• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 198
  • 123
  • 42
  • 24
  • 24
  • 6
  • 6
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 513
  • 251
  • 68
  • 67
  • 46
  • 45
  • 44
  • 42
  • 37
  • 34
  • 34
  • 33
  • 33
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Magnetotransport in Two Dimensional Electron Systems Under Microwave Excitation and in Highly Oriented Pyrolytic Graphite

Ramanayaka, Aruna N 07 August 2012 (has links)
This thesis consists of two parts. The first part considers the effect of microwave radiation on magnetotransport in high quality GaAs/AlGaAs heterostructure two dimensional electron systems. The effect of microwave (MW) radiation on electron temperature was studied by investigating the amplitude of the Shubnikov de Haas (SdH) oscillations in a regime where the cyclotron frequency $\omega_{c}$ and the MW angular frequency $\omega$ satisfy $2\omega \leq \omega_{c} \leq 3.5\omega$. The results indicate negligible electron heating under modest MW photoexcitation, in agreement with theoretical predictions. Next, the effect of the polarization direction of the linearly polarized MWs on the MW induced magnetoresistance oscillation amplitude was investigated. The results demonstrate the first indications of polarization dependence of MW induced magnetoresistance oscillations. In the second part, experiments on the magnetotransport of three dimensional highly oriented pyrolytic graphite (HOPG) reveal a non-zero Berry phase for HOPG. Furthermore, a novel phase relation between oscillatory magneto- and Hall- resistances was discovered from the studies of the HOPG specimen.
292

High-temperature thermoelectric properties of Ca0.9−xSrxYb0.1MnO3−delta (0<=x<=0.2)

Kosuga, Atsuko, Isse, Yuri, Wang, Yifeng, Koumoto, Kunihito, Funahashi, Ryoji 13 May 2009 (has links)
No description available.
293

Non-destructive Electrical Characterization of Controlled Waspaloy Microstructures

G. Kelekanjeri, V. Siva Kumar 06 April 2007 (has links)
In this research, controlled Waspaloy microstructures were produced with the objective of studying microstructural evolution in this alloy via electrically-based ac/dc non-destructive techniques. Correlations were developed between electrical measurements and alternate characterization techniques such as Ultra Small Angle X-ray Scattering (USAXS), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to gain a complete understanding of the microstructural transformations and the associated mechanisms. Three different sets of controlled microstructures were produced in this research. In Set I microstructures, matrix (gamma) grain sizes of 13, 52 and 89 micrometers were obtained after solution-treatments at 1045 and 176;C, 1090 and 176;C and 1145 and 176;C respectively. A vacancy stabilization treatment at 1045 and 176;C followed after which, the specimens were aged at 800 and 176;C for times ranging from 0.1 hrs to 100 hrs to vary the gamma prime precipitate size distribution. In Sets II and III, the solution-treatment was only conducted at 1145 and 176;C, with the stabilization treatment conducted only in Set II. Subsequently, aging experiments were conducted at 725 and 176;C (or 700 and 176;C in Set II), 800 and 176;C and 875 and 176;C for times up to 100 hrs. DC four-point probe resistivity of specimens increased to a maximum upon initial aging from the solution-treated condition and showed a decreasing trend thereafter with successive aging. This, in addition to complementary evidence from SEM and USAXS, led to the conclusion that gamma prime nucleation-growth was complete by the time the resistivity maximum was observed. Resistivity variations that ensued upon successive aging after the maximum were attributed to microstructural/compositional changes due to gamma prime coarsening. The height of the maximum decreased drastically with increase in aging temperature from 725 and 176;C to 800 and 176;C, while the resistivity did not increase from the solution-treated condition upon aging at 875 and 176; C. Coarsening studies based on USAXS analysis indicated an LSW type volume diffusion mechanism of coarsening in Waspaloy, with an average coarsening rate constant of 3.25x10-29 [m3/sec] for Set I specimens aged at 800 and 176;C. Analytical and Finite Element (FE) models of two-probe impedance and dc four-point probe resistivity methods were developed to gain insight into the measured response and the accurate determination of material properties. AFM-based localized electrical examination of sub-grain Waspaloy microstructures was successfully conducted using electrostatic force microscopy (EFM), scanning Kelvin probe microscopy (SKPM) and current-AFM (I-AFM) electrical modes. I-AFM experiments revealed that the conductivity of the gamma prime phase was lower than that of the gamma phase.
294

Resistance Fluctuations And Instability In Metal Nanowires

Bid, Aveek 08 1900 (has links)
The principal aim of this thesis is to study the electrical transport properties of metal nanowires. Specifically, we have focussed on investigating the resistance fluctuations of Ag and Cu nanowires of diameters ranging from 15nm to 200nm and studied the instabilities that set in when the diameter is reduced below a certain range. The nanowires were grown electrochemically inside polycarbonate and alumina templates. X-ray diffraction studies on the samples showed the presence of a HCP 4H phase in the Ag nanowires in addition to the usual FCC phase, which is seen in bulk Ag. The relative ratios of these two phases were a maximum for nanowires of diameter 30nm. The X-ray diffraction studies also showed that the samples were of high chemical purity. TEM studies revealed that the wires are single crystalline in nature. Once the wires are released from the template, the wires of diameter 15nm were seen to break down spontaneously into globules due to Rayleigh instability. Wires of larger diameter tended to neck down to smaller radius but did not break down completely into globules. Both the Ag and Cu nanowire arrays had a fairly linear temperature dependence of resistance down to about 100K and reached a residual resistance below 40-50K. The temperature dependence of resistance could be fitted to a Bloch-Grüneisen formula over the entire temperature range. We found that n = 5 gave the best fit for the wires of all diameters showing that the dominant contribution to the temperature dependence of the resistivity in theses nanowires come from electron-acoustic phonon interactions. The resistivities of the wires were seen to increase as the wire diameter was decreased. This increase in the resistivity of the wires could be attributed to surface scattering of conduction electrons. In nanowires of diameter 15nm of both Ag and Cu, the relative variance of resistance fluctuations <(ΔR)2>/R2 showed a prominent peak at around ~ 220K for the Ag nanowire and ~ 260K for the Cu wire. Ag wires of diameter 20nm showed a much-reduced peak in noise at a somewhat higher temperature while this feature was completely absent in wires of larger diameter as also for the reference Ag film. The noise in wires of diameter larger than 20nm was similar to that of the reference film. For wires of diameter 15nm as we approach T*, the power spectral density showed a severe deviation from 1/f nature. We could establish that the extra fluctuation seen in the nanowires of the narrowest diameters could originate from the Rayleigh instability. The measured resistance fluctuation was found to have a magnitude similar to that estimated from a simple model of a wire showing volume preserving fluctuation. In the temperature range T ≤ 100K we observed very large non-Gaussian resistance fluctuations in a narrow temperature range for Ag and Cu wires of diameter 30nm with the fluctuations becoming much smaller as the diameter of the wires deviated from 30nm. In wires of diameter larger than 50nm the noise was almost independent of temperature in this range. The power spectrum of the resistance fluctuations also developed a large additional low frequency component near TP. We could establish that the appearance of this noise at a certain temperature (~30 – 50K) is due to the onset of martensite strain accommodation in these nanowires. To summarize, we measured the resistance and resistance fluctuations of Ag and Cu nanowires of diameters ranging from 15nm to 200nm in the temperature range 4.2-300K. The temperature dependence of resistance could be fitted to a Bloch-Grüneisen formula over the entire temperature range of measurement (4.2K-300K). The contribution of electron-phonon scattering to the resistivity was found to be similar to that of bulk. The defect free nature of our samples allowed us to identify two novel sources of noise in these nanowires. At high temperatures Rayleigh instability causes the noise levels in wires of diameter around 15nm to increase. At lower temperatures the formation of martensite state leads to an increase in noise in wires of small diameters.
295

Structural and Electrical Transport Properties of Doped Nd-123 Superconductors

Ghorbani, Shaban Reza January 2003 (has links)
<p>It is generally believed that one of the key parameterscontrolling the normal state and superconducting properties ofhigh temperature superconductors is the charge carrierconcentration<i>p</i>in the CuO<sub>2</sub>planes.By changing the non-isovalent dopingconcentration on the RE site as well as the oxygen content in(RE)Ba<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub>, an excellent tool is obtained tovary the hole concentration over a wide range from theunderdoped up to the overdoped regime.In the present thesis thefocus is on the doping effects on the structural and normalstate electrical properties in Nd-123 doped with Ca, La, Pr,Ca-Pr, and Ca-Th.T he effects of doping have been investigatedby X-ray and neutron powder diffraction, and by measurements ofthe resistivity, thermoelectric power<i>S</i>, and Hall coefficient R<sub>H</sub>.T he thermoelectric power is a powerful tool forstudies of high temperature superconductivity and is highlysensitive to details of the electronic band structure.<i>S</i>as a function of temperature has been analyzed in twodifferent two band models.The parameters of these models arerelated to charactristic features of the electron bands and asemiempirical physical description of the doping dependence of<i>S</i>is obtained.So me important results are following:</p><p>(i)<i>The valence of Pr in the RE-123 family.</i>Results from thestructural investigations, the critical temperature Tc, and thethermoelectric power indicated a valence +4 at low dopingconcentration, which is in agreement with results of chargeneutral doping in the RE-123 family.(ii)<i>Hole localization</i>. The results of bond valence sum (BVS)calculations from neutron diffraction data showed that holelocalization on the Pr<sup>+4</sup>site was the main reason for the decrease of thehole concentration p.Differ ent types of localization wereinferred by S measurements for Ca-Th and Ca-Pr dopings.(iii)<i>Competition between added charge and disorder</i>. Theresults of RH measurements indicated that Ca doping introduceddisorder in the CuO<sub>2</sub>planes in addition to added charge.This could bethe main reason for the observed small decrease of thebandwidth of the density of states in the description of aphenomenological narrow band model.(iv) Empirical parabolic relation between γ and p.S data were analyzed and well described by a two-band modelwith an additional linear T term, γT.An empiricalparabolic relation for γ as a function of holeconcentration has been found.</p><p><b>Key words:</b>high temperature superconductors, criticaltemperature, resistivity, thermoelectric power, Hallcoefficient, X-ray diffraction, Neutron diffraction, NdBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub>, hole concentration,substitution.</p>
296

Modeling and characterization of novel MOS devices

Persson, Stefan January 2004 (has links)
<p>Challenges with integrating high-κ gate dielectric,retrograde Si<sub>1-x</sub>Ge<sub>x</sub>channel and silicided contacts in future CMOStechnologies are investigated experimentally and theoreticallyin this thesis. ρMOSFETs with either Si or strained Si<sub>1-x</sub>Gex surface-channel and different high-κgate dielectric are examined. Si<sub>1-x</sub>Gex ρMOSFETs with an Al<sub>2</sub>O<sub>3</sub>/HfAlO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>nano-laminate gate dielectric prepared by means ofAtomic Layer Deposition (ALD) exhibit a great-than-30% increasein current drive and peak transconductance compared toreference Si ρMOSFETs with the same gate dielectric. Apoor high-κ/Si interface leading to carrier mobilitydegradation has often been reported in the literature, but thisdoes not seem to be the case for our Si ρMOSFETs whoseeffective mobility coincides with the universal hole mobilitycurve for Si. For the Si<sub>1-x</sub>Ge<sub>x</sub>ρMOSFETs, however, a high density ofinterface states giving riseto reduced carrier mobility isobserved. A method to extract the correct mobility in thepresence of high-density traps is presented. Coulomb scatteringfrom the charged traps or trapped charges at the interface isfound to play a dominant role in the observed mobilitydegradation in the Si<sub>1-x</sub>Ge<sub>x</sub>ρMOSFETs.</p><p>Studying contacts with metal silicides constitutes a majorpart of this thesis. With the conventional device fabrication,the Si<sub>1-x</sub>Ge<sub>x</sub>incorporated for channel applications inevitablyextends to the source-drain areas. Measurement and modelingshow that the presence of Ge in the source/drain areaspositively affects the contact resistivity in such a way thatit is decreased by an order of magnitude for the contact of TiWto p-type Si<sub>1-x</sub>Ge<sub>x</sub>/Si when the Ge content is increased from 0 to 30at. %. Modeling and extraction of contact resistivity are firstcarried out for the traditional TiSi<sub>2</sub>-Si contact but with an emphasis on the influenceof a Nb interlayer for the silicide formation. Atwo-dimensional numerical model is employed to account foreffects due to current crowding. For more advanced contacts toultra-shallow junctions, Ni-based metallization scheme is used.NiSi<sub>1-x</sub>Gex is found to form on selectively grown p-typeSi<sub>1-x</sub>Ge<sub>x</sub>used as low-resistivity source/drain. Since theformed NiSi1-xGex with a specific resistivity of 20 mWcmreplaces a significant fraction of the shallow junction, athree-dimensional numerical model is employed in order to takethe complex interface geometry and morphology into account. Thelowest contact resistivity obtained for our NiSi<sub>1-x</sub>Ge<sub>x</sub>/p-type Si<sub>1-x</sub>Ge<sub>x</sub>contacts is 5´10<sup>-8</sup>Ωcm<sup>2</sup>, which satisfies the requirement for the 45-nmtechnology node in 2010.</p><p>When the Si<sub>1-x</sub>Ge<sub>x</sub>channel is incorporated in a MOSFET, it usuallyforms a retrograde channel with an undoped surface region on amoderately doped substrate. Charge sheet models are used tostudy the effects of a Si retrograde channel on surfacepotential, drain current, intrinsic charges and intrinsiccapacitances. Closed-form solutions are found for an abruptretrograde channel and results implicative for circuitdesigners are obtained. The model can be extended to include aSi<sub>1-x</sub>Ge<sub>x</sub>retrograde channel. Although the analytical modeldeveloped in this thesis is one-dimensional for long-channeltransistors with the retrograde channel profile varying alongthe depth of the transistor, it should also be applicable forshort-channel transistors provided that the short channeleffects are perfectly controlled.</p><p><b>Key Words:</b>MOSFET, SiGe, high-k dielectric, metal gate,mobility, charge sheet model, retrograde channel structure,intrinsic charge, intrinsic capacitance, contactresistivity.</p>
297

Geoelectrical imaging for interpretation of geological conditions affecting quarry operations

Magnusson, Mimmi K. January 2008 (has links)
<p>Determination of the subsurface geology is very important for the rock quarry industry. This is primarily done by drilling and mapping of the surface geology. However in Sweden the bedrock is often completely covered by Quaternary sediments making the prediction of subsurface geology quite difficult. Incorrect prediction of the rock-mass quality can lead to economic problems for the quarry. By performing geophysical measurements a more complete understanding of the subsurface geology can be determined. This study shows that by doing 2D-parallel data sampling a 3D inversion of the dataset is possible, which greatly enhances the visualization of the subsurface. Furthermore the electrical resistivity technique together with the induced polarization method proved to be very efficient in detecting fracture frequency, identification of major fracture zones, and variations in rock-mass quality all of which can affect the aggregate quality. With this technique not only the rock-mass quality is determined but also the thickness of the overburden. Implementation of geophysics can be a valuable tool for the quarry industry, resulting in substantial economic benefits.  </p>
298

Source and drain engineering in SiGe-based pMOS transistors

Isheden, Christian January 2005 (has links)
<p>A new shallow junction formation process, based on selective silicon etching followed by selective growth of in situ B-doped SiGe, is presented. The approach is advantageous compared to conventional ion implantation followed by thermal activation, because perfectly abrupt, low resistivity junctions of arbitrary depth can be obtained. In B-doped SiGe layers, the active doping concentration can exceed the solid solubility in silicon because of strain compensation. In addition, the compressive strain induced in the Si channel can improve drivability through increased hole mobility. The process is integrated by performing the selective etching and the selective SiGe growth in the same reactor. The main advantage of this is that the delicate gate oxide is preserved. The silicon etching process (based on HCl) is shown to be highly selective over SiO<sub>2</sub> and anisotropic, exhibiting the densely packed (100), (311) and (111) surfaces. It was found that the process temperature should be confined between 800 ºC, where etch pits occur, and 1000 ºC, where the masking oxide is attacked. B-doped SiGe layers with a resistivity of 5×10-<sup>4</sup> Ωcm were obtained. Well-behaved pMOS transistors are presented, yet with low layer quality. Therefore integration issues related to the epitaxial growth, such as selectivity, loading effect, pile-up and defect generation, were investigated. Surface damage originating from reactive-ion etching of the sidewall spacer and nitride residues from LOCOS formation were found to degrade the quality of the SiGe layer. Various remedies are discussed. Nevertheless, high-quality selective epitaxial growth could not be achieved with a doping concentration in the 1021 cm-3 range. The maximum doping level resulting in a high-quality layer, with the loading effect taken into account, was 6×10<sup>20 </sup>cm-<sup>3</sup>. After this careful process optimization, a high-quality layer was obtained in the recessed areas. Finally, Ni mono-germanosilicide was investigated as a material for contact formation to the epitaxial SiGe layers in the recessed source and drain areas. The formation temperature is 550 ºC and it is stable up to 700 ºC. The observation of a recessed step and lateral growth of the silicide led to a detailed treatment of the contact resistivity of the NiSi<sub>0</sub>.<sub>8</sub>Ge<sub>0.2</sub>/Si<sub>0.8</sub>Ge<sub>0.2</sub> interface using 2-D as well as 3-D modeling. Different values were obtained for square shaped and rounded contacts, 5.0x10<sup>-8</sup> Ωcm<sup>2</sup> and 1.4x10<sup>-7</sup> Ωcm<sup>2</sup>, respectively.</p>
299

Quasi 3-Dimensional Electrical Resistivity Mapping of Air-filled Karst Conduits and Policy Implications

Mccrackin, Charles W. 01 January 2012 (has links)
This study assesses the capability and practical applications of quasi 3-Dimensional (3D) electrical resistivity surveying (ER) for mapping air-filled karst conduits. Vadose zone caves within the Brooksville Ridge of West Central Florida are relatively similar in architecture, with N-S elongation, and do not consist of an interconnected network of conduits. A high resolution quasi-3D ER survey was performed over two mapped cave systems on the Brooksville Ridge. The resultant survey verified the general effectiveness of quasi-3D ER in locating the two known near-surface cave features. Several other locations in the survey show similar or stronger resistivity anomalies trending in a N-S direction; these are interpreted to represent previously unknown voids. The quality of inversion results were tested by comparing results against the known void locations and by computing cross-over errors from surveys conducted at the same point with different orientations. Our results show that 3D inversions of multiple adjacent parallel profiles produces higher quality results (lower cross-over errors, better fit to cave locations) than 2D inversions. The data indicate that no single value of resistivity can be used as a reliable indicator of the presence of a void, presumably due to variable void size and the complexity in resistivities in the host rock. With sinkholes continuing to be of concern to residential and urban development in West Central Florida, the results of this research show the necessity of applying geophysical techniques in order to reduce the potential hazards posed by karst terrain.
300

Inversion-based petrophysical interpretation of multi-detector logging-while-drilling sigma measurements

Ortega, Edwin Yamid 01 July 2014 (has links)
Pulsed-neutron borehole measurements involve a physical process in which a source emits energetic neutrons that lose energy upon collisions with formation nuclei, and are eventually captured by a nucleus to form a heavier, excited state. The excited nucleus decays to its ground state by the emission of gamma rays. Both thermal-neutron and gamma-ray populations decay with time at a rate defined by Sigma, which is a nuclear property that quantifies a material’s ability to capture thermal neutrons. The large contrast in Sigma between hydrocarbon and salty connate water enables calculations of water saturation directly from pulsed-neutron measurements. Sigma logs have proven useful in the assessment of thinly bedded formations because they exhibit a small volume of investigation, and have been deemed superior to resistivity logs in the petrophysical evaluation of carbonate formations. The recognized potential of Sigma logs in formation evaluation initiated the development of multi-detector Logging-While-Drilling (LWD) Sigma measurements. These measurements are acquired using one thermal-neutron and two gamma-ray detectors at different spacings from the source. Such a design is aimed at providing distinct radial depths of investigation to detect filtrate invasion in the near-wellbore zone. Despite their formation-evaluation potential, multi-detector time-decay measurements commonly remain affected by invasion, shoulder-bed, and well-deviation effects. The purpose of this dissertation is to develop a fast-forward simulation method to reproduce multi-detector time decays and combine the method with inversion techniques to improve the petrophysical interpretation of LWD Sigma measurements. First-order perturbation theory and a library of pre-calculated Monte Carlo detector-specific sensitivity functions and time decays are used to numerically simulate borehole Sigma measurements in realistic logging environments. The new simulation method is one hundred thousand times faster than rigorous Monte Carlo calculations and remains within two capture units of disparity. Next, the fast-forward simulation method is embedded within inversion algorithms to estimate layer-by-layer radial length of invasion and formation Sigma corrected for shallow invasion, shoulder-bed, and well-deviation effects. Both fast-forward and inverse modeling algorithms are benchmarked against laboratory and synthetic time decays. The improvement of formation Sigma obtained with inversion-based interpretation leads to an improvement in the estimation of Sigma-derived water saturation. Likewise, the estimated radial length of invasion is combined with neutron and density measurements to correct the latter for invasion effects. Results indicate that the inversion-based interpretation method is well suited for the evaluation of high-porosity formations invaded by salty mud filtrate. Inversion-based interpretation of field LWD time decays enables the estimation of lower values of water saturation when compared to conventional Sigma interpretation or resistivity methods. Estimated values of water saturation are as much as fifty percent lower than predicted by conventional interpretation of Sigma logs in the case of measurements affected by shoulder-bed effects, and as much as one hundred percent lower than predicted by the conventional interpretation method for measurements additionally affected by salty filtrate invasion. The key attributes of the combined petrophysical interpretation of multi-detector Sigma, neutron, and density measurements developed in this dissertation are that it explicitly enforces the physics of all nuclear measurements, honors the pressure and temperature dependency of reservoir fluid nuclear properties, and takes into account a-priori information such as mud-filtrate salinity, connate-water salinity, and bed-boundary locations. / text

Page generated in 0.0291 seconds