• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 10
  • 3
  • 1
  • Tagged with
  • 61
  • 61
  • 61
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Computational Models of Brain Energy Metabolism at Different Scales

Cheng, Yougan 11 June 2014 (has links)
No description available.
52

ROBUST AND EXPLICIT A POSTERIORI ERROR ESTIMATION TECHNIQUES IN ADAPTIVE FINITE ELEMENT METHOD

Difeng Cai (5929550) 13 August 2019 (has links)
The thesis presents a comprehensive study of a posteriori error estimation in the adaptive solution to some classical elliptic partial differential equations. Several new error estimators are proposed for diffusion problems with discontinuous coefficients and for convection-reaction-diffusion problems with dominated convection/reaction. The robustness of the new estimators is justified theoretically. Extensive numerical results demonstrate the robustness of the new estimators for challenging problems and indicate that, compared to the well-known residual-type estimators, the new estimators are much more accurate.
53

Multigrid algorithm based on cyclic reduction for convection diffusion equations

Lao, Kun Leng January 2010 (has links)
University of Macau / Faculty of Science and Technology / Department of Mathematics
54

Mathematical and numerical analysis of propagation models arising in evolutionary epidemiology / Analyse mathématique et numérique de modèles de propagation en épidémiologie évolutive

Griette, Quentin 02 June 2017 (has links)
Cette thèse porte sur différents modèles de propagation en épidémiologie évolutive. L'objectif est d'en faire une analyse mathématique rigoureuse puis d'en tirer des enseignements biologiques. Dans un premier temps nous envisageons le cas d'une population d'hôtes répartis de manière homogène dans un espace linéaire, dans laquelle se propage un pathogène pouvant muter entre deux phénotypes plus ou moins virulents. Ce phénomène de mutation est à l'origine d'une interaction entre les dynamiques évolutive et épidémiologique du pathogène. Nous étudions la vitesse de propagation de l'épidémie et l'existence de fronts progressifs, ainsi que l'influence sur la vitesse de différents facteurs biologiques, comme des effets stochastiques liés à la taille de la population d'hôtes (explorations numériques). Dans un deuxième temps nous envisageons une hétérogénéité spatiale périodique dans la population d'hôtes, et l'existence de fronts pulsatoires pour le système de réaction-diffusion (non-coopératif) associé. Enfin nous considérons un pathogène pouvant muter vers un grand nombre de phénotypes différents et étudions l'existence de fronts potentiellement singuliers, modélisant ainsi une concentration sur un trait optimal. / In this thesis we consider several models of propagation arising in evolutionary epidemiology. We aim at performing a rigorous mathematical analysis leading to new biological insights. At first we investigate the spread of an epidemic in a population of homogeneously distributed hosts on a straight line. An underlying mutation process can shift the virulence of the pathogen between two values, causing an interaction between epidemiology and evolution. We study the propagation speed of the epidemic and the influence of some biologically relevant quantities, like the effects of stochasticity caused by the hosts' finite population size (numerical explorations), on this speed. In a second part we take into account a periodic heterogeneity in the hosts' population and study the propagation speed and the existence of pulsating fronts for the associated (non-cooperative) reaction-diffusion system. Finally, we consider a model in which the pathogen is allowed to shift between a large number of different phenotypes, and construct possibly singular traveling waves for the associated nonlocal equation, thus modelling concentration on an optimal trait.
55

Propagation de fronts structurés en biologie - Modélisation et analyse mathématique / Propagation of structured fronts in biology - Modelling and Mathematical analysis

Bouin, Emeric 02 December 2014 (has links)
Cette thèse est consacrée à l'étude de phénomènes de propagation dans des modèles d’EDP venant de la biologie. On étudie des équations cinétiques inspirées par le déplacement de colonies de bactéries ainsi que des équations de réaction-diffusion importantes en écologie afin de reproduire plusieurs phénomènes de dynamique et d'évolution des populations. La première partie étudie des phénomènes de propagation pour des équations cinétiques. Nous étudions l'existence et la stabilité d'ondes progressives pour des modèles ou la dispersion est donnée par un opérateur hyperbolique et non par une diffusion. Cela fait entrer en jeu un ensemble de vitesses admissibles, et selon cet ensemble, divers résultats sont obtenus. Dans le cas d'un ensemble de vitesses borné, nous construisons des fronts qui se propagent à une vitesse déterminée par une relation de dispersion. Dans le cas d'un ensemble de vitesses non borné, on prouve un phénomène de propagation accélérée dont on précise la loi d'échelle. On adapte ensuite à des équations cinétiques une méthode basée sur les équations de Hamilton-Jacobi pour décrire des phénomènes de propagation. On montre alors comment déterminer un Hamiltonien effectif à partir de l'équation cinétique initiale, et prouvons des théorèmes de convergence.La seconde partie concerne l'étude de modèles de populations structurées en espace et en phénotype. Ces modèles sont importants pour comprendre l'interaction entre invasion et évolution. On y construit d'abord des ondes progressives que l'on étudie qualitativement pour montrer l'impact de la variabilité phénotypique sur la vitesse et la distribution des phénotypes à l'avant du front. On met aussi en place le formalisme Hamilton-Jacobi pour l'étude de la propagation dans ces équations de réaction-diffusion non locales.Deux annexes complètent le travail, l'une étant un travail en cours sur la dispersion cinétique en domaine non-borné, l'autre étant plus numérique et illustre l’introduction. / This thesis is devoted to the study of propagation phenomena in PDE models arising from biology. We study kinetic equations coming from the modeling of the movement of colonies of bacteria, but also reaction-diffusion equations which are of great interest in ecology to reproduce several features of dynamics and evolution of populations. The first part studies propagation phenomena for kinetic equations. We study existence and stability of travelling wave solutions for models where the dispersal part is given by an hyperbolic operator rather than by a diffusion. A set of admissible velocities comes into the game and we obtain various types of results depending on this set. In the case of a bounded set of velocities, we construct travelling fronts that propagate according to a speed given by a dispersion relation. When the velocity set is unbounded, we prove an accelerating propagation phenomena, for which we give the spreading rate. Then, we adapt to kinetic equations the Hamilton-Jacobi approach to front propagation. We show how to derive an effective Hamiltonian from the original kinetic equation, and prove some convergence results.The second part is devoted to studying models for populations structured by space and phenotypical trait. These models are important to understand interactions between invasion and evolution. We first construct travelling waves that we study qualitatively to show the influence of the genetical variability on the speed and the distribution of phenotypes at the edge of the front. We also perform the Hamilton-Jacobi approach for these non-local reaction-diffusion equations.Two appendices complete this work, one deals with the study of kinetic dispersal in unbounded domains, the other one being numerical aspects of competition models.
56

Efficient numerical methods to solve some reaction-diffusion problems arising in biology

Matthew, Owolabi Kolade January 2013 (has links)
Philosophiae Doctor - PhD / In this thesis, we solve some time-dependent partial differential equations, and systems of such equations, that governs reaction-diffusion models in biology. we design and implement some novel exponential time differencing schemes to integrate stiff systems of ordinary differential equations which arise from semi-discretization of the associated partial differential equations. We split the semi-linear PDE(s) into a linear, which contains the highly stiff part of the problem, and a nonlinear part, that is expected to vary more slowly than the linear part. Then we introduce higher-order finite difference approximations for the spatial discretization. Resulting systems of stiff ODEs are then solved by using exponential time differencing methods. We present stability properties of these methods along with extensive numerical simulations for a number of different reaction-diffusion models, including single and multi-species models. When the diffusivity is small many of the models considered in this work are found to exhibit a form of localized spatiotemporal patterns. Such patterns are correctly captured by our proposed numerical schemes. Hence, the schemes that we have designed in this thesis are dynamically consistent. Finally, in many cases, we have compared our results with those obtained by other researchers.
57

Mathematical models of the retina in health and disease

Roberts, Paul Allen January 2015 (has links)
The retina is the ocular tissue responsible for the detection of light. Its extensive demand for oxygen, coupled with a concomitant elevated supply, renders this tissue prone to both hypoxia and hyperoxia. In this thesis, we construct mathematical models of the retina, formulated as systems of reaction-diffusion equations, investigating its oxygen-related dynamics in healthy and diseased states. In the healthy state, we model the oxygen distribution across the human retina, examining the efficacy of the protein neuroglobin in the prevention of hypoxia. It has been suggested that neuroglobin could prevent hypoxia, either by transporting oxygen from regions where it is rich to those where it is poor, or by storing oxygen during periods of diminished supply or increased uptake. Numerical solutions demonstrate that neuroglobin may be effective in preventing or alleviating hypoxia via oxygen transport, but that its capacity for oxygen storage is essentially negligible, whilst asymptotic analysis reveals that, contrary to the prevailing assumption, neuroglobin's oxygen affinity is near optimal for oxygen transport. A further asymptotic analysis justifies the common approximation of a piecewise constant oxygen uptake across the retina, placing existing models upon a stronger theoretical foundation. In the diseased state, we explore the effect of hyperoxia upon the progression of the inherited retinal diseases, known collectively as retinitis pigmentosa. Both numerical solutions and asymptotic analyses show that this mechanism may replicate many of the patterns of retinal degeneration seen in vivo, but that others are inaccessible to it, demonstrating both the strengths and weaknesses of the oxygen toxicity hypothesis. It is shown that the wave speed of hyperoxic degeneration is negatively correlated with the local photoreceptor density, high density regions acting as a barrier to the spread of photoreceptor loss. The effects of capillary degeneration and treatment with antioxidants or trophic factors are also investigated, demonstrating that each has the potential to delay, halt or partially reverse photoreceptor loss. In addition to answering questions that are not accessible to experimental investigation, these models generate a number of experimentally testable predictions, forming the first loop in what has the potential to be a fruitful experimental/modelling cycle.
58

Modelagem e solução numérica de equações reação-difusão em processos biológicos

Rodrigues, Daiana Aparecida 29 August 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-04-11T19:27:27Z No. of bitstreams: 1 daianaaparecidarodrigues.pdf: 8225936 bytes, checksum: 96ec323f343f92c319f4e261145f9c6a (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-04-24T03:34:16Z (GMT) No. of bitstreams: 1 daianaaparecidarodrigues.pdf: 8225936 bytes, checksum: 96ec323f343f92c319f4e261145f9c6a (MD5) / Made available in DSpace on 2016-04-24T03:34:16Z (GMT). No. of bitstreams: 1 daianaaparecidarodrigues.pdf: 8225936 bytes, checksum: 96ec323f343f92c319f4e261145f9c6a (MD5) Previous issue date: 2013-08-29 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Fenômenos biológicos são todo e qualquer evento que possa ser observado nos seres vivos. O estudo desses fenômenos permite propor explicações para o seu mecanismo, a m de entender as causas e efeitos. Pode-se citar como exemplos de fenômenos biológicos o comportamento das células como respiração, reprodução, metabolismo e morte celular. Equações de reação-difusão são frequentemente utilizadas para modelar fenômenos bioló- gicos. Sistemas de reação-difusão podem produzir padrões espaciais estáveis a partir de uma distribuição inicial uniforme esse fenômeno é conhecido como instabilidade de Turing. Este trabalho apresenta a análise da instabilidade de Turing bem como resultados numéricos para a solução de três modelos biológicos, modelo de Schnakenberg, modelo de glicólise e modelo da coagulação sanguínea. O modelo de Schnakenberg é utilizado para descrever uma reação química autocatalítica e o modelo de glicólise é relativo ao processo de degradação metabólica da molécula de glicose para proporcionar energia para o metabolismo celular, esses dois modelos são frequentemente relatados na literatura. O terceiro modelo é mais recente e descreve o fenômeno da coagulação sanguínea. Nas soluções numéricas se utiliza o método das linhas onde a discretização espacial é feita através de um esquema de diferenças nitas. O sistema de equações diferencias ordinárias resultante é resolvido por um esquema de integração adaptativo, com a utilização de pacote para computação cientí ca da linguagem Python, Scipy. / Biological phenomena are all and any event that can be observed in living beings. The study of these phenomena enables us to propose explanations for its mechanisms in order to understand causes and e ects. One can cite as examples of biological phenomena the behavior of cells as respiration, reproduction, metabolism and cell death. Reactiondi usion equations are often used to model biological phenomena. Reaction-di usion systems can produce stable spatial patterns from a uniform initial distribution, this phenomenon is known as Turing instability. This dissertation presents an analysis of the Turing instability as well as numerical results for the solution of three biological models, model Schnakenberg, model of glycolysis and model of blood coagulation. The Schnakenberg model is used to describe an autocatalytic chemical reaction and glycolysis model refers to the process of metabolic breakdown of the glucose molecule to provide energy for cellular metabolism, these two models are frequently reported in the literature. The third model is newer and describes the phenomenon of blood coagulation. The method of lines is used in the numerical solutions, where the spatial discretization is done through a nite di erence scheme. The resulting system of ordinary di erential equations is then solved by an adaptive integration scheme with the use of the package for scienti c computing of Python language, Scipy.
59

Transition fronts and propagation speeds in diffusive excitable media / Fronts de transition et vitesses de propagation dans des milieux diffusifs excitables

Guo, Hongjun 11 June 2018 (has links)
Cette thèse porte sur les fronts de transition pour des équations de réaction-diffusion dans différents milieux. Les fronts de transition généralisent les notions habituelles de fronts progressifs ou pulsatoires. Les principaux résultats sont les suivants. Pour des réactions bistables, nous prouvons la monotonie en temps de tous les fronts de transition avec vitesse globale moyenne non nulle. Pour des réactions bistables périodiques en temps ou pour des réactions de type combustion, nous prouvons l’existence et l’unicité de la vitesse globale moyenne d’un front. De plus, nous montrons que les fronts presque plans sont en réalité plans et nous montrons l’existence de fronts de transitions non standard. Pour des réactions bistables périodiques en espace, nous montrons la continuité et la différentiabilité des vitesses et des profils de ces fronts pulsatoires par rapport à la direction e en supposant l’existence de fronts pulsatoires à vitesse non nulle dans toutes les directions $e$. Ensuite, nous prouvons que la vitesse de propagation d’un front de transition quelconque est comprise entre les vitesses minimales et maximales des fronts pulsatoires. Enfin, nous étudions les vitesses globales moyennes des fronts de transition bistables dans des domaines non bornés : domaines extérieurs ou domaines à branches multiples cylindriques. Dans ces deux types de domaines, nous prouvons l’existence et l’unicité de la vitesse globale moyenne de tous les fronts de transition sous certaines hypothèses. / This dissertation is concerned with transition fronts in various media, which generalize the standard notions of traveling fronts. The main results are as following. For bistable reaction, we prove the time monotonicity of all transition fronts with non-zero global mean speed, whatever shape their level sets may have. For time-periodic bistable reaction and combustion-type reaction, we prove the existence and the uniqueness of the global mean speed. Meantime, we show that almost-planar fronts are actually planar and we show the existence of non-standard transitions fronts in $\mathbb{R}^N$. For spatially periodic bistable reaction, we show some continuity and differentiability properties of the front speeds and profiles with respect to the direction $e$ by providing the existence of pulsating fronts with nonzero speed in all directions $e$. Then, we prove that the propagating speed of any transition front is bounded by the minimal speed and the maximal speed of pulsating fronts. Finally, we study the mean speed of bistable transition fronts in unbounded domains: exterior domains and domains with multiple cylindrical branches. In both domains, we prove the existence and uniqueness of the global mean speed of any transition front under some assumptions.
60

Contribution à l’analyse mathématique d’équations aux dérivées partielles structurées en âge et en espace modélisant une dynamique de population cellulaire / Contribution to the mathematical analysis of age and space structured partial differential equations describing a cell population dynamics model

Chekroun, Abdennasser 21 March 2016 (has links)
Cette thèse s'inscrit dans le cadre général de l'étude de la dynamique de populations. Elle porte sur la modélisation et l'analyse mathématique de l'hématopoïèse, le processus de production et de régulation des cellules sanguines. La population de cellules est perçue comme un milieu continu avec une structuration en âge et en espace. Nous avons commencé par analyser des modèles d'équations différentielles et aux différences à retard discret et distribué. Ces modèles à retard permettent de mettre en évidence des comportements particuliers tels que l'existence de solutions périodiques. Ensuite, nous avons pris en compte l'aspect spatial et la diffusion des cellules dans ces modèles, tout en sachant que la structuration en espace, dans le cas de l'hématopoïèse, a été très peu abordée par le passé. Un nouveau modèle a été obtenu du point de vue mathématique. Une étude d'existence d'ondes progressives est effectuée lorsque le domaine est non borné et lorsque le domaine est borné une étude de stabilité des états stationnaires ainsi que de l'existence d'une bifurcation de Hopf est réalisée / This thesis focuses on the study of population dynamics. It is devoted to the mathematical analysis and modeling of hematopoiesis, which is the process leading to the production and regulation of blood cells. The cell's population is seen as a continuous medium structured in age and space. We analyzed models of differential-difference system with discrete- and distributed -delay. These models can exhibit specific behaviors such as the existence of periodic solutions. Then we consider a space structuration and the diffusion of cells in such models, knowing that the space structure has not been widely studied in the case of hematopoiesis. A new model is obtained from the mathematical point of view. We studied the existence of traveling waves when the domain is unbounded. When the domain is bounded, the stability of stationary solutions and the existence of a Hopf bifurcation are obtained

Page generated in 0.1704 seconds