Spelling suggestions: "subject:"protein:protein interactions."" "subject:"proteinprotein interactions.""
331 |
Molecular principles of protein stability and protein-protein interactionsLendel, Christofer January 2005 (has links)
<p>Proteins with highly specific binding properties constitute the basis for many important applications in biotechnology and medicine. Immunoglobulins have so far been the obvious choice but recent advances in protein engineering have provided several novel constructs that indeed challenge antibodies. One class of such binding proteins is based on the 58 residues three-helix bundle Z domain from staphylococcal protein A (SPA). These so-called affibodies are selected from libraries containing Z domain variants with 13 randomised positions at the immunoglobulin Fc-binding surface. This thesis aims to describe the principles for molecular recognition in two protein-protein complexes involving affibody proteins. The first complex is formed by the Z<sub>SPA-1</sub> affibody binding to its own ancestor, the Z domain (Kd ~1 μM). The second complex consists of two affibodies: Z<sub>Taq</sub>, originally selected to bind Taq DNA polymerase, and anti-Z<sub>Taq</sub>, an anti-idiotypic binder to Z<sub>Taq</sub> with a Kd ~0.1 μM. The basis for the study is the determination of the three-dimensional structures using NMR spectroscopy supported by biophysical characterization of the uncomplexed proteins and investigation of binding thermodynamics using isothermal titration calorimetry. The free Z<sub>SPA-1</sub> affibody is a molten globule-like protein with reduced stability compared to the original scaffold. However, upon target binding it folds into a well-defined structure with an interface topology resembling that displayed by the immunoglobulin Fc fragment when bound to the Z domain. At the same time, structural rearrangements occur in the Z domain in a similar way as in the Fc-binding process. The complex interface buries 1632 Å<sup>2</sup> total surface area and 10 out of 13 varied residues in Z<sub>SPA-1</sub> are directly involved in inter-molecular contacts. Further characterization of the molten globule state of Z<sub>SPA-1</sub> revealed a native-like overall structure with increased dynamics in the randomised regions (helices 1 and 2). These features were reduced when replacing some of the mutated residues with the corresponding wild-type Z domain residues. The nature of the free Z<sub>SPA-1</sub> affects the thermodynamics of the complex formation. The contribution from the unfolding equilibrium of the molten globule was successfully separated from the binding thermodynamics. Further decomposition of the binding entropy suggests that the conformational entropy penalty associated with stabilizing the molten globule state of Z<sub>SPA-1</sub> upon binding seriously reduces the binding affinity. The Z<sub>Taq</sub>:anti-Z<sub>Taq</sub> complex buries in total 1672 Å<sup>2</sup> surface area and all varied positions in anti-Z<sub>Taq</sub> are directly involved in binding. The main differences between the Z:Z<sub>SPA-1</sub> and the Z<sub>Taq:</sub>anti-Z<sub>Taq</sub> complexes are the relative subunit orientation and certain specific interactions. However, there are also similarities, such as the hydrophobic interface character and the role of certain key residues, which are also found in the SPA:Fc interaction. Structural rearrangements upon binding are also common features of these complexes. Even though neither Z<sub>Taq</sub> nor anti-Z<sub>Taq</sub> shows the molten globule behaviour seen for Z<sub>SPA-1</sub>, there are indications of dynamic events that might affect the binding affinity. This study provides not only a molecular basis for affibody-target recognition, but also contributions to the understanding of the mechanisms regulating protein stability and protein-protein interactions in general.</p>
|
332 |
Characterizing the Roles of PilF and PilQ in Pseudomonas aeruginosa Type IV Pilus BiogenesisKoo, Jason 12 December 2013 (has links)
Type IV pili (T4P) are bacterial biomolecular machines that mediate interactions with the environment. Bacterial pathogens such as Pseudomonas aeruginosa require T4P for virulence. Significant progress has been made in recent years towards our understanding of how the proteins in the T4P system interact and function. While over 50 different proteins are involved in T4P biogenesis, the two outer membrane components, PilF and PilQ, are the focus of the work presented in this thesis.
PilF was found to be required for assembly of PilQ into secretins, the outer membrane channels through which T4P fibers exit the cell. The functions of PilF are consistent with a family of lipoproteins called pilotins, to which the roles of secretin assembly and/or localization are attributed. Structure determination by X-ray crystallography revealed that PilF is composed of six tetratricopeptide (TPR) protein-protein interaction motifs. Functional mapping of PilF indicated that a hydrophobic groove on the first TPR is involved in secretin assembly. Secretin localization correlated directly with that of PilF. The effects of pilF mutations and the structural data led to the hypothesis that PilF and PilQ interact directly. We propose that PilF and PilQ interact at the inner membrane and are co-transported to the outer membrane by the Lol lipoprotein sorting system. PilQ multimerizes into secretins upon outer membrane insertion and aligns with inner membrane T4P proteins to form a complete molecular machine.
PilQ mutagenesis mapping showed that: the N-terminal “system specific” domain is important but not essential for secretin function; the central “multimerization” domain is critical for secretin assembly and function; and the C-terminal tail implicated in secretin-pilotin interactions is dispensable for PilQ function. Purified PilQ enabled copurification of PilF from cell lysates, providing the first evidence for their interaction. These data provide a framework for future exploration of T4P assembly in P. aeruginosa.
|
333 |
Fonctions de l'oncoprotéine LMO2 déterminées par ses interactions protéiquesSincennes, Marie-Claude 10 1900 (has links)
La leucémie lymphoïde représente environ 30% des cas de cancer chez l’enfant. Elle est souvent causée par des réarrangements chromosomiques impliquant des gènes encodant des facteurs de transcription, qui contrôlent des programmes génétiques complexes. Par exemple, LMO2 (LIM-only 2) est un facteur de transcription oncogénique fréquemment exprimé de façon aberrante dans les leucémies lymphoblastiques aigues des cellules T (T-ALL). Dans l’hématopoïèse normale, LMO2 est essentiel à la génération des cellules souches hématopoïétiques à l’origine de toutes les cellules sanguines. D’ailleurs, certaines cellules leucémiques possèdent des propriétés normalement réservées aux cellules souches hématopoïétiques. Ainsi, l’étude de la fonction de LMO2 dans les cellules souches hématopoïétiques peut être pertinente autant dans le contexte hématopoïétique normal que leucémique.
Afin de mettre en évidence de nouvelles fonctions moléculaires pour LMO2, j’ai choisi d’identifier les protéines qui s’y associent. En plus de ses partenaires connus, j’ai identifié plusieurs protéines de transcription/remodelage de la chromatine, en accord avec son rôle transcriptionnel. Plusieurs nouvelles fonctions potentielles ont été révélées, indiquant que cette protéine adaptatrice pourrait faire partie de complexes non transcriptionnels, régulant d’autres processus cellulaires. Les oncogènes comme LMO2 pourraient être des régulateurs à large spectre.
Particulièrement, j’ai identifié des interactions entre LMO2 et des protéines de réplication de l’ADN. J’ai montré que LMO2 contrôle la réplication de l’ADN dans les cellules hématopoïétiques, et possiblement durant la leucémogenèse, indépendamment de son rôle transcriptionnel. Ensemble, ces études ont donc permis de révéler de nouvelles fonctions pour LMO2, et pourraient servir de paradigme pour d’autres facteurs de transcription oncogéniques, particulièrement aux autres protéines de la famille LMO, qui sont aussi des oncogènes puissants. / Lymphoid leukemia represents about 30% of childhood cancer cases. It is often caused by chromosomal rearrangements involving genes coding for transcription factors, controlling complex genetic programs. As an example, the oncogenic transcription factor LMO2 (LIM-only 2) is often aberrantly expressed in T cell acute lymphoblastic leukemia (T-ALL). In normal hematopoiesis, LMO2 is essential for the generation of hematopoietic stem cells that give rise to all blood cells. Moreover, some leukemic cells possess properties normally reserved to hematopoietic stem cells. Thus, studying the role of LMO2 in hematopoietic stem cells could be relevant to the contexts of normal hematopoiesis and leukemogenesis.
To reveal new molecular functions for LMO2, I chose to identify its associated proteins. In addition to its known protein partners, I identified many proteins involved in transcription/chromatin remodeling, in agreement with its transcriptional role. In addition, several new potential functions have been revealed, indicating that this scaffold protein could be part of non-transcriptional protein complexes, regulating different cell processes. Oncogenes like LMO2 could be master regulators in normal hematopoietic and leukemic cells.
Particularly, I identified protein-protein interactions between LMO2 and DNA replication proteins. I demonstrated that LMO2 controls S phase progression in hematopoietic cells, independently of its association in transcriptional complexes. LMO2 overexpression in mice induces T-ALL and affects specifically the cell cycle status of thymocyte progenitors, which are targets of transformation by LMO2. Thus, LMO2 promotes DNA replication in hematopoietic cells, and possibly in leukemogenesis. Together, these studies allowed to reveal new functions for LMO2, and could serve as a paradigm for other oncogenic transcription factors, especially for other LMO proteins which are all potent oncogenes.
|
334 |
Characterizing the Roles of PilF and PilQ in Pseudomonas aeruginosa Type IV Pilus BiogenesisKoo, Jason 12 December 2013 (has links)
Type IV pili (T4P) are bacterial biomolecular machines that mediate interactions with the environment. Bacterial pathogens such as Pseudomonas aeruginosa require T4P for virulence. Significant progress has been made in recent years towards our understanding of how the proteins in the T4P system interact and function. While over 50 different proteins are involved in T4P biogenesis, the two outer membrane components, PilF and PilQ, are the focus of the work presented in this thesis.
PilF was found to be required for assembly of PilQ into secretins, the outer membrane channels through which T4P fibers exit the cell. The functions of PilF are consistent with a family of lipoproteins called pilotins, to which the roles of secretin assembly and/or localization are attributed. Structure determination by X-ray crystallography revealed that PilF is composed of six tetratricopeptide (TPR) protein-protein interaction motifs. Functional mapping of PilF indicated that a hydrophobic groove on the first TPR is involved in secretin assembly. Secretin localization correlated directly with that of PilF. The effects of pilF mutations and the structural data led to the hypothesis that PilF and PilQ interact directly. We propose that PilF and PilQ interact at the inner membrane and are co-transported to the outer membrane by the Lol lipoprotein sorting system. PilQ multimerizes into secretins upon outer membrane insertion and aligns with inner membrane T4P proteins to form a complete molecular machine.
PilQ mutagenesis mapping showed that: the N-terminal “system specific” domain is important but not essential for secretin function; the central “multimerization” domain is critical for secretin assembly and function; and the C-terminal tail implicated in secretin-pilotin interactions is dispensable for PilQ function. Purified PilQ enabled copurification of PilF from cell lysates, providing the first evidence for their interaction. These data provide a framework for future exploration of T4P assembly in P. aeruginosa.
|
335 |
Structure determination and thermodynamic stabilization of an engineered protein-protein complexWahlberg, Elisabet January 2006 (has links)
The interaction between two 6 kDa proteins has been investigated. The studied complex of micromolar affinity (Kd) consists of the Z domain derived from staphylococcal protein A and the related protein ZSPA-1, belonging to a group of binding proteins denoted affibody molecules generated via combinatorial engineering of the Z domain. Affibody-target protein complexes are good model systems for structural and thermodynamic studies of protein-protein interactions. With the Z:ZSPA-1 pair as a starting point, we determined the solution structure of the complex and carried out a preliminary characterization of ZSPA-1. We found that the complex contains a rather large (ca. 1600 Å2) interaction interface with tight steric and polar/nonpolar complementarity. The structure of ZSPA-1 in the complex is well-ordered in a conformation that is very similar to that of the Z domain. However, the conformation of the free ZSPA-1 is best characterized by comparisons with protein molten globules. It shows a reduced secondary structure content, aggregation propensity, poor thermal stability, and binds the hydrophobic dye ANS. This molten globule state of ZSPA-1 is the native state in the absence of the Z domain, and the ordered state is only adopted following a stabilization that occurs upon binding. A more extensive characterization of ZSPA-1 suggested that the average topology of the Z domain is retained in the molten globule state but that it is represented by a multitude of conformations. Furthermore, the molten globule state is only marginally stable, and a significant fraction of ZSPA-1 exists in a completely unfolded state at room temperature. A complete thermodynamic characterization of the Z:ZSPA-1 pair suggests that the stabilization of the molten globule state to an ordered three helix structure in the complex is associated with a significant conformational entropy penalty that might influence the binding affinity negatively and result in an intermediate-affinity (µM) binding protein. This can be compared to a dissociation constant of 20-70 nM for the complex Z:Fc of IgG where Z uses the same binding surface as in Z:ZSPA-1. Structure analyses of Z in the free and bound state reveal an induced fit response upon complex formation with ZSPA-1 where a conformational change of several side chains in the binding surface increases the accessible surface area with almost 400 Å2 i.e. almost half of the total interaction surface in the complex. Two cysteine residues were introduced at specific positions in ZSPA-1 for five mutants in order to stabilize the conformation of ZSPA-1 by disulfide bridge formation. The mutants were thermodynamically characterized and the binding affinity of one mutant showed an improvement by more than a factor of ten. The improvement of the introduced cysteine bridge correlates with an increase in binding enthalpy rather than with entropy. Further analysis of the binding entropy suggests that the conformational entropy change in fact is reduced but its favorable contribution is opposed by a less favorable desolvation enthalpy change. These studies illustrate the structural and thermodynamic complexity of protein-protein interactions, but also that this complexity can be dissected and understood. In this study, a comprehensive characterization of the ZSPA-1 affibody has gained insight into the intricate mechanisms involved in complex formation. These theories were supported by the design of a ZSPA-1 mutant with improved binding affinity. / QC 20100924
|
336 |
Molecular principles of protein stability and protein-protein interactionsLendel, Christofer January 2005 (has links)
Proteins with highly specific binding properties constitute the basis for many important applications in biotechnology and medicine. Immunoglobulins have so far been the obvious choice but recent advances in protein engineering have provided several novel constructs that indeed challenge antibodies. One class of such binding proteins is based on the 58 residues three-helix bundle Z domain from staphylococcal protein A (SPA). These so-called affibodies are selected from libraries containing Z domain variants with 13 randomised positions at the immunoglobulin Fc-binding surface. This thesis aims to describe the principles for molecular recognition in two protein-protein complexes involving affibody proteins. The first complex is formed by the ZSPA-1 affibody binding to its own ancestor, the Z domain (Kd ~1 μM). The second complex consists of two affibodies: ZTaq, originally selected to bind Taq DNA polymerase, and anti-ZTaq, an anti-idiotypic binder to ZTaq with a Kd ~0.1 μM. The basis for the study is the determination of the three-dimensional structures using NMR spectroscopy supported by biophysical characterization of the uncomplexed proteins and investigation of binding thermodynamics using isothermal titration calorimetry. The free ZSPA-1 affibody is a molten globule-like protein with reduced stability compared to the original scaffold. However, upon target binding it folds into a well-defined structure with an interface topology resembling that displayed by the immunoglobulin Fc fragment when bound to the Z domain. At the same time, structural rearrangements occur in the Z domain in a similar way as in the Fc-binding process. The complex interface buries 1632 Å2 total surface area and 10 out of 13 varied residues in ZSPA-1 are directly involved in inter-molecular contacts. Further characterization of the molten globule state of ZSPA-1 revealed a native-like overall structure with increased dynamics in the randomised regions (helices 1 and 2). These features were reduced when replacing some of the mutated residues with the corresponding wild-type Z domain residues. The nature of the free ZSPA-1 affects the thermodynamics of the complex formation. The contribution from the unfolding equilibrium of the molten globule was successfully separated from the binding thermodynamics. Further decomposition of the binding entropy suggests that the conformational entropy penalty associated with stabilizing the molten globule state of ZSPA-1 upon binding seriously reduces the binding affinity. The ZTaq:anti-ZTaq complex buries in total 1672 Å2 surface area and all varied positions in anti-ZTaq are directly involved in binding. The main differences between the Z:ZSPA-1 and the ZTaq:anti-ZTaq complexes are the relative subunit orientation and certain specific interactions. However, there are also similarities, such as the hydrophobic interface character and the role of certain key residues, which are also found in the SPA:Fc interaction. Structural rearrangements upon binding are also common features of these complexes. Even though neither ZTaq nor anti-ZTaq shows the molten globule behaviour seen for ZSPA-1, there are indications of dynamic events that might affect the binding affinity. This study provides not only a molecular basis for affibody-target recognition, but also contributions to the understanding of the mechanisms regulating protein stability and protein-protein interactions in general. / QC 20101025
|
337 |
Cílená mutageneze ve studiu lidských cytochromů P450 rodiny 1 a jejich interakčních partnerů / Site-directed mutagenesis of human cytochromes P450 family 1 and their interacting partnersMilichovský, Jan January 2016 (has links)
Cytochromes P450 represent a large group of proteins metabolizing variety of substrates. Many of them are responsible for metabolism of xenobiotics including drugs and chemical carcinogens. Heme-protein cytochrome b5 is a single-electron donor cooperating with a NADPH:cytochrome P450 reductase and NADH:cytochrome b5 reductase 3 enzyme. Cytochrome b5 can affect the xenobiotic metabolism via modulation of the cytochromes P450 activity. One of the goals of the Ph.D. thesis was to utilize site directed mutagenesis of cytochromes P450 family 1 to elucidate the mechanism of their nitroreductase activity. Another aim was to study the interaction between cytochrome b5 and cytochromes P450 of the 1A subfamily using site directed mutagenesis on presumed protein-protein contact interface. Another goal was to utilize the combination of theoretical and experimental approaches to explain variance in the reduction state of several human cytochromes P450 heterologously expressed in intact bacterial cells. The results found in the thesis show that nitroreductase activity of CYP1A1, CYP1A2 and CYP1B1 is mediated by the presence of a particular hydroxyl group in their active centre. Single mutation introducing a hydroxyl group to the specific part of CYP1B1 active site to the active site turned on its artificial...
|
338 |
Mapeamento global de interações proteicas nas vias de sinalização mediadas por c-di-GMP de Pseudomonas aeruginosa / Construction of a global map of protein-protein interactions in c-di-GMP signalling pathways of Pseudomonas aeruginosaAndrea Rodrigues Cardoso 16 March 2016 (has links)
A persistência bacteriana correlacionada à formação de biofilmes bacterianos é, há algum tempo, fonte de grande preocupação médica em virtude de sua ampla associação com a dificuldade de tratamento de infecções crônicas. Por outro lado, as perspectivas de utilização de biofilmes bacterianos em novas aplicações biotecnológicas e até mesmo para fins terapêuticos são promissoras. Há, portanto, grande interesse em compreender os mecanismos que levam as células bacterianas a deixar o estado planctônico, de vida livre, e associarem-se nesses conglomerados celulares altamente complexos. Ao longo das últimas décadas, o segundo mensageiro c-di-GMP – em conjunto com as moléculas que catalisam sua síntese (diguanilato ciclases) e sua degradação (fosfodiesterases) e seus receptores – estabeleceu-se como um elemento central de regulação de uma série de respostas celulares que determinam a formação ou a dispersão de biofilmes. Curiosamente, as proteínas que participam do metabolismo deste segundo mensageiro estão, frequentemente, codificadas múltiplas vezes em um mesmo genoma bacteriano. Em vista dessa observação, estudos mais recentes apontam que, para reger paralelamente uma variedade tão ampla de fenótipos, este sistema opera em modo de alta especificidade de sinalização e que, portanto, o sinal metabolizado por determinados conjuntos de diguanilato ciclases e fosfodiesterases tem alvos celulares específicos. Evidências robustas, porém isoladas até o momento, apontaram que um dos meios pelo qual ocorre a segregação entre sinal produzido e alvo específico é a interação direta entre as proteínas componentes das vias de sinalização. Mais, demonstrou-se que, em algumas vias, a transmissão de sinal ocorre exclusivamente via interação proteica, dispensando a intermediação do sinalizador em si. Para avaliar a validade e relevância global deste mecanismo, propôs-se, neste estudo, a investigação da rede total de interações entre as proteínas tipicamente associadas às vias de sinalização por c-di-GMP em Pseudomonas aeruginosa, utilizando ensaios de duplo-hibrido bacteriano. Para tanto, foram construídas duas bibliotecas de DNA direcionadas e foram feitos testes de interação de forma estratégica para possibilitar o esgotamento e averiguação de todas as possíveis interações entre as proteínas alvo identificadas. O resultado obtido, um mapa inicial, porém abrangente, da rede de interações proteicas em P. aeruginosa, indica uma grande probabilidade de que os mecanismos previamente descritos sejam realmente recorrentes e relevantes para o intermédio da sinalização nesse organismo. Algumas das interações mais robustas encontradas são bastante interessantes e serão, em estudos futuros, mais extensivamente estudadas. / Persister bacteria are correlated to biofilm formation and have been a source of great medical concern due to its close association with the impairment of traditional treatment in combating chronic infections. On the other hand, using bacterial biofilms to create original biotechnological applications or even as a means of therapeutic treatment in medical settings constitutes a promising prospect. There is, therefore, a great interest in understanding the mechanisms that allow bacteria to leave the free-living planktonic lifestyle and associate in these highly complex cellular aggregates. Over the last decades, the second messenger c-di-GMP – and also the molecules involved in its synthesis (diguanylate ciclases) and degradation (phosphodiesterases) along with its receptors – has been established as a key element implicated in regulation of a series of cellular responses that determine biofilm formation or dispersion. Curiously, the proteins that play a part in the metabolism of this second messenger are frequently coded multiple times in single bacterial genomes. Taking this into account, recent studies indicate that, in order to control such a wide range of phenotypes, this system operates via high specificity of signaling – which means that the signal metabolized by a certain set of diguanylate ciclases and phosphodiesterases has specific cellular targets. Robust but yet isolated evidence indicate that a means by which a signal is segregated with its correlated phenotypic response is through direct protein-protein interaction involving the components of these signaling pathways. Even more, there has been strikingly evidence that, in some of these pathways, signal transduction occurs exclusively through protein-protein interaction, entirely dismissing any mediation by the signal molecule. In order to validate and evaluate the global relevance of this type of mechanism, this study proposed the investigation of the entire network of interactions between proteins typically associated with c-di-GMP signaling pathways of Pseudomonas aeruginosa by employing bacterial two-hybrid system assays. To make that possible, two DNA libraries were constructed and interaction essays were performed in a strategic way so that all possibilities of interaction between target proteins were explored. The results obtained from these experiments allowed the construction of a broad map of interactions that, although still primitive, indicates that, chances are, the mechanisms previously described are both recurrent and relevant to signaling regulation in this organism. Some of the interaction partners found are particularly interesting and will be further investigated in future studies.
|
339 |
Investigação de parceiros moleculares de Cdc42 em linhagens de células humanas submetidas a estresse genotóxico / Investigation of Cdc42 molecular partners in human cell lines subjected to genotoxic stressRenan Crocci de Souza 06 May 2016 (has links)
A proteína Cdc42 (Cell Division Cycle 42) é um membro da família das Rho GTPases, sinalizadores intracelulares conhecidos pelo seu papel na regulação do citoesqueleto. Essa proteína e capaz de ciclar entre um estado ativo (ligado à GTP) e um estado inativo (ligado à GDP) e essa ativação é modulada por diversas proteínas, conhecidas como GEFs (guanine nucleotide-exchange factors), GAPs (GTPase-activating proteins) e GDIs (guanine nucleotide-dissociation inhibitors). Trabalhos recentes têm demonstrado um papel de Cdc42 na apoptose e na senescência, respostas relacionadas e comumente desencadeadas por estresse genotóxico. Neste contexto este trabalho procurou identificar interações de Cdc42 com outras proteínas, que podem ou não estar envolvidas nos mecanismos de resposta ao dano do DNA. Para isso foram utilizadas as linhagens celulares HeLa e MRC-5 submetidas a tratamento com radiação ultravioleta tipo C, a fim de provocar danos no DNA. Foram realizados dois diferentes tratamentos em cada uma das linhagens com diferentes tempos de incubação pós radiação UV, visando a busca de proteínas envolvidas em uma resposta rápida ou tardia ao dano causado. Os lisados celulares desses tratamentos foram submetidos ao pull-down com proteínas recombinantes GST, GST-Cdc42WT (Selvagem) e GST-Cdc42V12 (Mutação constitutivamente ativa). As proteínas purificadas foram digeridas e submetidas à análise por espectrometria de massa e os dados obtidos foram utilizados para a construção de redes de interação proteica. Dentre as proteínas identificadas as que despertaram maior atenção foram: Proibitina-2 (PHB2) encontrada nas amostras incubadas por 48 horas pós irradiação e Cullina-4A (CUL4A) e P53, encontradas em amostra incubada por 5 minutos pós radiação. Essas proteínas possuem papéis em apoptose e reparo de DNA e foram observadas em posições muito próximas de Cdc42 nas redes de interação, fazendo delas interessantes alvos para futuras validações de interação proteica por análises experimentais distintas / The Cdc42 protein (Cell Division Cycle 42) is a member of the Rho family of GTPases, intracellular signalling molecules well known for their role in the cytoskeleton regulation. This protein cycles between an active state (GTP-bound) and an inactive state (GDP-bound) and this regulation is modulated by proteins known as GEFs, GAPs and GDIs. Recent studies demonstrated roles for Cdc42 in apoptosis and senescence, cellular responses commonly triggered by genotoxic stress. This work sought to identify Cdc42 interactions with other proteins that possibly involved in response to DNA damage mechanisms. To reach this aims we used HeLa and MRC-5 cell lines submitted to treatments with ultraviolet C radiation to induce DNA damage. Two experimental conditions were used in each cell line with different times and doses post UV irradiation in order to search for proteins involved in either rapid or delayed response to the installed DNA damage. Cell lysates obtained from these treatments were subjected to pull-down experiments using recombinant proteins GST, GST-Cdc42-WT (Wild type) and GST-Cdc42-V12 (constitutively active mutant). Purified proteins were digested by trypsin, analyzed by mass spectrometry and th obtained data were used for the construction of protein-protein interaction (PPI) networks. Among the identified proteins those that seem more relevant to the aims of this project were: Prohibitin-2 (PHB2), found in samples incubated 48 hours post irradiation; Cullin-4A (CUL4A) and P53, found in samples incubated 5 minutes after radiation. These proteins have roles in apoptosis and DNA repair and were observed in close proximity to Cdc42 in PPI networks, making them interesting targets for future validation by different experimental approaches
|
340 |
Analise das proteinas Ki-1/57 e PRMT1 : identificação, mapeamento e caracterização funcional da interação com outras proteinas / Analysis of the proteins Ki-1/57 and PRMT1: identification, mapping and characterization of the interaction with other proteinsPassos, Dario Oliveira dos 31 August 2006 (has links)
Orientador: Jorg Kobarg / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-07T08:03:42Z (GMT). No. of bitstreams: 1
Passos_DarioOliveirados_D.pdf: 4831709 bytes, checksum: 0aa3e031d4e82dc447636416b68401e8 (MD5)
Previous issue date: 2006 / Resumo: A proteína Ki-1/57 que é encontrada tanto no núcleo quanto no citoplasma está associada com atividade de proteína quinase serina/treonina e é fosforilada nestes resíduos após ativação celular. Neste trabalho verificamos que Ki-1/57 interage com a proteína Chromatin-Helicase-DNA-binding domain 3 (CHD3) e com a proteína adaptadora/sinalizadora RACK1 no núcleo. Pelo sistema do duplo híbrido de levedura
(SDHL) a proteína arginina metiltransferase 1 (PRMT1) foi selecionada como outra
proteína de interação. A PRMT1 integra uma família representada por nove enzimas
humanas que catalisam reações de metilação em resíduos de arginina. Em seguida, usando agora a PRMT1 como isca - no SDHL - identificamos as proteínas Ki-1/57 e hnRNPQ, juntamente com outras 13. A maioria delas contêm motivos ¿RGG-box¿ em suas
seqüências de aminoácidos, que são conhecidos alvos para metilação. Posteriormente
verificamos que Ki-1/57 e seu provável parálogo CGI-55 conservam dois motivos
¿RGG/RXR-box¿ e que são substratos in vitro para a metilação de argininas pela PRMT1.
Estudos de mapeamento mostraram que todos os fragmentos contendo o motivo
¿RGG/RXR-box¿ interagem com a PRMT1 e são alvos à metilação in vitro. Ki-1/57
endógena, imunoprecipitada de células L540, mostrou ser metilada in vivo, além de ser um alvo a metilação pela PRMT1 in vitro, somente quando as células são previamente tratadas com o inibidor da metilação Adox. Tratamento das células Hela com o inibidor da
metilação (Adox) causa desaparecimento da imuno-marcação citoplasmática de Ki-1/57 e
relativa redistribuição do parálogo CGI-55 para o citosol. Assim, pode ser especulado que a metilação destas proteínas deve ser um evento importante para suas localizações subcelulares e conseqüentemente para suas funções. Em resumo, nossos dados sugerem que o SDHL é um método efetivo na identificação de novos substratos celulares para a PRMT1 e poderia ser estendido para a identificação e caracterização de novos substratos para os outros integrantes da família das PRMTs humanas / Abstract: The protein Ki-1/57 that is found both in the cytoplasm and nucleus is associated with serine/threonine protein kinase activity and gets phosphorylated on serine and threonine residues upon cellular activation. We demonstrated that Ki-1/57 interacts with the Chromatin-Helicase-DNA-binding domain protein 3 (CHD3) and with the adaptor/signaling protein RACK1 in the nucleus. By utilizing the yeast two-hybrid system
(YTHS), we were further able to find the protein arginine-methylatranseferase-1 (PRMT1) as another interacting protein. PRMT1 is a member of the family constituted by 9 human enzymes that catalyze methylation reactions on arginine residues. Afterwards, by using PRMT1 as bait in the YTHS we identified both Ki-1/57 and NSAP1 as interacting proteins, along with 13 other proteins. The majority of them present RGG-box clusters in their amino acid sequences, which are known to be targets for arginine methylation. We further found that Ki-1/57 and its putative paralogue CGI-55 have two RGG/RXR-box clusters conserved between them and that they are substrates for arginine-methylation by PRMT1 in vitro. In mapping studies, we observed that all Ki-1/57 protein fragments containing the RGG/RXRbox clusters interact with PRMT1 and are targets for methylation in vitro. Endogenous cellular Ki-1/57 seems to be methylated in vivo and is a target for methylation by PRMT1 in vitro, only when cells have been previously treated with the methylation inhibitor Adox. Treatment of Hela cells with the inhibitor of methylation (Adox) causes the disappearance of the immuno-staining of Ki-1/57 in the cytoplasm and a relative redistribution of the paralogue CGI-55 to the cytosol. It can therefore be speculated that the methylation of these proteins is important for their sub-cellular localization and in consequence for their function. In summary our data suggest that the YTHS is an effective method for the identification of novel cellular PRMT substrates and could be extended for the identification and characterization of novel substrates to the other components of the human PRMT1 family / Doutorado / Bioquimica / Doutor em Biologia Funcional e Molecular
|
Page generated in 0.1242 seconds