moléculaires entre les différentes voies de signalisation activées par l'étirement cellulaire, en montrant notamment la formation de complexes protéiques nécessaires à l'activation des différents partenaires. Nous montrons ainsi que deux protéines à activité tyrosine kinase, l'Epidermal Growth Factor Receptor (EGFR) et la Proline-rich tyrosine kinase 2 (Pyk2), sont respectivement nécessaires à l'activation de ERK et de JNK lors de l'étirement. Ces cascades de transduction peuvent être dépendantes de la petite protéine G Ras. Bien que les voies des MAPK et de PI3K/Akt soient considérées comme indépendantes, nous montrons également que Akt participe à l'activation de ERK par l'étirement. Enfin, nous avons montré la formation d'un complexe Protein Kinase C (PKC)/Calcineurine nécessaire à l'activation et à la translocation de la PKC lors de l'étirement. Cette étude de différentes voies de signalisation et des interactions protéiques apporte une meilleure connaissance des mécanismes activés par l'étirement cellulaire et permet donc de mieux comprendre la signalisation impliquée dans l'hypertrophie ventriculaire / Cardiomyocyte stretch is a major determinant of ventricular hypertrophy. It stimulates numerous signalling pathways leading to the Mitogen Activated Protein kinases (MAPK) activation. The objective of this thesis was to evaluate the molecular events involved in MAPK ERK and JNK activations during stretch. We studied these pathways by 2 different approaches. We analysed the role of several pivotal proteins involved in ERK and JNK activations and next we evaluated the molecular interactions between different signalling pathways by protein complexes formation induced by stretch and necessary for protein activations. We show that 2 tyrosine Kinases, the Epidermal Growth Factor Receptor (EGFR) and the Proline-rich tyrosine kinase 2 (Pyk2) are necessary for ERK and JNK activations respectively during stretch with a possible involvement of the small G protein Ras. MAPK and PI3/Akt pathways are generally considered independent but we show that ERK activation is PI3K/Akt dependent during stretch. Thus, we demonstrate that 2 other pathways are associated since PKC and calcineurin form a complex necessary for PKC activation and translocation. This study of signalling pathways and protein interactions sheds a new light on intracellular pathways leading to MAPK activation and may have implications for the development of new drugs in the management of cardiac hypertrophy and failure
23

Régulation directe par les protéines G hétérotrimériques des canaux calciques neuronaux activés par le potentiel électrique de membrane

Weiss, Norbert 20 December 2006 (has links) (PDF)
Les canaux calciques neuronaux activés par le potentiel électrique de membrane (VGCCs) représentent une des voies majeures d'entrée du calcium dans la cellule nerveuse, où ils participent activement aux processus moléculaires de la transmission synaptique. De ce fait, leur activité est finement régulée, afin de garantir une parfaite coordination entre le flux calcique et les processus cellulaires qui lui sont associés. Aussi, les récepteurs couplés aux protéines G hétérotrimériques (RCPGs) occupent un rôle central dans le rétrocontrôle négatif de l'activité des VGCCs suite à la libération de neuromédiateurs. Cette régulation, directe et spatialement délimitée, est conduite par le dimère Gβγ, dont la fixation sur différents déterminants structuraux de la sous-unité Cav2.x conduit à l'inhibition drastique du courant calcique (régulation "ON"), indépendamment de la présence d'une sous-unité β. Le décrochage du dimère Gβγ, en réponse à l'activation du canal, reverse cette inhibition, et induit un ensemble de modifications phénotypiques apparentes de l'activité du canal (régulation "OFF"). Aussi, nous avons mis en évidence que la notion de "reluctance", décrite par le shift dépolarisant de la courbe d'activation du canal, communément accepté comme un caractère de la régulation "ON", ne traduit en définitive qu'une caractéristique particulière de la régulation "OFF". En revanche, la fixation du dimère Gβγ sur la sous-unité Cav2.x, est à l'origine d'un ralentissement de la cinétique d'inactivation du canal, et représente un caractère nouveau de la régulation "ON". Enfin, nous avons caractérisé l'implication majeure de l'inactivation rapide du canal, dans le caractère "OFF" de cette régulation. L'inactivation se présente comme un catalyseur du décrochage du dimère Gβγ, et délimite une fenêtre temporelle durant laquelle le processus peut avoir lieu. Ensemble, ces résultats permettent une meilleure compréhension des mécanismes moléculaires à la base de la régulation directe de l'activité synaptique par les récepteurs couplés aux protéines G hétérotrimériques.
24

Oligomérisation des récepteurs couplés aux protéines G : deux ou plus ? Application des technologies de FRET en temps résolu au cas du récepteur GABAB

Maurel, Damien 18 December 2006 (has links) (PDF)
Les récepteurs couplés aux protéines G (RCPG) sont les cibles de 50% des médicaments actuellement sur le marché pharmaceutique. La compréhension de leur mode de fonctionnement est donc essentielle au développement de nouvelles molécules capables de cibler spécifiquement ces récepteurs. Ces dix dernières années, les technologies de transfert d'énergie ont permis de révéler la capacité des RCPG, longtemps considérés comme monomériques, à s'organiser en dimères voire en structures oligomériques plus grandes. Toutefois, la caractérisation précise de cette stœchiométrie d'assemblage implique la mise au point de méthodes adaptées. <br />Au cours de ce travail de thèse nous avons développé une approche de FRET en temps résolu permettant de mettre en évidence, à l'aide d'anticorps marqués, des interactions de sous-unités de RCPG à la surface de cellules vivantes. En choisissant le récepteur GABAB comme modèle d'étude, cette approche a permis de révéler l'homo- et l'hétérodimérisation de ce récepteur à la surface cellulaire. De plus, en condition de perméabilisation des cellules, l'oligomérisation de la sous-unité GABAB1 retenue dans les compartiments intracellulaires a pu être caractérisée par cette même approche.<br />Afin d'analyser plus précisément l'organisation du récepteur GABAB, nous avons mis au point une deuxième méthode permettant de marquer irréversiblement à l'aide de fluorophores les sous-unités GABAB1 et GABAB2 présentes à la surface cellulaire. La combinaison de cette méthode de marquage (SNAP-tag) avec une analyse de FRET en temps résolu a permis de caractériser l'organisation oligomérique de ce récepteur. Ainsi, le récepteur GABAB, connu pour être un hétérodimère obligatoire, semble capable de former des oligomères via la sous-unité GABAB1 qui représente un point de contact entre deux hétérodimères. Le rôle d'une telle organisation sur la fonction de ce récepteur reste toutefois indéterminé.
25

ETUDE DE LA REGULATION DES RECEPTEURS DE PEPTIDES N-FORMYLES

Huet Moulard, Emilie 05 June 2007 (has links) (PDF)
Les cellules phagocytaires constituent la première ligne de défense contre les pathogènes. Leur migration dirigée vers le site infectieux et leurs fonctions microbicides sont l'aboutissement de voies de signalisation intracellulaires sollicitées par la stimulation de récepteurs couplés aux protéines G, les récepteurs de chimioattractants. Après fixation du ligand et transmission du signal par la protéine G, les récepteurs sont phosphorylés et interagissent avec les b-arrestines, protéines d'échafaudage concourrant à l'internalisation des récepteurs. Plusieurs exemples récents suggèrent que les b-arrestines pourraient également participer à la signalisation. <br />Le travail présenté dans ce mémoire concerne les récepteurs de la famille FPR (Formyl Peptide Receptor) et plus spécialement le récepteur FPRL1 (FPR-like 1), pour lesquels de nouveaux agonistes dérivant de protéines bactériennes ou mitochondriales humaines ont été identifiés. La phosphorylation du récepteur FPRL1 a été caractérisée. Il a été montré que les Β-arrestines interagissent avec celui-ci et qu'elles sont indispensables à son internalisation. Diverses approches ont conclu que l'activation rapide des MAP kinases ERK1/2, enclenchée par la stimulation du récepteur FPRL1, est majoritairement dépendante de la protéine G héterotrimérique et qu'il n'y pas de signalisation transmise par les b-arrestines. Enfin, une analyse protéomique des complexes multi-protéiques bâtis autour du couple FPRL1/b-arrestine a été menée par la méthode TAP (Tandem Affinity Purification). Le complexe adaptateur AP3, homologue d'AP2 a été identifié comme partenaire des b-arrestines après stimulation du récepteur FPRL1.
26

Rôle et régulation du récepteur opioïdergique delta dans le traitement de la douleur

Beaudry, Hélène January 2012 (has links)
Depuis quelques années, le récepteur opioïdergique delta (DOPR) apparaît comme une alternative intéressante dans le traitement de la douleur puisque son utilisation est accompagnée de moins d'effets secondaires qu'avec les traitements opioïdergiques actuels, ciblant principalement le récepteur opioïdergique mu (MOPR). Par contre, les agonistes sélectifs pour DOPR n'ont que très peu d'effets chez les animaux sains en raison d'une faible expression membranaire du récepteur. Depuis quelques années, un nombre croissant d'études se sont intéressées à l'adressage de DOPR et les résultats montrent que différentes situations peuvent moduler son expression à la membrane plasmique. Mes travaux de Thèse se sont donc intéressés à la régulation de DOPR dans un contexte de traitement de la douleur. En premier lieu, nous avons montré que les agonistes sélectifs pour DOPR soulagent l'hyperalgésie thermique induite par l'inflammation et que cet effet est conservé lors d'un traitement prolongé. À l'opposé, les effets antinociceptifs et moteurs de la deltorphine sont rapidement soumis à la tolérance. La dichotomie observée quant au développement de la tolérance pour les effets des agonistes DOPR suggère que des mécanismes de régulation différents s'opèrent lors de l'activation soutenue de DOPR. Dans un deuxième temps, nous avons montré que des agonistes sélectifs pour DOPR et MOPR, inhibent les comportements douloureux ainsi que l'activation neuronale (c'est-à-dire l'expression de c-fos) induits par la formaline ou la capasïcine. De plus, les agonistes DOPR et MOPR empêchent la relâche de substance P via l'inhibition des fibres afférentes primaires, ce qui confirme leur localisation sur les fibres peptidergiques. Par ailleurs, puisque les agonistes DOPR et MOPR ont des actions similaires sur la relâche de substance P, nos résultats proposent une colocalisation de DOPR et MOPR. L'ensemble de ces résultats contribuent à élargir nos connaissances sur les rôles et la régulation de DOPR dans le but d'en faire une cible thérapeutique pour le traitement de la douleur chronique.
27

Développement d’essais HTRF® innovants pour détecter l'activation des protéines G natives par leurs récepteurs / Development of HTRF® assays to study G proteins

Da Silva, Mélanie 25 September 2017 (has links)
Les récepteurs couplés aux protéines G (RCPG) représentent la plus grande famille de protéines membranaires, et ils sont la cible de plus de 25% des médicaments. Ces récepteurs activent diverses voies de signalisation cellulaire via plusieurs familles de protéines G hétéro-trimériques (Gs, Gq, Gi/o et G12/13). Etant donné qu’un RCPG peut activer différentes protéines G, il est important de comprendre comment des ligands favorisent l’activation de certaines protéines G au détriment des autres (ligands biaisés). L’objectif de mon travail a été de développer de nouveaux tests pour l’étude des protéines G qui soient spécifiques d’une famille voire même de certains sous-types de protéines. / G protein-coupled receptors (GPCRs) represent the main family of membrane proteins, and they are the target of more than 25% of drugs in the market. These receptors activate various signaling pathways through different families of heterotrimeric G proteins (Gs, Gq, Gi/o et G12/13). Since a given GPCR can activate several G proteins, it is important to understand how ligands favor the activation of some of these G proteins (biased ligands). The objective of my thesis was to develop assays to study most G protein subtypes.
28

Développement de la technologie des récepteurs couplés à un canal ionique pour la caractérisation fonctionnelle des récepteurs couplés aux protéines G / Development of the ion channel-couplées receptor technology for functional study of G protein couplées and receptor

Lemel, Laura 24 September 2018 (has links)
Les récepteurs couplés aux protéines G (RCPG) sont des protéines membranaires impliquées dans la communication entre cellules via des messagers circulants (hormones, neurotransmetteurs) ainsi que dans la perception de notre environnement (vision, odorat, goût). Ils sont essentiels à de nombreuses fonctions physiologiques vitales (cardiaques,respiratoires...) et comportementales (relations sociales et affectives) et sont donc une cible thérapeutique de choix pour la découverte de nouveaux médicaments.Au sein de l'équipe Canaux, de l’Institut de Biologie Structurale, un biocapteur original a été créé se basant sur la fusion de ces RCPG avec un canal ionique (Kir6.2) appelé Ion Channel-Coupled Receptor (ICCR). Les changements conformationnels du récepteur induit par son activité (fixation de ligand, activation des protéines G) sonttraduits par le canal ionique en courant électrique aisément détectable par des techniques électrophysiologiques. Cette nouvelle génération de biocapteurs permet d'étudier en temps réel l’activité des RCPG par des techniques électrophysiologiques très sensibles.Le travail de thèse s’est principalement focalisé sur l’étude du récepteur de l’ocytocine (OXTR) impliqué dans l’accouchement, l’allaitement et le lien social. La technologie ICCR a été utilisée pour trois des projets de cette thèse. Le premier avait pour but l’étude des mécanismes moléculaires de la dépendance au cholestérol du récepteur del’ocytocine, et a ainsi permis d’identifier un nouveau mécanisme de régulation allostérique entre le cholestérol et la fixation des ligands. Un second projet a porté sur l’utilisation de ce biocapteur pour identifier de nouveaux types de ligands, plus spécifiques de certaines voies intracellulaires, appelés ligands biaisés. Enfin, un troisième projet a mis en relief l’effet de certains composés environnementaux sur les RCPG et a permis de mettre en avant de nouveaux récepteurs ciblés par ce type de composés.Pour terminer, un projet parallèle s’est porté sur l'étude de la formation de pores par des protéines bactériennes dépendantes des RCPG. Il s’agit des « pore-forming toxins » (PFTs) de la famille des hémolysines gamma, produitespar un des pathogènes humains les plus virulents, Staphylococcus aureus. Certaines de ces toxines sont capables de sefixer sur des RCPG très spécifiques, les récepteurs aux chimiokines, et ont donc un rôle important dans les infections virales et dans certaines pathologies cancéreuses. Les travaux ont notamment permis d’obtenir des informations nouvelles sur le mécanisme d’insertion de ces pores dans la membrane. / G protein-coupled receptors (GPCRs) are membrane proteins involved in communication between cells via circulatingmessengers (hormones, neurotransmitters) as well as in the perception of the environment (vision, smell, taste). Theyare essential for many physiological functions (cardiac, respiratory...) and behavioral (social and emotional responses)and therefore represent interesting therapeutic targets.Within the Channels team, at the Institute of Structural Biology, an original biosensor was created, based onthe fusion of a GPCR to an ion channel (Kir6.2), called an Ion Channel-Coupled Receptor (ICCR). Conformationalchanges of the receptor induced by its activity (ligand binding, activation of G proteins) are directly transmitted to theion channel and allow the generation of an electrical signal easily detectable by electrophysiological techniques. Thesenew biosensors are powerful tools to study GPCR activity in real time.The main focus of the thesis was the study of the oxytocin receptor (OXTR), involved in childbirth,breastfeeding and social bonding. ICCR technology has been used for three projects during the thesis. The first aimedat studying the molecular mechanisms of cholesterol dependency of the oxytocin receptor and allowed theidentification of a new allosteric regulation mechanism between cholesterol and the ligand binding. A second projectfocused on the use of this biosensor to identify new types of ligands, selective to certain intracellular pathways, calledbiased ligands. Finally, a third project highlighted the effect of certain compounds, known as endocrine disruptors, onGPCRs. Endocrine disruptors are environmental pollutants which have potentially harmful effects on human health.Finally, a parallel project was dedicated to the study of pore formation by GPCR-dependent bacterial toxins.These proteins are called pore-forming toxins (PFTs), from the gamma hemolysin family and are produced by one ofthe most virulent human pathogens Staphylococcus aureus. Some of these toxins are able to bind very specifically tocertain GPCRs, members of the chemokine receptor family. They therefore play a vital role in numerous viralinfections and in some cancerous pathologies. New information concerning the mechanism of membrane insertion ofthese toxins during pore formation was discovered during this work.
29

Modulation du récepteur ANP-C et de sa signalisation par la vasopressine et l'endothéline

Boumati, Malika January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
30

Quantifying AAV (hM3Dq) transfection in neocortical cells as a guide to DREADDs control of trauma-induced epileptogenesis

Danesh, Ali Reza 02 July 2021 (has links)
Le néocortex déclenche des activités paroxystiques suite aux lésions cérébrales traumatiques. Avec des blessures cérébrales pénétrantes, la déafférentation s'accompagne d'une longue période silencieuse du cortex atteint, et d'une augmentation des périodes d'hyperpolarisation du néocortex entourant la lésion. L'activité synchrone du réseau neuronal après une période de latence conduirait à l'épileptogenèse. Des tentatives de modifier la nature des crises ont été effectuées à l'aide de modèles animaux. L'une des plus prometteuse étant la chimiogenèse par l'injection des vecteurs viraux afin d'anéantir la réponse de certains récepteurs couplés aux protéines G aux ligands habituels, alors qu'ils réagissent aux médicaments désirés, comme N-oxyde de clozapine. Ces récepteurs appelés « DREADDs » exclusivement activés par ces médicaments ont été étudiés pour réduire le nombre et la sévérité des crises. Selon les résultats non-publiés de notre laboratoire, l'utilisation d'un DREADD excitateur près de «undercut» serait antiépileptogène. Nous pensons qu'une excitation ciblée pourrait optimiser l'effet antiépileptogène. L'excitation est directement liée aux neurones transduits. Nous postulons qu'une transduction optimale des neurones pourrait être atteinte par un dosage optimisé du virus injecté, tant au titre viral qu'au volume injecté. Pour prouver notre hypothèse nous avons utilisé trois différentes titrations de AAV2/8 et injecté différents volumes de ces titrations aux souris. Le volume de transfection corticale et le nombre des neurones transduits ont été quantifiés. Avec la titration E11gc/ml aucune transfection n'a été observée. Avec la titration E12gc/ml une corrélation quasi-linéaire a été observée entre le volume viral injecté, et le volume cortical transfecté, ainsi que le nombre de neurones transduits. Avec la titration E13gc/ml, une meilleure corrélation a été observée à la transduction neuronale qu'à la transfection corticale, par rapport au volume viral injecté. En conclusion, la titration E12gc/ml paraît être un meilleur choix pour nos futures études, la fiabilité de la titration E13gc/ml n'ayant pas été démontrée. / The neocortex is the origin of paroxysmal activities that occur after traumatic brain injuries. In penetrating brain injuries, deafferentation causes long silent periods in affected cortex and increased hyperpolarization period in neocortical tissue around the injury. The synchronous neural network activity after a latent period may lead to epileptogenesis. Some attempts to alter seizures were done using animal models. One of the most promising involves chemogenetic tools via AAV viral vector injection to make some G protein-coupled receptors unresponsive to their natural ligands, and activated by the desired drug, such as clozapine-N-oxide. These designer receptors exclusively activated by designer drugs (DREADDs) have been studied in reducing the numbers and severity of seizures. According to unpublished works in our lab, using excitatory DREADDs in the vicinity of undercut was antiepileptogenic. We believe there could be an optimal level of excitation for yielding an optimal antiepileptogenic response. This excitation is in direct relation with neurons transfected. We hypothesize that the optimal neuronal transduction might be achieved with optimal dosage of virus delivered, in terms of viral titration and the volume of virus injected. To test this, we used three different titrations of AAV2/8 and we injected different volumes of these titrations in adult mice. Cortical transfection volume and number of neuronal transductions were estimated. With E11gc/ml titration, no transfection was visible. With E12gc/ml titration, an almost linear correlation was observed between the volume of virus injected and the number of neurons transduced and the cortical volume of transfection. With E13gc/ml titration the correlation between the injected AAV volume and the number of neuronal transductions was still good but there was a poor correlation between AAV volume and transfection volume. We concluded that E12gc/ml titration was a more reliable option for our further studies. The reliability of E13gc/ml titration needs to be proven.

Page generated in 0.0502 seconds