• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 33
  • 22
  • 9
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Neurophysiologische Substrate von Störungen des Belohnungssystems und kognitiver Funktionen bei unmedizierten Schizophreniepatienten untersucht mittels funktioneller Magnetresonanztomographie und 1 H-Magnetresonanzspektroskopie

Gudlowski, Yehonala 09 February 2010 (has links)
Bildgebende Studien haben gezeigt, dass bei schizophrenen Patienten Positivsymptome mit Veränderungen mesolimbischer Aktivierungsmuster unter Einbeziehung des Nucleus accumbens in Zusammenhang stehen. Hierbei ist von besonderem Interesse, dass der Nucleus accumbens Teil des Belohnungssystems ist, wobei die integrale „Bewertung“ belohnungsanzeigender Reize präfrontalen kortikalen Strukturen, insbesondere dem anterioren Zingulum, zuzurechnen ist. Bereits in der Antizipationsphase potentiell belohnender Reize, werden vermutlich zur Berechnung von Prädiktionsabweichungen dopaminerge Signale in der VTA generiert und modulieren den Nucleus accumbens. Es gibt zahlreiche Hinweise, dass glutamaterge Neurone des anterioren Zingulums die Dopaminausschüttung im Nucleus accumbens beeinflussen, und dass diese Modulation bei Erkrankungen wie der Schizophrenie beeinträchtigt ist. Ziel der vorliegenden Arbeit war es, mittels funktioneller Magnetresonanztomographie und Protonen Magnetresonanzspektroskopie, Hinweise über den Zusammenhang zwischen der glutamatergen Neurotransmission des ACC und belohnungsassoziierter Dopaminausschüttung im Nucleus accumbens bei 23 gesunden Probanden und bei 23 unmedizierten schizophrenen Patienten zu erlangen. Die Ergebnisse weisen darauf hin, dass die gegenseitige Modulation von anteriorem Zingulum und Nucleus accumbens bei schizophrenen Patienten gestört ist. Dieses und weitere Ergebnisse wurden im theoretischen Rahmen der NMDA-Rezeptor-Hypoaktivität und einer gestörten Balance zwischen Dopamin-D1- und Dopamin-D2-Rezeptor-Aktivität als pathophysiologische Korrelate schizophrener Erkrankungen diskutiert. / Imaging studies have demonstrated that for schizophrenic patients a correlation exists between positive symptoms and changes in the patterns of mesolimbic activity. Especially the changes in the ncl. accumbens (Nac) were interpreted in connection with the reward system. The signals indicating reward are thought to be processed by the anterior cingulum (ACC). These structures attribute meaning to the reward signals. In the anticipation phase of a potentially rewarding stimulus, dopaminergic signals from the VTA are generated in prediction of expected or aberrant outcome, thus modulating the Nac. Data indicate a direct modulation of the Nac. by glutamatergic neurons of the anterior cingulum. A major aim of this thesis is to establish a connection between the reward associated dopaminergic signals of the ncl. accumbens and the glutamatergic projections of the acc in unmedicated schizophrenic patients and healthy controls. The methods included measurements of proton magnetic resonance spectroscopy (1H-MRS) and functional MRI-scans done at a 3-Tesla tomograph. The paradigm applied was a modified version of the monetary incentive delay paradigm (Knutson et al. 2000). In healthy volunteers we found a significant negative correlation between the glutamate concentration in the ACC and the BOLD-contrast in the Nac (reward versus neutral), in contrast to the findings in schizophrenic patients. A significant higher BOLD-contrast was seen in the anticipation phase in healthy controls. The results were incorporated in a model of NMDA-R-Hypoaktivity. In addition to discussing the functional aspects for the structures involved the model was further expanded to include the hypothesis of a disturbed balance between dopamine-D1- and -D2-receptor activity and a dysfunctional hippocampal gating-process. The so constructed model suggests a profound striato-thalamo-cortical filter disturbance as the basis of the observed aberrations in the reward processing in schizophrenic disorders.
32

Protonen-Magnet-Resonanz-Spektroskopie (1 H-MRS) mit 3,0 Tesla zur Erfassung cerebraler Metabolite im Frontalhirn depressiver Patienten unter Plazebo-kontrollierter Inositolgabe im Vergleich zu gesunden Probanden

Reinfried, Lutz 18 May 2006 (has links)
Ziele: Mittels absolutquantifizierender Protonen-Magnet-Resonanz-Spektroskopie (1H-MRS) wollten wir das Ergebnis einer Vorstudie bestätigen, die im Frontallappen einen reduzierten Quotienten von myo-Inositol/Gesamtcreatin (mI/tCr) bei Depressiven fand. Darüber hinaus testeten wir den antidepressiven Effekt von Inositol als Add-on-Therapie. Methodik: Wir untersuchten Einzelvoxel (2 x 2 x 2 cm3) in der weißen Substanz der rechten und linken Präfrontalregion mit Hilfe eines 3-Tesla Bruker Medspec Systems (STEAM Sequenz, TR/TE/TM = 6000/20/30 ms). Die einzelnen Metabolite wurden anhand des cerebralen Wassers als internem Standard quantifiziert (nach dem LCModell). Es wurden 24 unmedizierte Patienten mit unipolaren depressiven Episoden mit 24 alters- und geschlechtsgematchten gesunden Kontrollen verglichen. In doppelblindem, Plazebo-kontrollierten Parallelgruppen-Design erhielten die Patienten täglich 18 Gramm Inositol oder Plazebo zusätzlich zu Citalopram über vier Wochen. Ergebnisse: An der Baseline unterschieden sich die mI-, Cholin- und N-Acetyl-Aspartat-Konzentrationen der Patienten nicht von jenen der Kontrollen. Es fanden sich keine sich keine signifikanten Unterschiede zwischen Inositol- und Plazebo-Gruppe. Überraschenderweise zeigten die depressiven Patienten an der Baseline gegenüber den Kontrollen signifikant höhere tCr-Konzentrationen (mmol/kg) links (5,57 ± 0,96 vs. 4,87 ± 0,63; + 15 %, p < 0,01) und rechts präfrontal (5,29 ± 0,92 vs. 4,46 ± 0,41; + 17 %, p < 0,01). Nach der Behandlung ergab sich eine Reduktion der tCr-Konzentration links- (Tag 28: 5,05 ± 1,16; – 12 %, p = 0,08) und rechtsfrontal (Tag 28: 4,61 ± 1,07; – 9 %, p = 0,09). Die tCr-Konzentrationen der Patienten am Tag 28 unterschieden sich nicht mehr von jenen der Kontrollen. Zusammenfassung: Wir zeigten eine reversible Steigerung der tCr-Konzentration der Patienten im Vergleich zu Kontrollen, die auf Veränderungen des Creatin-Transports oder der ATP-Synthese bei unmedizierter unipolarer Depression hinweisen könnte. / Objectives: By means of proton magnetic resonance spectroscopy (1H-MRS) with absolute quantification we wanted to confirm our previous finding of decreased ratios of the metabolites myo-Inositol/total creatine (mI/tCr) in the right frontal brain of depressives. Moreover, we tested the antidepressive effect of oral Inositol ingestion as add-on-therapy. We measured concentrations (mmol/kg ww) of mI, tCr (= Creatine + Phosphocreatine), Choline (Cho) and N-Acetyl-Aspartate (NAA) in the frontal brain. Methods: Single voxels (2x2x2 cm3) in the white matter of the left and right prefrontal region were examined in a three Tesla Bruker Medspec System (STEAM sequence, TR/TE/TM = 6000/20/30 ms). Metabolites were quantified using the LCModel. At baseline, 24 drug-free patients with unipolar depressive episodes were compared to 24 age and sex matched healthy controls. In a double blind, placebo controlled parallel-group design patients received daily 18 grams Inositol or placebo as an add on therapy to Citalopram over four weeks. Results: At baseline, mI, Cho and NAA concentrations showed no significant differences between patients and controls. The treatment with Inositol did not result in any significant differences to the treatment with placebo. Surprisingly the patients showed significant higher tCr concentrations in the left (5.57 ± 0.96 vs. 4.87 ± 0.63; + 15 %, p < 0.01) as well as in the right prefrontal region (5.29 ± 0.92 vs. 4.46 ± 0.41; + 17 %, p < 0.01) compared to controls. The treatment caused a trend towards a decrease of tCr in the left (day 28: 5.05 ± 1.16; – 12 %, p = 0.08) and in the right frontal hemisphere (day 28: 4.61 ± 1.07; – 9 %, p = 0.09) compared to baseline. The differences between the patients’ tCr at day 28 and the tCr of controls were no more significant. Conclusion: We have found a state dependent increase of tCr concentration indicating bifrontal deviations in Creatine transport or ATP synthesis in drug free unipolar depressives.
33

Inhibiting Axon Degeneration in a Mouse Model of Acute Brain Injury Through Deletion of Sarm1

Henninger, Nils 24 May 2017 (has links)
Traumatic brain injury (TBI) is a leading cause of disability worldwide. Annually, 150 to 200/1,000,000 people become disabled as a result of brain trauma. Axonal degeneration is a critical, early event following TBI of all severities but whether axon degeneration is a driver of TBI remains unclear. Molecular pathways underlying the pathology of TBI have not been defined and there is no efficacious treatment for TBI. Despite this significant societal impact, surprisingly little is known about the molecular mechanisms that actively drive axon degeneration in any context and particularly following TBI. Although severe brain injury may cause immediate disruption of axons (primary axotomy), it is now recognized that the most frequent form of traumatic axonal injury (TAI) is mediated by a cascade of events that ultimately result in secondary axonal disconnection (secondary axotomy) within hours to days. Proposed mechanisms include immediate post-traumatic cytoskeletal destabilization as a direct result of mechanical breakage of microtubules, as well as catastrophic local calcium dysregulation resulting in microtubule depolymerization, impaired axonal transport, unmitigated accumulation of cargoes, local axonal swelling, and finally disconnection. The portion of the axon that is distal to the axotomy site remains initially morphologically intact. However, it undergoes sudden rapid fragmentation along its full distal length ~72 h after the original axotomy, a process termed Wallerian degeneration. Remarkably, mice mutant for the Wallerian degeneration slow (Wlds) protein exhibit ~tenfold (for 2–3 weeks) suppressed Wallerian degeneration. Yet, pharmacological replication of the Wlds mechanism has proven difficult. Further, no one has studied whether Wlds protects from TAI. Lastly, owing to Wlds presumed gain-of-function and its absence in wild-type animals, direct evidence in support of a putative endogenous axon death signaling pathway is lacking, which is critical to identify original treatment targets and the development of viable therapeutic approaches. Novel insight into the pathophysiology of Wallerian degeneration was gained by the discovery that mutant Drosophila flies lacking dSarm (sterile a/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously recapitulated the Wlds phenotype. The pro-degenerative function of the dSarm gene (and its mouse homolog Sarm1) is widespread in mammals as shown by in vitro protection of superior cervical ganglion, dorsal root ganglion, and cortical neuron axons, as well as remarkable in-vivo long-term survival (>2 weeks) of transected sciatic mouse Sarm1 null axons. Although the molecular mechanism of function remains to be clarified, its discovery provides direct evidence that Sarm1 is the first endogenous gene required for Wallerian degeneration, driving a highly conserved genetic axon death program. The central goals of this thesis were to determine (1) whether post-traumatic axonal integrity is preserved in mice lacking Sarm1, and (2) whether loss of Sarm1 is associated with improved functional outcome after TBI. I show that mice lacking the mouse Toll receptor adaptor Sarm1 gene demonstrate multiple improved TBI-associated phenotypes after injury in a closed-head mild TBI model. Sarm1-/- mice developed fewer beta amyloid precursor protein (βAPP) aggregates in axons of the corpus callosum after TBI as compared to Sarm1+/+ mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phosphorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after TBI. Strikingly, whereas wild type mice exhibited a number of behavioral deficits after TBI, I observed a strong, early preservation of neurological function in Sarm1-/- animals. Finally, using in vivo proton magnetic resonance spectroscopy, I found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1-/- mice compared to controls immediately following TBI. My results indicate that the Sarm1-mediated prodegenerative pathway promotes pathogenesis in TBI and suggest that anti-Sarm1 therapeutics are a viable approach for preserving neurological function after TBI.

Page generated in 0.0815 seconds