Spelling suggestions: "subject:"quasicrystals"" "subject:"quasicrystalis""
31 |
Computer Simulations of Simple Liquids with Tetrahedral Local Order : the Supercooled Liquid, Solids and Phase TransitionsElenius, Måns January 2009 (has links)
The understanding of complex condensed matter systems is an area of intense study. In this thesis, some properties of simple liquids with strong preference for tetrahedral local ordering are explored. These liquids are amenable to supercooling, and give complex crystalline structures on eventual crystallisation. All liquids studied are simple, monatomic and are similar to real metallic liquids. The vibrational density of states of a glass created in simulation is calculated. We show a correspondence between the vibrational properties of the crystal and the glass, indicating that the vibrational spectra of crystals can be used to understand the more complex vibrational spectra of the glass of the same substance. The dynamics of supercooled liquids is investigated using a previously not implemented comprehensive measure of structural relaxation. This new measure decays more slowly in the deeply supercooled domain than the commonly used measure. A new atomic model for octagonal quasicrystals is presented. The model is based on findings from a molecular dynamics simulation that resulted in 45˚ twinned β-Mn. A decoration is derived from the β-Mn unit cell and the unit cell of the intermediate structure found at the twinning interface. Extensive simulations are used to explore the phase diagram of a liquid at low densities. The resulting phase diagram shows a spinodal line and a phase coexistence region between a liquid and a crystalline phase ending in a critical point. This contradicts the old conclusion of the Landau theory -- that continuous transitions between liquids and crystals cannot exist The same liquid is explored at higher densities. Upon cooling the liquid performs a first order liquid-liquid phase transition. The low temperature liquid is shown to be strong and to have very good glass forming abilities. This result offers new insights into fragile to strong transitions and suggests the possibility of a good metallic glass former. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 3: In progress.
|
32 |
Metastable Phases In Mg-Based AlloysSubramaniam, Anandh 07 1900 (has links)
Mg-based alloys form a variety of interesting structures including stable and metastable crystalline, stable and metastable quasicrystalline, nanocrystalline and amorphous phases. Many of these phases can be made to coexist by suitable processing leading to an interesting combination of properties. Non-equilibrium processing in combination with suitable heat treatments can be used to control the scale and dispersion of these phases. Further thrust to Mg-based alloys is expected through the development of Mg-based bulk metallic glasses. Magnesium matrix composites are also gaining in prominence.
The thesis has been divided into theoretical and experimental parts. The theoretical part focuses on understanding the structure of quasicrystals, rational approximants and related structures. The experimental work involves synthesis, non-equilibrium processing and characterization of specific Mg-based alloys.
The structure of quasicrystals and related structures can be understood by working in three dimensions or by projection from higher dimensions. The projection formalism is used to generate quasicrystals and rational approximants in 2D and 3D. Approximants to the Penrose lattice are generated with directions of approximation oriented 90° and 72° apart. Rational approximants to the icosahedral quasilattice are generated and the systematics of lattice-centring in these approximants analysed. Two-dimensional quasiperiodic lattice with 5-fold symmetry, which is periodic along the third dimension, is generated as an approximant to the icosahedral lattice. Approximants are also considered wherein quasiperiodicity is retained along one or two directions.
The concept of average lattices can be used to understand diverse structures including vacancy ordered phases (VOP) and orthorhombic approximants to the decagonal phase. VOP which lack incommensurate length scales should be considered as quasiperiodic superlattice (QPSL) approximants rather than as conventional rational approximants and hence have the average lattice scheme built into them. The average lattice approach is further used to unify Kuo’s and Anantharaman's models for orthorhombic approximants to the decagonal quasicrystal. A modified version of Anantharaman's model is also presented. Using the twinned icosahedron model, Robinson and Taylor approximants to the decagonal quasicrystal are generated by the twinning of Mackay and Little approximants to the icosahedral quasicrystal. An indexing scheme based on this model is developed which inherits the merits of the twinned icosahedron model. Further, using cluster of four icosahedra, in a distorted tetrahedral configuration, symmetries of the hexagonal phases, which are related to quasicrystals, are generated. Frank's ratio is brought out as a unifying thread connecting diverse kinds of structures including VOP and hexagonal phases related to quasicrystals, which have pseudocubic symmetry.
Experimental work involves the synthesis and characterization of alloys in four systems: a) Mg-Zn-Y, b) Mg-Zn-La, c) Al-Mg-Cu and d) Mg-Cu-Y. Induction melting is used to prepare the alloys and melt-spinning is used as the primary non-equilibrium processing route. The focus in the Mg-Zn-RE systems is in the as cast condition while in the Al-Mg-Cu system it is in the melt-spun condition. Characterization techniques used are XRD, SEM and TEM.
In the Mg-Zn-Y system face-centred icosahedral (FC1) phase with quasilattice parameter of 5.21 A is found to coexist with related crystalline phases in the Mg4Zn94Y2 and Mg23Zn5gY9 alloys. A series of crystalline phases with superlattice ordering are seen in the Mg-Zn-Y and Mg-Zn-La systems. These phases with a variety of ordering, many of which display interesting patterns of streaking in the SAD pattern, are related to one-another and to the FCI QC found in the Mg-Zn-Y system. No quasicrystal could be observed in the two alloys investigated in the Mg-Zn-La system with La = 5 and 8 %. Conventional rational approximants were conspicuous by there absence in both the rare-earth containing systems. This is understood in terms of the absence of large clusters in these systems. High Y alloys display a tendency to form nanocrystals in the as-cast condition and amorphous regions are observed in the as-cast alloys with Y > 20 %. Hence, high Y alloys are anticipated to be bulk glass formers. Melt-spinning of the alloys in both the RE containing systems lead to the formation of nanocrystalline regions.
The e/a ratio plays an important role in the formation of phases in the Mg-Zn-Y system. An e/a ratio near 2.08 has a stabilising effect on a variety of phases including the FCI quasicrystal, ternary phases related to the quasicrystal and binary phases like YZn12 and Y2Zn17.
Formation of quasicrystals in the Al-Mg binary and Mg-Al-Cu ternary seem to be very sensitive to processing conditions and were not observed in the present investigation in the melt-spun alloys. However, β-Al3Mg2 and Mg32(Al,Cu)49 phases with large lattice parameters, which are related to quasicrystals, are observed in as-cast and melt-spun conditions. The Mg32(Al,Cu)49 phase brings out the similarity between this system and the Mg-Al-Zn system.
The glass formability of the alloys in the Al-Mg binary and in the Mg-Al-Cu ternary is limited. Except for the formation of amorphous phase in some regions, the alloys were crystalline even when melt-spun at 2800 rpm. The ability to form nanocrystals is also limited in this system as compared to the Mg-Zn-RE systems. Often melt-spun alloys showed a wide range of grain sizes coexisting together.
|
33 |
Spectra and Dynamics of Excitattions in Long-Range Correlated StrucuturesKroon, Lars January 2007 (has links)
Vad karaktäriserar en kristall? Svaret på denna till synes enkla fråga blir kanske att det är en anordning av atomer uppradade i periodiska mönster. Så ordnade strukturer kan studeras genom att det uppträder så kallade Braggtoppar i röntgendiffraktionsmönstret. Om frågan gäller elektrontäthetsfördelningen, kanske svaret blir att denna är periodisk och grundar sig på elektronvågor som genomtränger hela kristallen. I och med att nya typer av ordnade system, så kallade kvasikristaller, upptäcks och framställs på artificiell väg blir svaren på dessa frågor mer intrikata. En kristall behöver inte bestå av enheter upprepade periodiskt i rummet, och den klassiska metoden att karaktärisera strukturer via röntgendiffraktionsmönstret kanske inte alls är den allena saliggörande. I denna avhandling visas att ett ordnat gitter vars röntgendiffraktionsmönster saknar inre struktur, dvs är av samma diffusa typ som vad ett oordnat material uppvisar, fortfarande kan ha elektronerna utsträckta över hela strukturen. Detta implicerar att det inte finns något enkelt samband mellan diffraktionsmönstret från gittret och dess fysikaliska egenskaper såsom t ex lokalisering av vågfunktionerna. Man talar om lokalisering när en vågfunktion är begränsad inom en del av materialet och inte utsträckt över hela dess längd, vilket är av betydelse när man vill avgöra huruvida ett material är en isolator, halvledare eller ledare. Det vittnar samtidigt om behovet av att söka efter andra karakteristika när man försöker beskriva skillnaden mellan ett ordnat och ett oordnat material, där den senare kategorin kan uppvisa lokalisering. Resultaten utgör en klassificering av det svåröverskådliga området aperiodiska gitter i en dimension. Det leder till hypotesen att ideala kvasikristaller, genererade med bestämda regler, har kontinuerligt energispektrum av fraktal natur. I reella material spelar korrelation en viktig roll. Vid icke-linjär återkoppling till gittret kan man erhålla intrinsiskt lokaliserade vågor, som i många avseenden beter sig som partiklar, solitoner, vilka har visat sig ha viktiga tillämpningar inom bl a optisk telekommunikation. Sådana vågors roll for lagring och transport av energi har undersökts i teoretiska modeller for optiska vågledare och kristaller där ljuset har en förmåga att manipulera sig självt. / Spectral and dynamical properties of electrons, phonons, electromagnetic waves, and nonlinear coherent excitations in one-dimensional modulated structures with long-range correlations are investigated from a theoretical point of view. First a proof of singular continuous electron spectrum for the tight-binding Schrödinger equation with an on-site potential, which, in analogy with a random potential, has an absolutely continuous correlation measure, is given. The critical behavior of such a localization phenomenon manifests in anomalous diffusion for the time-evolution of electronic wave packets. Spectral characterization of elastic vibrations in aperiodically ordered diatomic chains in the harmonic approximation is achieved through a dynamical system induced by the trace maps of renormalized transfer matrices. These results suggest that the zero Lebesgue measure Cantor-set spectrum (without eigenvalues) of the Fibonacci model for a quasicrystal is generic for deterministic aperiodic superlattices, for which the modulations take values via substitution rules on finite sets, independent of the correlation measure. Secondly, a method to synthesize and analyze discrete systems with prescribed long-range correlated disorder based on the conditional probability function of an additive Markov chain is effectively implemented. Complex gratings (artificial solids) that simultaneously display given characteristics of quasiperiodic crystals and amorphous solids on the Fraunhofer diffraction are designated. A mobility edge within second order perturbation theory of the tight-binding Schrödinger equation with a correlated disorder in the dichotomic potential realizes the success of the method in designing window filters with specific spectral components. The phenomenon of self-localization in lattice dynamical systems is a subject of interest in various physical disciplines. Lattice solitons are studied using the discrete nonlinear Schrödinger equation with on-site potential, modeling coherent structures in, for example, photonic crystals. The instability-induced dynamics of the localized gap soliton is found to thermalize according to the Gibbsian equilibrium distribution, while the spontaneous formation of persisting intrinsic localized modes from the extended out-gap soliton reveals a phase transition of the solution.
|
34 |
Mechanical milling of Al-Cu-Fe quasicrystals and their Reinforcement in Aluminum matrix compositesAli, Fahad 11 April 2012 (has links) (PDF)
In this thesis, the effect of mechanical deformation on structure, thermal stability and hardness of a single-phase spray-deposited quasicrystalline alloy with composition Al62.5Cu25Fe12.5 has been investigated in detail. The purpose of the investigation was to study the effect of mechanical milling at different milling speeds (which approximately scale with the milling intensity) on mechanically-induced phase transformations during milling and on the phase evolution during subsequent heating.
The results of the milling experiments indicate that, irrespective of the milling speeds used, mechanical milling of Al62.5Cu25Fe12.5 quasicrystals leads to the formation of a disordered CsCl-type ß phase with grain size of about 10 – 20 nm. The analysis of the kinetics of the QC–to–ß phase transformation reveals that the milling intensity has a considerable effect on the characteristics of the transformation. The increase of the milling speed considerably shortens the incubation time needed to start the QC–to–ß phase transformation. Also, the overall transformation is much faster for milling at high speeds.
The QC–to–ß phase transformation starts when the grain size of the quasicrystals is reduced to about 10 nm irrespective of the milling speed used and clearly indicates that a critical grain size of the quasicrystals for initiating the transformation exists. On the other hand, no critical value of lattice strain was found for the QC–to–ß transformation. This indicates that the phase transformation is controlled by the local length scale (i.e. the grain size) and by the corresponding grain boundaries rather than by the energy stored in the lattice.
Energetic considerations obtained through a simple model based on the mass and velocity of the milling balls reveal that the energy needed for the QC–to–ß transformation increases with increasing the milling speed, that is, the energetic efficiency of the process decreases with increasing the milling intensity. This indicates that part the extra energy supplied during milling at high intensities is not used to induce the phase transformation but it is dissipated by heat.
During heating, the milled powder displays a multi-step thermal behavior characterized by the grain growth of the disordered ß phase at low temperatures, followed, at higher temperatures, by its transformation into the original icosahedral quasicrystalline phase. The transformation is gradual and the quasicrystals and the disordered ß phase coexist over a temperature interval of more than 250 K.
The phase transformations occurring during milling and subsequent annealing have a remarkable effect on the hardness, which can be tuned within a wide range of values (7–9.6 GPa) as a function of the volume fraction of the different phases. This suggests that a composite material with optimized mechanical properties can be produced by an appropriate thermo-mechanical treatment.
The quasicrystals milled at a very low speed show a transition between Hall-Petch to inverse Hall-Petch behavior at a grain size of about 40 nm, which represents the critical value for grain size softening of the present Al62.5Cu25Fe12.5 quasicrystals. This behavior may be attributed to the complexity of the quasicrystalline structure and to its peculiar deformation mechanism at room temperature (i.e. shear banding), where meta-dislocation-assisted deformation is almost absent.
In order to analyze the effectiveness of the Al62.5Cu25Fe12.5 quasicrystals as reinforcing agent in metal matrix composites, Al-based composites were synthesized by hot extrusion of elemental Al blended with different amounts of Al62.5Cu25Fe12.5 quasicrystalline particles. The work was focused on two specific aspects: evaluation of the mechanical properties through room temperature compression tests and modeling of the resulting properties. The addition of the quasicrystalline reinforcement is very effective for improving the room temperature mechanical properties of pure Al. The compressive strength increases from 155 MPa for pure Al to 330 and 407 MPa for the composites with 20 and 40 vol.% of reinforcement, respectively, reaching an ultimate strain of 55 % and 20 % before fracture occurs. These results indicate that the addition of the QC reinforcement leads to composite materials with compressive strengths exceeding that of pure Al by a factor of 2 – 2.5, while retaining appreciable plastic deformation.
The mechanical properties of the composites have been modeled by taking into account the combined effect of load bearing, dislocation strengthening and matrix ligament size effects. The calculations are in very good agreement with the experimental results and reveal that the reduction of the matrix ligament size, which results in a similar strengthening effect as that observed for grain refinement, is the main strengthening mechanism in the current composites.
Finally, the interfacial reaction between the Al matrix and the QC reinforcement has been used to further enhance the strength of the composites through the formation of a new microstructure consisting of the Al matrix reinforced with Al7Cu2Fe w-phase particles. The optimization of the structure-property relationship was done through the systematic variation of the processing temperature during consolidation. The mechanical behavior of these transformation-strengthened composites is remarkably improved compared to the parent material. The yield strength of the composites significantly increases as the Al + QC -> ω transformation progresses from 195 MPa for the sample reinforced only with QC particles to 400 MPa for the material where the Al + QC -> ω reaction is complete.
These results clearly demonstrate that powder metallurgy, i.e. powder synthesis by ball milling followed by consolidation into bulk specimens, is an attractive processing route for the production of novel and innovative lightweight composites characterized by high strength combined with considerable plastic deformation. In addition, these findings indicate that the mechanical behavior of Al-based composites reinforced with Al62.5Cu25Fe12.5 quasicrystalline particles can be tuned within a wide range of strength and plasticity depending on the volume fraction of the reinforcement as well as on the extent of the interfacial reaction between Al matrix and QC reinforcing particles.
|
35 |
Electronic and Photonic Properties of Metallic-Mean Quasiperiodic SystemsThiem, Stefanie 24 February 2012 (has links) (PDF)
Understanding the connection of the atomic structure and the physical properties of materials remains one of the elementary questions of condensed-matter physics. One research line in this quest started with the discovery of quasicrystals by Shechtman et al. in 1982. It soon became clear that these materials with their 5-, 8-, 10- or 12-fold rotational symmetries, which are forbidden according to classical crystallography, can be described in terms of mathematical models for nonperiodic tilings of a plane proposed by Penrose and Ammann in the 1970s.
Due to the missing translational symmetry of quasicrystals, till today only finite, relatively small systems or periodic approximants have been investigated by means of numerical calculations and theoretical results have mainly been obtained for one-dimensional systems.
In this thesis we study d-dimensional quasiperiodic models, so-called labyrinth tilings, with separable Hamiltonians in the tight-binding approach. This method paves the way to study higher-dimensional, quantum mechanical solutions, which can be directly derived from the one-dimensional results. This allows the investigation of very large systems in two and three dimensions with up to 10^10 sites. In particular, we contemplate the class of metallic-mean sequences.
Based on this model we focus on the electronic properties of quasicrystals with a special interest on the connection of the spectral and dynamical properties of the Hamiltonian. Hence, we investigate the characteristics of the eigenstates and wave functions and compare these with the wave-packet dynamics in the labyrinth tilings by numerical calculations and by a renormalization group approach in connection with perturbation theory. It turns out that many properties show a qualitatively similar behavior in different dimensions or are even independent of the dimension as e.g. the scaling behavior of the participation numbers and the mean square displacement of a wave packet. Further, we show that the structure of the labyrinth tilings and their transport properties are connected and obtain that certain moments of the spectral dimensions are related to the wave-packet dynamics.
Besides this also the photonic properties are studied for one-dimensional quasiperiodic multilayer systems for oblique incidence of light, and we show that the characteristics of the transmission bands are related to the quasiperiodic structure. / Eine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden.
Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen.
In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt.
Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen.
Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht.
|
36 |
Electronic and Photonic Properties of Metallic-Mean Quasiperiodic SystemsThiem, Stefanie 24 January 2012 (has links)
Understanding the connection of the atomic structure and the physical properties of materials remains one of the elementary questions of condensed-matter physics. One research line in this quest started with the discovery of quasicrystals by Shechtman et al. in 1982. It soon became clear that these materials with their 5-, 8-, 10- or 12-fold rotational symmetries, which are forbidden according to classical crystallography, can be described in terms of mathematical models for nonperiodic tilings of a plane proposed by Penrose and Ammann in the 1970s.
Due to the missing translational symmetry of quasicrystals, till today only finite, relatively small systems or periodic approximants have been investigated by means of numerical calculations and theoretical results have mainly been obtained for one-dimensional systems.
In this thesis we study d-dimensional quasiperiodic models, so-called labyrinth tilings, with separable Hamiltonians in the tight-binding approach. This method paves the way to study higher-dimensional, quantum mechanical solutions, which can be directly derived from the one-dimensional results. This allows the investigation of very large systems in two and three dimensions with up to 10^10 sites. In particular, we contemplate the class of metallic-mean sequences.
Based on this model we focus on the electronic properties of quasicrystals with a special interest on the connection of the spectral and dynamical properties of the Hamiltonian. Hence, we investigate the characteristics of the eigenstates and wave functions and compare these with the wave-packet dynamics in the labyrinth tilings by numerical calculations and by a renormalization group approach in connection with perturbation theory. It turns out that many properties show a qualitatively similar behavior in different dimensions or are even independent of the dimension as e.g. the scaling behavior of the participation numbers and the mean square displacement of a wave packet. Further, we show that the structure of the labyrinth tilings and their transport properties are connected and obtain that certain moments of the spectral dimensions are related to the wave-packet dynamics.
Besides this also the photonic properties are studied for one-dimensional quasiperiodic multilayer systems for oblique incidence of light, and we show that the characteristics of the transmission bands are related to the quasiperiodic structure. / Eine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden.
Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen.
In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt.
Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen.
Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht.
|
37 |
Surfaces et films minces d'alliages métalliques complexes / Surfaces and thin films of complex metallic alloysDuguet, Thomas 28 September 2009 (has links)
Après un chapitre d’introduction à propos des alliages métalliques complexes et leurs surfaces, le manuscrit est divisé en deux parties distinctes. La première partie (Chap.II) porte sur la détermination structurale de la surface d’ordre 2 de la phase décagonale Al-Cu-Co par LEED et STM. Les conclusions de ce chapitre indiquent (i) que la surface observée expérimentalement correspond à des terminaisons denses et riches en l’élément de plus faible énergie de surface (Al) et (ii) que la phase serait stabilisée par le terme entropique de l’énergie libre de Helmotz. Dans la deuxième partie de la thèse (Chap.III, IV et V), on applique une approche originale de science des surfaces pour résoudre un problème applicatif : l’adhérence des revêtements quasicristallins sur les substrats métalliques. On propose d’insérer une couche d’accrochage entre le revêtement et le substrat. L’alliage ?-Al4Cu9 est un bon candidat pour réaliser cette interface car il possède des propriétés structurales et électroniques intermédiaires entre un métal et un quasicristal. On élabore donc par MBE des interfaces modèles par adsorption puis recuit de Cu sur le quasicristal i-Al-Cu-Fe, puis d’Al sur Cu(111). Les expériences de photoémission, STM et LEED, ainsi que les calculs de DFT, démontrent la faisabilité d’une interface cohérente entre l’alliage de surface ?-Al4Cu9 et le Cu d’une part, et entre ?-Al4Cu9 et le quasicristal, d’autre part. Ces résultats fondamentaux sont reproduits avec succès dans le domaine applicatif, par l’élaboration de revêtements de phase ? par pulvérisation cathodique magnétron (Chap.V) / After an introductive chapter on complex metallic alloys and surfaces, the thesis is divided into two distinct parts. The first part (Chap.II) concerns the structural determination of the 2-fold surface of d-Al-Cu-Co quasicrystal, by using LEED and STM. The results show (i) that the experimental terraces correspond to dense and Al-rich terminations -the element with the lowest surface energy- and (ii) that this decagonal phase could be entropically stabilized. In the second part of the manuscript (Chap.III, IV and V), we apply a surface science approach to solve a technological bottleneck: the adherence of quasicrystalline coatings on metallic substrates. We propose to grow a buffer layer that would accommodate the differences between the two materials. For that purpose, the ?-Al4Cu9 phase is a good candidate as it shares electronic and structural properties with both substrate and coating. Hence, we synthesize model interfaces by using MBE, first by adsorption and annealing of Cu on the 5-f surface of i-Al-Cu-Fe quasicrystal and then in the Al on Cu(111) system. Photoemission, STM and LEED experiments, along with DFT calculations show that a coherent interface can be grown between the ?-Al4Cu9 surface alloy and both the Cu and the quasicrystal. Those fundamental results are successfully reproduced in the real world, by growing similar interfaces using magnetron sputterring (Chap.V)
|
38 |
Elaboration et Caractérisation de Nano-Composites Métal-Intermétalliques Complexes / Development and Characterization of Metal-Complex Intermetallic Nano-CompositesKenzari, Samuel 04 December 2006 (has links)
Cette étude s’inscrit dans le cadre d’un projet ADEME (Agence de l'Environnement et de la Maîtrise de l'Energie) et a pour objectif la réduction du frottement entre chemise et segments via l’introduction de nouveaux revêtements. Notre rôle était de proposer à nos partenaires des matériaux de revêtements de type métal-intermétalliques complexes aux propriétés de frottement optimisées. Dans un premier temps, nous avons élaboré par frittage à l’état solide des matériaux composites Al/(AlCuFeB)p contenant des particules intermétalliques complexes (alliages quasicristallins de structure icosaédrique du système AlCuFeB) renforçant une matrice d’aluminium pur. Cette partie de l’étude consiste à étudier les cinétiques de transformations de phases résultantes de la diffusion de l’aluminium provenant de la matrice vers les particules icosaédriques. Il a été montré que la déstabilisation de la phase icosaédrique peut être évitée par la création d’une barrière de diffusion via un prétraitement d’oxydation des particules AlCuFeB. Ensuite, l’étude par microscopie électronique a permis d’identifier une nouvelle phase approximante de la phase icosaédrique du système AlCuFe. Il s’agit d’une phase orthorhombique qui à notre connaissance est observée ici pour la première fois. Enfin, les propriétés mécaniques et de frottement de ces nouveaux matériaux sont présentées. Les matériaux composites Al/(AlCuFeB)p élaborés ont des propriétés améliorées par rapport à l’aluminium non renforcé. L’évolution des propriétés est influencée par le taux de particules AlCuFeB et leur état d’oxydation initial. Les propriétés sont améliorées lorsque la fraction volumique de particules augmente mais de façon moindre quand les particules AlCuFeB sont fortement oxydées. / The present study was performed in the framework of a project funded by the ADEME agency (French Agency for Environment and Energy Management), aiming at the reduction of friction loss in car engines through the introduction of new tribological coatings. Our task was to propose our partners new coating materials based on metal-intermetallic nano-composites with optimized friction properties. In a first part, we have prepared by solid state sintering new Al-based composite materials reinforced by quasicrystalline icosahedral particles Al/(AlCuFeB)p. The kinetics of phase transformations resulting from the diffusion of Al matrix to the quasicrystalline particles was studied. It was shown that the destabilization of the icosahedral phase can be avoided by the creation of a diffusion barrier via an oxidation pre-treatment of the AlCuFeB particles. In a second part, the results of a structural study of the composites by transmission electron microscopy are presented. We also describe a new approximant of the quasicrystalline AlCuFe icosahedral phase. This phase was identified as an orthorhombic phase which, to our knowledge, is observed here for the first time. Finally, the mechanical and friction properties of the composites are presented. We show that the composite materials have improved properties compared to aluminium and that their evolution is influenced by the volume fraction of AlCuFeB particles and their initial state of oxidation. The best properties are obtained when the volume fraction of the particles is increased, but in a less pronounced manner when the AlCuFeB particles are strongly oxidized.
|
39 |
Mechanical milling of Al-Cu-Fe quasicrystals and their Reinforcement in Aluminum matrix compositesAli, Fahad 29 March 2012 (has links)
In this thesis, the effect of mechanical deformation on structure, thermal stability and hardness of a single-phase spray-deposited quasicrystalline alloy with composition Al62.5Cu25Fe12.5 has been investigated in detail. The purpose of the investigation was to study the effect of mechanical milling at different milling speeds (which approximately scale with the milling intensity) on mechanically-induced phase transformations during milling and on the phase evolution during subsequent heating.
The results of the milling experiments indicate that, irrespective of the milling speeds used, mechanical milling of Al62.5Cu25Fe12.5 quasicrystals leads to the formation of a disordered CsCl-type ß phase with grain size of about 10 – 20 nm. The analysis of the kinetics of the QC–to–ß phase transformation reveals that the milling intensity has a considerable effect on the characteristics of the transformation. The increase of the milling speed considerably shortens the incubation time needed to start the QC–to–ß phase transformation. Also, the overall transformation is much faster for milling at high speeds.
The QC–to–ß phase transformation starts when the grain size of the quasicrystals is reduced to about 10 nm irrespective of the milling speed used and clearly indicates that a critical grain size of the quasicrystals for initiating the transformation exists. On the other hand, no critical value of lattice strain was found for the QC–to–ß transformation. This indicates that the phase transformation is controlled by the local length scale (i.e. the grain size) and by the corresponding grain boundaries rather than by the energy stored in the lattice.
Energetic considerations obtained through a simple model based on the mass and velocity of the milling balls reveal that the energy needed for the QC–to–ß transformation increases with increasing the milling speed, that is, the energetic efficiency of the process decreases with increasing the milling intensity. This indicates that part the extra energy supplied during milling at high intensities is not used to induce the phase transformation but it is dissipated by heat.
During heating, the milled powder displays a multi-step thermal behavior characterized by the grain growth of the disordered ß phase at low temperatures, followed, at higher temperatures, by its transformation into the original icosahedral quasicrystalline phase. The transformation is gradual and the quasicrystals and the disordered ß phase coexist over a temperature interval of more than 250 K.
The phase transformations occurring during milling and subsequent annealing have a remarkable effect on the hardness, which can be tuned within a wide range of values (7–9.6 GPa) as a function of the volume fraction of the different phases. This suggests that a composite material with optimized mechanical properties can be produced by an appropriate thermo-mechanical treatment.
The quasicrystals milled at a very low speed show a transition between Hall-Petch to inverse Hall-Petch behavior at a grain size of about 40 nm, which represents the critical value for grain size softening of the present Al62.5Cu25Fe12.5 quasicrystals. This behavior may be attributed to the complexity of the quasicrystalline structure and to its peculiar deformation mechanism at room temperature (i.e. shear banding), where meta-dislocation-assisted deformation is almost absent.
In order to analyze the effectiveness of the Al62.5Cu25Fe12.5 quasicrystals as reinforcing agent in metal matrix composites, Al-based composites were synthesized by hot extrusion of elemental Al blended with different amounts of Al62.5Cu25Fe12.5 quasicrystalline particles. The work was focused on two specific aspects: evaluation of the mechanical properties through room temperature compression tests and modeling of the resulting properties. The addition of the quasicrystalline reinforcement is very effective for improving the room temperature mechanical properties of pure Al. The compressive strength increases from 155 MPa for pure Al to 330 and 407 MPa for the composites with 20 and 40 vol.% of reinforcement, respectively, reaching an ultimate strain of 55 % and 20 % before fracture occurs. These results indicate that the addition of the QC reinforcement leads to composite materials with compressive strengths exceeding that of pure Al by a factor of 2 – 2.5, while retaining appreciable plastic deformation.
The mechanical properties of the composites have been modeled by taking into account the combined effect of load bearing, dislocation strengthening and matrix ligament size effects. The calculations are in very good agreement with the experimental results and reveal that the reduction of the matrix ligament size, which results in a similar strengthening effect as that observed for grain refinement, is the main strengthening mechanism in the current composites.
Finally, the interfacial reaction between the Al matrix and the QC reinforcement has been used to further enhance the strength of the composites through the formation of a new microstructure consisting of the Al matrix reinforced with Al7Cu2Fe w-phase particles. The optimization of the structure-property relationship was done through the systematic variation of the processing temperature during consolidation. The mechanical behavior of these transformation-strengthened composites is remarkably improved compared to the parent material. The yield strength of the composites significantly increases as the Al + QC -> ω transformation progresses from 195 MPa for the sample reinforced only with QC particles to 400 MPa for the material where the Al + QC -> ω reaction is complete.
These results clearly demonstrate that powder metallurgy, i.e. powder synthesis by ball milling followed by consolidation into bulk specimens, is an attractive processing route for the production of novel and innovative lightweight composites characterized by high strength combined with considerable plastic deformation. In addition, these findings indicate that the mechanical behavior of Al-based composites reinforced with Al62.5Cu25Fe12.5 quasicrystalline particles can be tuned within a wide range of strength and plasticity depending on the volume fraction of the reinforcement as well as on the extent of the interfacial reaction between Al matrix and QC reinforcing particles.
|
40 |
Dynamique de réseau et conductivité thermique dans les alliages métalliques complexes / Lattices dynamics and thermal conductivity in the complex metallic alloysLory, Pierre-François 24 September 2015 (has links)
Les alliages métalliques complexes sont des matériaux qui présentent un ordre à longue distance caractérisé par de grandes mailles comprenant plusieurs centaines d’atomes disposés en clusters. Une propriété caractéristique des CMAs est une conductivité thermique de réseau, dû aux phonons, très faible (~1.3 W/m.K), ce qui donne un intérêt pour leur utilisation comme thermoélectriques. Malgré de récentes avancées sur les connaissances de leurs structures, la nature des modes de vibrations des phonons dans ces réseaux restent une question ouverte : quel est le rôle des clusters ? Est-ce qu’il y a des modes critiques ? Pour répondre à cette problématique, mon projet de thèse a eu pour objectif de comprendre la nature des modes de vibrations à l’échelle atomique et la relation avec la conductivité thermique de réseau sur deux systèmes : la phase o-Al13Co4 qui est un approximant de la phase décagonale AlNiCo et le clathrate Ba8Ge40.3Au5.25, présentant des propriétés thermoélectriques. Mes investigations combinent des expériences de diffusion inélastiques des neutrons et des rayons-X et des simulations à l’échelle atomique.Une analyse détaillée des résultats expérimentaux obtenus par diffusion inélastique sur monocristaux pour les branches acoustiques a permis de mettre en évidence, pour la première fois, un temps de vie fini des phonons acoustiques lorsqu’ils interagissent avec les modes de basses énergies liés aux atomes dans les clusters. Pour les deux systèmes étudiés, nous observons que la branche acoustique n’est plus linéaire et le temps de vie des phonons acoustiques est réduit à quelques picosecondes. Ce faible temps de vie dépend peu de la température comme la conductivité thermique. Les simulations à l’échelle atomique, en utilisant des calculs DFT et des potentiels de pairs oscillants pour des simulations de dynamique moléculaire, ont permis de montrer que ce temps de vie est un effet anharmonique lié au désordre de structure. Les simulations confirment la faible dépendance en température de ce temps de vie. Dans o-Al13Co4, nous avons calculé la conductivité thermique avec la dynamique moléculaire et la méthode de Green-Kubo. Pour Ba8Ge40.3Au5.25 nous avons appliqué un modèle phénoménologique pour l’estimer en utilisant les résultats INS. En conclusion nous démontrons les effets de la complexité structurale sur la conductivité thermique en lien avec la dynamique de réseau. / Complex metallic alloys are long range ordered materials, characterized by large cells, comprising several hundreds of atoms and cluster building blocks. A key property of CMAs is the low lattice thermal conductivity (1.3 W/m. K), which suggests a potential application for CMAs for thermoelectricity. Despite recent advances structure determination, the nature of the phonons modes remains an open question: do the clusters playing a role? Are there critical modes? To tackle this problem, my PhD project aims to understand the vibrational modes at atomic scale and the relation to lattice thermal conductivity in o-Al13Co4 which is an approximant of the quasicrystal, decagonal phase AlNiCo and the clathrate Ba8Ge40.3Au5.25. In this worked we have used Inelastic Neutron and X-ray Scattering experiments and atomic scale simulations, based on density functional theory and empirical pair potentials.A detailed analysis of the results of inelastic scattering experiments on monocrystals for the acoustic branches have shown, for the first time, a finite lifetime for acoustic phonons when they interact with the low-lying dispersion-less excitations due to atoms in the cluster. In both systems, we observe that when an acoustic branch flattens near the zone boundary, the phonon lifetime is a few picoseconds. The phonon lifetime is approximately independent of temperature like the lattice thermal conductivity. Lattice and molecular dynamics simulations with DFT and empirical, oscillating pair potentials show that the finite phonon lifetime is an anharmonic effect, due to structural disorder, explaining the weak temperature of the phonon lifetime. For o-Al13Co4, we have calculated the thermal conductivity with the Green-Kubo method based on equilibrium MD simulations. For Ba8Ge40.3Au5.25 we have developed a phenomenological model based on individual phonon modes. In conclusion, we have demonstrated how structural complexity affects thermal conductivity through the lattice dynamics.
|
Page generated in 0.0533 seconds