• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 50
  • 10
  • 10
  • 10
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 202
  • 202
  • 70
  • 64
  • 58
  • 58
  • 51
  • 42
  • 41
  • 40
  • 35
  • 32
  • 31
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

[pt] REFORÇO DAS CONDIÇÕES DE ESTABILIDADE DE TENSÃO NA OPERAÇÃO DO SISTEMA ELÉTRICO / [en] VOLTAGE STABILITY REINFORCEMENT ON ELETRIC POWER SYSTEMS

18 June 2002 (has links)
[pt] Na medida em que as redes de transmissão de energia elétrica ficaram mais malhadas, os limites térmicos de linhas e transformadores passaram a restringir menos a transmissão de potência. Similarmente, o uso de sistemas estáticos de compensação de potência reativa e estabilizadores na excitação dos geradores aumentou a capacidade de transmissão de potência nos sistemas antes limitados por problemas de estabilidade angular. Hoje as linhas de transmissão estão mais carregadas e isto deu origem ao problema da instabilidade de tensão.Neste trabalho, as condições de estabilidade de tensão são avaliadas por condições nodais associadas ao máximo fluxo de potência ativa e reativa que pode ser transmitida dos geradores para as cargas. Estas condições nodais são avaliadas por uma ferramenta analítica com base em modelo matemático, simples mas poderoso, de uma direta interpretação física do fenômeno.Índices abrangentes e significativos são obtidos a partir da matriz Jacobiano do sistema. Eles indicam a região de operação na curva V x P, Q , a margem em MVA para o máximo carregamento, a importância relativa entre as barras, uma medida de dificuldade de transmissão, e o índice de influência que relaciona as margens de potência entre dois pontos de operação, o que caracteriza a eficácia ou não, por exemplo, de uma ação de controle. O método proposto nesta tese para reforçar as condições de estabilidade de tensão consiste de três etapas seqüenciais. Primeiramente, avalia-se as condições de estabilidade de tensão determinando-se a barra crítica da rede através do cálculo da margem de potência. Determinase o caminho de transmissão crítico, conceito novo usado neste trabalho, entre os vários existentes para transportar potência de geradores para aquela barra crítica. Determina-se então o ramo crítico deste caminho, conceito introduzido neste trabalho. Um programa de fluxo de potência ótimo é usado para aliviar o carregamento desse ramo crítico. A seqüência começa novamente com a avaliação das condições no novo ponto de operação. Todas as etapas são repetidas até que as margens resultantes sejam julgadas adequadas.Barras de carga, de geração e de tensão controlada por compensadores de potência reativa em paralelo com a rede podem ser eleitas como a barra crítica. Somente o método de avaliação nodal usado é capaz de lidar com qualquer tipo de barra. Da mesma forma, o procedimento proposto para reforçar as condições de estabilidade de tensão é adequado para qualquer tipo de barra.São mostrados inúmeros testes, tanto ilustrativos como com sistemas reais, em pontos de operação também reais, inclusive na situação de iminente colapso de tensão. Verifica-se que o método proposto realmente produz os resultados desejados. / [en] As the electric power transmission networks became more interconnected, the thermal limits of lines and transformers restrict less the power transmission. Similarly, the use of static systems of reactive power compensation increases the power transmission capacity in systems whereas before they were limited by problems of angular stability. Actually, transmission lines are more loaded and create the voltage stability problem. In this work, voltage stability conditions are assessment by nodal conditions associated to the maximum active and reactive power flow that can be transmitted from generators to loads.These nodal conditions are assessment using an analytical tool, based on a simple but sound mathematical background, modelling a straightforward physical haracterisation of the phenomena. Comprehensive and meaningful indices are obtained from system Jacobean matrix. They indices indicate the operating region in V x P,Q curve, the MVA margin to the maximum load, the relative importance among buses, the buses loading ranking, a measure of difficult for power transmission, and the influence indices that relates power margins between two operating points, which characterises efficiency or not, for example, of a control action.In order to reinforce voltage stability condition, the thesis proposes a method consisting of three sequential stages. Firstly, voltage stability is analysed, deciding network critical bus using the power margin calculation. Next, the critical transmission path is decided, which is a new concept used in this work, in between several existing used to transport generators power for that critical bus. Then, critical branch is obtained through this path, concept introduced in this work. An optimal power flow program is used to alleviate load flow in the critical branch. The sequence starts again with the stability condition assessment in the new operating point. All stages are repeated until resultant margins are judged suitable. Load, generation and voltage-controlled bus by shunt reactive power compensators could be considered critical bus. The nodal method used is the only one capable of handling any bus type.Several cases are shown, illustrative as well as real systems using real operating points,including imminent voltage collapse situations. It is verified that the proposed method really produces the desired results.
182

SW nadstavba analyzátoru sítí pro automatický návrh nn kompenzační jednotky na základě měření / A power network analyzer SW upgrade implementing LV PFC capacitors bank design on the basis of measurement

Bernáth, František January 2010 (has links)
Thesis is devoted to a problem of Power Factor Correction on the low voltage level. It has still its own difficulties despite the fact that topic moved through long development. The main goal of this work is to offer reader variable procedure considering design process. It is based on use of measured data of network analyzer Meg30. The design algorithm has to share a maximum of eventual influencing factors. Therefore the body of master thesis goes through detailed analysis of Power Factor Correction.
183

Automatická regulace napětí decentrálních zdrojů v síti vysokého napětí E.ON / Automatic Voltage Control of Distributed Generation in the E.ON Medium Voltage Grid

Skoupý, Martin January 2017 (has links)
Content of this master`s thesis is theoretical introduction of the power factor, reactive power and voltage control of decentralised sources of the high voltage in the E.ON distribution network. Furthermore, the thesis deals with possibilities of regulating the power factor and reactive power, carried on above-mentioned resources, in other to stabilize the voltage and overflow control of the reactive power to higher voltage level. The practical part describes how the automatic power factor and voltage control had been put into action by central management control within the headquaters dispatching systém of the company. Following chapter acquaints a reader with information of how the automatic power factor and voltage control had been tested and how it is utilized in practice. In the conclusion the work summarizes results and effects of the power factor regulation and voltage control to stabilize the voltage and the overflow of the reactive power in the E.ON network.
184

Probabilistische Modellierung dezentraler Energieanlagen und Sekundärtechnik für die Verteilnetzplanung

Dallmer-Zerbe, Kilian 05 May 2017 (has links)
Der Ausbau dezentraler Energieanlagen wie fotovoltaischen Anlagen beeinflusst die Netzzustände signifikant. Dabei ist unsicher, wo und in welchem Maße deren Ausbau zukünftig erfolgt. Es ist nun an den Netzbetreibern gleichzeitig die aktuellen Herausforderungen zu meistern und die Netzplanung und -regelung für die Zukunft zu aktualisieren. Eine statistische Methode wird entwickelt, die Verteilnetzplanung unter Einsatz von quasi-stationär modellierten ”Smart Grid”-Lösungen wie Blindleistungsreglern und regelbaren Ortsnetztransformatoren ermöglicht. Durch Stichprobenverfahren werden Unsicherheiten wie Ort, Größe und Leistungsprofile der Energieanlagen in das Netzmodell eingebunden. Diese als probabilistischer Lastfluss bekannte Methode wird durch Gütemaße im Bereich geringer Kombination evaluiert. Beispiele probabilistischer Netzplanung werden an Netztopologien präsentiert.:Abbildungsverzeichnis iv Tabellenverzeichnis viii Abkürzungsverzeichnis viii Formelzeichen x 1. Einleitung 1 1.1. Definition der Herausforderung 1 1.2. Netzplanung 2 1.3. Ziel der Arbeit3 1.4. Struktur der Arbeit 5 2. Normen und technische Rahmenbedingungen 6 2.1. DIN EN 50160 6 2.2. VDE-AR-N 41057 2.3. Technische Anschlussbedingungen 9 2.4. Erneuerbare-Energien-Gesetz 11 2.5. Zusammenfassung 12 3. Gliederung probabilistischer Lastflussverfahren 13 3.1. Punktschätzende und iterative Verfahren 14 3.2. Gliederung nach Stichprobenverfahren 15 3.3. Reduzierung des Grundraumes 16 3.3.1. Cluster-Analyse17 3.3.2. Ausreißerbehandlung 21 3.3.3. Wahrscheinlichkeits- und Verteilungsfunktion 21 3.4. Methode der Stichprobenziehung 22 3.4.1. Einfache Zufallsstichprobe 23 3.4.2. Systematische Stichprobe24 3.4.3. Geschichtete Zufallsstichprobe 25 3.5. Reduzierung des Stichprobenraumes 26 3.6. Invertierung von Stichproben 26 3.7. Zusammenfassung 27 4. Vergleich probabilistischer Verfahren 28 4.1. Nicht-Gaußsche Eingangsdaten 28 4.2. Bestimmung notwendiger Clusterzentren 29 4.3. Erstellung des Stichprobenraumes pro Kombination 31 4.4. Gütemaße und Effizienz von Stichprobenverfahren 33 4.4.1. Median 34 4.4.2. Median der absoluten Abweichung vom Median 37 4.4.3. Maximale normierte Perzentilsdifferenz 40 4.4.4. Zusammenfassung 43 4.5. Streuung der Stichprobenverfahren bei wiederholter Ausführung 44 4.5.1. Median 44 4.5.2. Median der absoluten Abweichung vom Median 45 4.5.3. Maximale normierte Perzentilsdifferenz 47 4.5.4. Zusammenfassung 49 4.6. Sensitivität bei unterschiedlicher Anzahl statistischer Netzknoten 52 4.6.1. Median 52 4.6.2. Median der absoluten Abweichung vom Median 54 4.6.3. Maximale normierte Perzentilsdifferenz 56 4.6.4. Zusammenfassung58 4.7. Notwendige Kombinationen für Ziel-Gütemaße 59 5. Software-basierte probabilistische Verteilnetzplanung 61 5.1. Struktur der entwickeltenSoftware 61 5.2. Last- und Erzeugungsprofile 63 5.2.1. Synthetische Haushaltslast 63 5.2.2. Elektrofahrzeug 64 5.2.3. Wärmepumpe 65 5.2.4. Photovoltaische Anlagen 66 5.2.5. Windenergieanlagen 66 5.3. Optimale Auswahl nach Regeleffizienz 67 5.4. DezentraleWirkleistungsregler 68 5.4.1. P(U)-Regler für Schnellladeinfrastruktur 68 5.4.2. P(U)-Regelung von Wärmepumpen gemäß thermischer Grenzen 69 5.5. Blindleistungsregler 72 5.5.1. Zentrale Steuerung 73 5.5.2. Dezentrale Regelung 75 5.5.3. Verteilte Regelung 79 5.6. Regelbarer Ortsnetztransformator 83 5.7. Automatisierte Netzausbauplanung 86 5.7.1. Transformatortausch 87 5.7.2. Vergrößerung des Leiterquerschnitts 89 5.7.3. Zusätzliche Stichleitung 89 5.7.4. Kostenberechnung 90 5.8. Zusammenfassung 91 6. Anwendungsfälle probabilistischer Planung 92 6.1. Verwendete Verteilnetzmodelle 94 6.2. Abschätzung der Auswirkung von PV-Anlagenausbau 95 6.2.1. Unterschiede der Planungsverfahren zur Schätzung der PVA-Nennleistung 95 6.2.2. Einfluss der Blindleistungsregelung auf mögliche Anlagenleistung 100 6.3. Abschätzung von Netzauslastungen in Wohngebieten 106 6.3.1. Annahmen und Szenarien 107 6.3.2. Auswertung der Knotenspannungen 110 6.3.3. Auswertung der Betriebsmittelauslastungen 116 6.4. Zusammenfassung 118 7. Zusammenfassung und Ausblick 119 Literaturverzeichnis 121 Anhang 135 A. Statistische Merkmale 135 A.1. Empirische Wahrscheinlichkeitsfunktion 135 A.2. Kumulative empirische Verteilungsfunktion 136 A.3. Quantile 136 A.4. Interquartilsabstand 137 B. PLF-Methoden 138 B.1. Veröffentlichte PLF-Methoden 138 B.2. Test Gaußsche Verteilung 138 C. Definitionen 140 C.1. Symbole für Flussdiagramme 140 C.2. Zählpfeilsystem 140 D. Ergänzende Ergebnisse 142 E. Danksagung 143 / Development of distributed energy units such as photovoltaic systems affects grid states significantly. It is uncertain, where and to what extent the development of these units is carried out in the future. It is now up to the distribution system operator to cope with todays grid challenges and to update grid planning and control for the future. A statistical method is developed, which incorporates quasi-stationary modeled ”smart grid” solutions such as reactive power controllers and on-load tap-changers. Uncertainties such as location, size and power profiles of energy systems are integrated into the grid model by sampling. This method is known as probabilistic load flow and is evaluated by quality measures at low combinations. Examples on probabilistic grid planning of different grid topologies are presented.:Abbildungsverzeichnis iv Tabellenverzeichnis viii Abkürzungsverzeichnis viii Formelzeichen x 1. Einleitung 1 1.1. Definition der Herausforderung 1 1.2. Netzplanung 2 1.3. Ziel der Arbeit3 1.4. Struktur der Arbeit 5 2. Normen und technische Rahmenbedingungen 6 2.1. DIN EN 50160 6 2.2. VDE-AR-N 41057 2.3. Technische Anschlussbedingungen 9 2.4. Erneuerbare-Energien-Gesetz 11 2.5. Zusammenfassung 12 3. Gliederung probabilistischer Lastflussverfahren 13 3.1. Punktschätzende und iterative Verfahren 14 3.2. Gliederung nach Stichprobenverfahren 15 3.3. Reduzierung des Grundraumes 16 3.3.1. Cluster-Analyse17 3.3.2. Ausreißerbehandlung 21 3.3.3. Wahrscheinlichkeits- und Verteilungsfunktion 21 3.4. Methode der Stichprobenziehung 22 3.4.1. Einfache Zufallsstichprobe 23 3.4.2. Systematische Stichprobe24 3.4.3. Geschichtete Zufallsstichprobe 25 3.5. Reduzierung des Stichprobenraumes 26 3.6. Invertierung von Stichproben 26 3.7. Zusammenfassung 27 4. Vergleich probabilistischer Verfahren 28 4.1. Nicht-Gaußsche Eingangsdaten 28 4.2. Bestimmung notwendiger Clusterzentren 29 4.3. Erstellung des Stichprobenraumes pro Kombination 31 4.4. Gütemaße und Effizienz von Stichprobenverfahren 33 4.4.1. Median 34 4.4.2. Median der absoluten Abweichung vom Median 37 4.4.3. Maximale normierte Perzentilsdifferenz 40 4.4.4. Zusammenfassung 43 4.5. Streuung der Stichprobenverfahren bei wiederholter Ausführung 44 4.5.1. Median 44 4.5.2. Median der absoluten Abweichung vom Median 45 4.5.3. Maximale normierte Perzentilsdifferenz 47 4.5.4. Zusammenfassung 49 4.6. Sensitivität bei unterschiedlicher Anzahl statistischer Netzknoten 52 4.6.1. Median 52 4.6.2. Median der absoluten Abweichung vom Median 54 4.6.3. Maximale normierte Perzentilsdifferenz 56 4.6.4. Zusammenfassung58 4.7. Notwendige Kombinationen für Ziel-Gütemaße 59 5. Software-basierte probabilistische Verteilnetzplanung 61 5.1. Struktur der entwickeltenSoftware 61 5.2. Last- und Erzeugungsprofile 63 5.2.1. Synthetische Haushaltslast 63 5.2.2. Elektrofahrzeug 64 5.2.3. Wärmepumpe 65 5.2.4. Photovoltaische Anlagen 66 5.2.5. Windenergieanlagen 66 5.3. Optimale Auswahl nach Regeleffizienz 67 5.4. DezentraleWirkleistungsregler 68 5.4.1. P(U)-Regler für Schnellladeinfrastruktur 68 5.4.2. P(U)-Regelung von Wärmepumpen gemäß thermischer Grenzen 69 5.5. Blindleistungsregler 72 5.5.1. Zentrale Steuerung 73 5.5.2. Dezentrale Regelung 75 5.5.3. Verteilte Regelung 79 5.6. Regelbarer Ortsnetztransformator 83 5.7. Automatisierte Netzausbauplanung 86 5.7.1. Transformatortausch 87 5.7.2. Vergrößerung des Leiterquerschnitts 89 5.7.3. Zusätzliche Stichleitung 89 5.7.4. Kostenberechnung 90 5.8. Zusammenfassung 91 6. Anwendungsfälle probabilistischer Planung 92 6.1. Verwendete Verteilnetzmodelle 94 6.2. Abschätzung der Auswirkung von PV-Anlagenausbau 95 6.2.1. Unterschiede der Planungsverfahren zur Schätzung der PVA-Nennleistung 95 6.2.2. Einfluss der Blindleistungsregelung auf mögliche Anlagenleistung 100 6.3. Abschätzung von Netzauslastungen in Wohngebieten 106 6.3.1. Annahmen und Szenarien 107 6.3.2. Auswertung der Knotenspannungen 110 6.3.3. Auswertung der Betriebsmittelauslastungen 116 6.4. Zusammenfassung 118 7. Zusammenfassung und Ausblick 119 Literaturverzeichnis 121 Anhang 135 A. Statistische Merkmale 135 A.1. Empirische Wahrscheinlichkeitsfunktion 135 A.2. Kumulative empirische Verteilungsfunktion 136 A.3. Quantile 136 A.4. Interquartilsabstand 137 B. PLF-Methoden 138 B.1. Veröffentlichte PLF-Methoden 138 B.2. Test Gaußsche Verteilung 138 C. Definitionen 140 C.1. Symbole für Flussdiagramme 140 C.2. Zählpfeilsystem 140 D. Ergänzende Ergebnisse 142 E. Danksagung 143
185

Voltage Stability and Reactive Power Provision in a Decentralizing Energy System: A Techno-economic Analysis

Hinz, Fabian 06 December 2017 (has links)
Electricity grids require the ancillary services frequency control, grid operation, re-establishment of supply and voltage stability for a proper operation. Historically, conventional power plants in the transmission grid were the main source providing these services. An increasing share of decentralized renewable energy in the electricity mix causes decreasing dispatch times for conventional power plants and may consequently lead to a partial replacement of these technologies. Decentralized energy sources are technically capable of providing ancillary services. This work focuses on the provision of reactive power for voltage stability from decentralized sources. The aim is to answer the question of how voltage stability and reactive power management can be achieved in a future electricity system with increasing shares of decentralized renewable energy sources in an economical and efficient way. A methodology that takes reactive power and voltage stability in an electricity system into account is developed. It allows for the evaluation of the economic benefits of different reactive power supply options. A non-linear and a linearized techno-economic grid model are formulated for this purpose. The analysis reveals an increasing importance of reactive power from the distribution grid in future development scenarios, in particular if delays in grid extension are taken into account. The bottom-up assessment indicates a savings potential of up to 40 mio. EUR per year if reactive power sources in the distribution grid provide reactive power in a controlled manner. Although these savings constitute only a small portion of the total cost of the electricity system, reactive power from decentralized energy sources contributes to the change towards a system based on renewable energy sources. A comparison of different reactive power remuneration mechanisms shows that a variety of approaches exist that could replace the inflexible mechanisms of obligatory provision and penalized consumption of reactive power that are mostly in place nowadays.
186

Lillgrund Wind Farm Modelling and Reactive Power Control

Boulanger, Isabelle January 2009 (has links)
The installation of wind power plant has significantly increased since several years due to the recent necessity of creating renewable and clean energy sources. Before the accomplishment of a wind power project many pre-studies are required in order to verify the possibility of integrating a wind power plant in the electrical network. The creation of models in different software and their simulation can bring the insurance of a secure operation that meets the numerous requirements imposed by the electrical system. Hence, this Master thesis work consists in the creation of a wind turbine model. This model represents the turbines installed at Lillgrund wind farm, the biggest wind power plant in Sweden. The objectives of this project are to first develop an accurate model of the wind turbines installed at Lillgrund wind farm and further to use it in different kinds of simulations. Those simulations test the wind turbine operating according to different control modes. Also, a power quality analysis is carried out studying in particular two power quality phenomena, namely, the response to voltage sags and the harmonic distortion. The model is created in the software PSCAD that enables the dynamic and static simulations of electromagnetic and electromechanical systems. The model of the wind turbine contains the electrical machine, the power electronics (converters), and the controls of the wind turbine. Especially, three different control modes, e.g., voltage control, reactive power control and power factor control, are implemented, tested and compared. The model is tested according to different cases of voltage sag and the study verifies the fault-ride through capability of the turbine. Moreover, a harmonics analysis is done. Eventually the work concludes about two power quality parameters.
187

Consensus Control for Power Sharing in an Islanded Microgrid Using an Adaptive Virtual Impedance Approach

Alsafran, Ahmed Sulaiman, . January 2020 (has links)
No description available.
188

Reactive power management capabilities of Swedish sub-transmission and medium voltage level grid

Tomaszewski, Michal January 2018 (has links)
Rising penetration of renewable energy sources in electric power grids isboth a challenge and an opportunity to optimally utilize the potential of eitherwind or PV energy sources, to stabilize operation of future power systems.Bi-directional ows between distribution and transmission system operatorscause signicant problems with keeping the voltages in the grid within admissiblelimits. This paper contains description of Oland's island mediumandlow-voltage electric power grid, ranging from 0.4 kV to 130 kV in thepurpose of quasi-static analysis of active and reactive power ows in the system.Goal of the analysis is to optimize reactive power exchange at the pointof connection with the mainland grid. In the analyzed grid system, thereis an enormous, 190 % penetration of wind sources. Capacity of the windparks connected to dedicated buses totals to 136.1 MW, that supply up to90.5 MW of load. With industry-wise reactive power capability limits, totalcontribution of wind parks reaches almost 66 MVAr, enabling to compensatedecits and extra surpluses of the reactive power in the grid. Presentedsystem is connected to the mainland's grid through one point of connection,which is simulated as Thevenin equivalent circuit. Main objective of thethesis is to test and analyze viable solutions to minimize reactive power exchangeat the point of connection at Stavlo substation connecting Oland'sand Sweden's electric grid keeping valid all necessary contingencies enforcedby current grid codes applied in Sweden as well as thermal limits of the linesand voltage limits of the system. Furthermore, state of the art of currentreactive power compensation methodologies and most promising techniquesto eciently and eectively control reactive power ow are outlined. Droopcontrol methodologies, with focus on global and local objectives, and smartgrid solutions opportunities are being tested and modeled by the authors andare comprehensively presented in this paper. Moreover, economic costs ofcontrol methods are compared. Analysis of active power losses in the systemas well as cost of implementation of alternative solutions is presented, wheremost nancially viable solutions are outlined, giving brief outlook into futureperspectives and challenges of electric power systems. It is shown that controllabilityof reactive power support by wind turbine generators can enhanceoperation of electric power grids, by keeping the reactive power ow minimizedat the boundary between grids of distribution and transmission systemoperators. Furthermore, results indicate that extra reactive power supportby wind turbine generators can lead to diminishment of active power losses inthe system. Presented system is being modeled in the PSS/E software dedicatedfor power system engineers with use of Python programming languages.Analysis of data was done either in Python or R related environments. Thesiswas written with cooperation between KTH and E.On Energidistribution AB. / Hogre genomslagskraft av förnyelsebara energikällor i elnäteten är bådeen utmaning och möjlighet för att optimalt kunna utnyttja potentialen av vindkraft och PV källor, med avseende på att stabilisera driften av framtida elkraftsystem. Tvåvägsflöden mellan distributionoch transmissionsoperatörer orsakar betydande problem att hålla spänningen i nätet inom tillåtna gränsvärden.Denna uppsats innehåller en beskrivning av Ö lands mellanoch lågspänningsnät,på 0.4 kV till 130 kV i syftet att utföra en kvasistatisk analys av aktiva och reaktiva effektflöden i systemet. Målet med analysen är att optimera det reaktiva effektutbytet i kopplingspunkten med fastlandets nät. I det analyserade systemet, finns det en enorm potential på 190% genomslagskraft av vindkraft. Kapaciteten på vindkraftsparker kopplade till medtagna samlingsskenor i systemet uppgår till 136,1 MW, som tillgodoser upp till 90.5 MW last. Med industrimässigt begränsad reaktiv effektkapabilitet, uppgår vindkraftsparkernas bidrag till nästan 66 MVAr, vilken möjliggör kompensation för underskott och överskott av reaktiv effekt i nätet. Det presenterade systemet är kopplat till fastlandet genom en kopplingspunkt, där fastlandet är simulerat som en Thevenin ekvivalent. Huvudsakliga målet med denna uppsats är att testa och analysera gångbara lösningar för att minimera det reaktiva effektutbytet vid kopplingspunkten i Stävlö, som kopplar ihop Ö land med resterande nät i Sverige, samtidigt som alla nödvändiga villkor enligt nuvarande nätkoder i Sverige bibehålls, liksom termiska gränser för ledningarna och spanningsgränser för systemet. Ytterligare beskrivs den bästa tillgängliga tekniken som finns idag för reaktiv effektkompensation, och de mest lovande teknikerna för att effektivt och verkningsfullt kontrollera reaktiva effektflöden. Droop-kontroll-metodologier, med fokus på globala och lokala tillämpningar, och smarta nät-möjligheter testas och modelleras av författarna och presenterar djupgående i detta arbete. Dessutom jämförs ekonomiska kostnader för olika kontrollmetoder. Analyser av aktiva effektförluster i systemet samt kostnader för implementation av alternativa lösningar presenteras, där de flesta gångbara losningar behandlas, och ger en överskådlig bild av framtida perspektiv och utmaningar i elkraftsystemet. Det visas att vindturbiners kontroll av reaktiv effekt, kan förbättra driften av elnäten, genom att minimera det reaktiva effektflödesutbytet i gränsen mellan distributionoch transmissionsoperatörers nät. Ytterligare pekar resultat på att extra understöd av reaktiv effekt från vindturbiner kan leda till förminskning av aktiva förluster i systemet. Det presenterade systemet modelleras i mjukvaruprogrammet PSS/E dedikerat för elkraftsingenjörer med hjälp av Python. Analys av data gjordes antingen i Pythoneller R-relaterade miljöer. Detta arbete har gjorts tillsam-mans med KTH och E.ON Energidistribution AB.
189

Blindleistungsbereitstellung aus Flächenverteilnetzen - praktische Umsetzung in einem Feldtest

Kreutziger, Markus, Wende-von-Berg, Sebastian, Krahmer, Sebastian, Schegner, Peter 19 March 2024 (has links)
Im Rahmen des Beitrags sollen das Potenzial der Blindleistungsbereitstellung und mögliche Regelungskonzepte im Kontext von Redispatch 2.0 dargestellt werden. Ein umfangreicher Feldtest zeigt das Zusammenspiel von Übertragungs und Verteilnetzbetreibern bezüglich einer spannungsebenenübergreifenden Blindleistungsregelung auf. Neben der Konzeption und Entwicklung aller Systemkomponenten wurden die Funktionalität einer aktiven Blindleistungsregelung und deren Wirkung auf den realen Netzbetrieb evaluiert.
190

Energiewende Sachsen – Aktuelle Herausforderungen und Lösungsansätze

26 August 2015 (has links) (PDF)
Die Bundesregierung plant im Rahmen der Energiewende den Anteil von erneuerbaren Energien an der Stromerzeugung in Deutschland von heute rund 25% auf 80% bis zum Jahr 2050 auszubauen. Damit stehen auch dem Stromsektor in Sachsen grundlegende Veränderungen bevor. Derzeit leistet im Freistaat Sachsen die Braunkohle den größten Beitrag zur Elektrizitätsbereitstellung. Mit dem zunehmenden Ausbau an erneuerbaren Energien steigt der Anteil dargebotsabhängiger Energieträger. Daraus resultieren technische und wirtschaftliche Herausforderungen für das bestehende Energiesystem, wie z.B. die künftige Bereitstellung von Systemdienstleistungen. Mit diesen und weiteren Fragestellungen zur Transformation des Elektrizitätssystems haben sich Nachwuchswissenschaftler der TU Dresden in den vergangenen zwei Jahren im Rahmen des vom Europäischen Sozialfonds – ESF geförderten Projekts EnerSAX auseinander gesetzt. Neben der Erstellung einer Potenzialanalyse für Sachsen wurden sowohl technische Fragestellungen,wie z.B. die Auswirkungen der Integration erneuerbarer Energien auf die Übertragungs-, Verteilungs-und Niederspannungsnetze, als auch ökonomische Fragestellung, wie z.B. die künftige Ausgestaltung der Regelenergiemärkte, untersucht. Durch die Zusammenarbeit der Nachwuchsforscher aus den Bereichen der Elektrotechnik und Energiewirtschaft konnten so integrierte Lösungsansätze zur Ausgestaltung einer weitgehend auf erneuerbaren Energien beruhenden Energieversorgung mit dem Fokus auf Sachsen im transnationalen Kontext erarbeitet werden. Die wesentlichen Ergebnisse aus dem Projekt werden in diesem Buch vorgestellt.

Page generated in 0.2544 seconds