• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 15
  • 5
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 56
  • 19
  • 18
  • 16
  • 11
  • 10
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Enhancement of Light Emission from Metal Nanoparticles Embedded Graphene Oxide

Karna, Sanjay K. 05 1900 (has links)
A fully oxidized state of graphene behaves as a pure insulating while a pristine graphene behaves as a pure conducting. The in-between oxide state in graphene which is the controlled state of oxide behaves as a semiconducting. This is the key condition for tuning optical band gap for the better light emitting property. The controlling method of oxide in graphene structure is known as reduction which is the mixed state of sp2 and sp3 hybrid state in graphene structure. sp2 hybridized domains correspond to pure carbon-carbon bond i.e. pristine graphene while sp3 hybridized domains correspond to the oxide bond with carbon i.e. defect in graphene structure. This is the uniqueness of the graphene-base material. Graphene is a gapless material i.e. having no bandgap energy and this property prevents it from switching device applications and also from the optoelectronic devices applications. The main challenge for this material is to tune as a semiconducting which can open the optical characteristics and emit light of desired color. There may be several possibilities for the modification of graphene-base material that can tune a band gap. One way is to find semiconducting property by doping the defects into pristine graphene structure. Other way is oxides functional groups in graphene structure behaves as defects. The physical properties of graphene depend on the amount of oxides present in graphene structure. So if there are more oxides in graphene structure then this material behaves as a insulating. By any means if it can be reduced then oxides amount to achieve specific proportion of sp2 and sp3 that can emit light of desired color. Further, after achieving light emission from graphene base material, there is more possibility for the study of non-linear optical property. In this work, plasmonic effect in graphene oxide has been focused. Mainly there are two kinds of plasmon effects have been studied, one is long range (surface) and short range (localized) plasmon. For long range plasmon gold thin film was deposited on partially reduced graphene oxide and for short range plasmon silver nanoparticles have used. Results show that there are 10-fold enhancement in light emission from partial graphene oxide coated with gold thin film while 4-fold enhancement from reduced graphene oxide solution with silver nanoparticles. Chemical method and photocatalytic method have been employed for the reduction of graphene oxide for the study of surface plasmon and localized plasmon. For the characterization UV-Vis spectrometer for absorption, spectrofluorophotometer for fluorescent emission, Raman spectrometer for material characterization, photoluminescence and time resolved photoluminescence have been utilized. Silver and gold nanoparticles are spherical of average size of 80 nm and 40 nm have been used as plasmons.
42

Facile Fabrication of Functionally Graded Graphene Films for Transient Electronics

Bhatkar, Omkar S. January 2018 (has links)
No description available.
43

Síntese e processamento de compósito cerâmico zircônia-grafeno / Synthesis and processing of zirconia-graphene ceramic composite

Manarão, Diego Santos 27 February 2018 (has links)
O objetivo desse trabalho foi desenvolver um compósito cerâmico de zircônia-grafeno para aplicação odontológica. Este estudo avaliou o efeito do pó de partida, concentração de grafeno e da temperatura de sinterização sobre as propriedades mecânicas (dureza e tenacidade à fratura) do compósito desenvolvido. Para isto foram sintetizados os pós de Y-TZP a partir de soluções de óxido-cloreto de zircônio e cloreto de ítrio na proporção desejada de 3mol% através da rota de co-precipitação em solução de hidróxido de amônio seguido por uma série de lavagens em água, etanol e butanol com posterior destilação azeotrópica, secagem, moagem e calcinação. O grafeno foi obtido a partir da exfoliação química de grafite pelo método de Hummers [40] modificado por Marcano [39], o que resultou em um gel acastanhado que foi submetido a lavagem por centrifugação, secagem e desaglomeração em almofariz de ágata, resultando, por fim, no óxido de grafeno. Uma segunda etapa foi o processo de redução química com ácido ascórbico para obtenção de óxido de grafeno reduzido, um pó de coloração escura que foi adicionado à Y-TZP para a obtenção do compósito nas diversas concentrações (em mol%) que foram estudadas: (0,01%, 0,05%, 0,10%, 0,50%, 1,00% e 2,00%). Os pós foram caracterizados por termogravimetria, difração de raios X e espectroscopia (FT-IR). Os espécimes foram confeccionados em matriz metálica cilíndrica e sinterizados em forno tubular em atmosfera inerte. Outros espécimes foram confeccionados em matriz de grafite de alta densidade e sinterizados por Spark Plasma Sintering (SPS). Todas as amostras foram caracterizadas por meio de ensaios de densidade, dureza Vickers, tenacidade à fratura e microscopia eletrônica de varredura. Os maiores valores de densidade relativa foram observados para as amostras sinterizadas em SPS, sendo que se obteve valor de densidade relativa de 98,7 % para a concentração de 0,50% de grafeno e 98,4% para a Y-TZP pura. Por outro lado, o maior valor encontrado em sinterização em atmosfera a 1400°C sem a presença de H2 para Y-TZP pura foi da ordem de 96,76%. Os valores de dureza foram maiores nas amostras sinterizadas em SPS, no entanto a tenacidade à fratura mostrou não se alterar em função do conteúdo de grafeno. As fotomicrografias de MEV mostraram que houve uma variação de tamanho de grão de acordo com a presença do grafeno e do método de sinterização. De acordo com os resultados obtidos neste trabalho foi possível concluir que o processamento desenvolvido permitiu a criação de um compósito cerâmico zircônia-grafeno que pôde ser caracterizado por diversos métodos analíticos. A densidade teórica do compósito desenvolvido não foi alcançada por meio de nenhum dos métodos de sinterização utilizados (Tubular ou SPS) e nem variando-se a temperatura. Para espécimes sinterizados em atmosfera inerte, a maior temperatura de sinterização (1400°C) e a presença do gás H2 não melhorou a densificação. Além disso, esses espécimes tiveram aumento da dureza com o aumento da concentração de grafeno, entretanto, a sua tenacidade à fratura não foi afetada pelo teor de grafeno. Para espécimes sinterizados por meio de SPS, a temperatura de sinterização de 1350°C resultou em melhores valores de densificação. Além disso, para este tipo de sinterização, tanto a dureza como a tenacidade à fratura foram afetadas pelo teor de grafeno. / The objective of this work was to develop a zirconia-graphene ceramic composite for dental application. The study evaluated the effect of the starting powder effect, graphene concentration and sintering temperature on the mechanical properties of the composite. For this, the Y-TZP powders were synthesized from zirconium chloride and yttrium chloride solutions in the desired ratio of 3 mol% through the co-precipitation route in ammonium hydroxide solution followed by a series of washes in water, ethanol and butanol with subsequent azeotropic distillation, drying, grinding and calcination. Graphene was obtained from the chemical exfoliation of graphite by the method of Humans modified by Marcano, which resulted in a brownish gel that was subjected to washing by centrifugation, drying and deagglomeration in agate mortar, resulting finally in the graphene oxide. A second step was the chemical reduction with ascorbic acid to obtain reduced graphene oxide, a dark-colored powder that was added to the Y-TZP to obtain the composite in the various concentrations (in mol%) that were studied (0, 01%, 0.05%, 0.10%, 0.50%, 1.00% and 2.00%). The powders were characterized by thermogravimetry, X-ray diffraction and spectroscopy (FT-IR). The specimens were made in cylindrical metallic matrix and sintered in a tubular oven. Other samples were made in high density graphite matrix and sintered by Spark Plasma Sintering (SPS). All samples were characterized by means of density tests, Vickers hardness, fracture toughness and scanning electron microscopy. The highest values of relative density were observed for the sintered samples in SPS. A relative density of 98.7% was obtained for the 0.50% concentration of graphene and 98.4% for the pure Y-TZP. On the other hand, the highest value found in tubular sintering at 1400 ° C without the presence of H2 for pure Y-TZP was of the order of 96.76%. The hardness values were higher in the sintered samples in SPS, however the fracture toughness showed not to change as a function of the content of graphene. SEM images showed that there was a variation of grain size according to the presence of graphene and the sintering method. According to the results of this study it was concluded that the process developed allowed the creation of a graphene-zirconia ceramic composite which can be characterized by various analytical methods. The theoretical density of the composite developed was not achieved by any of the sintering methods used (tubular or SPS) nor by varying the temperature. For tubular sintered specimens, the higher sintering temperature (1400 ° C) and the presence of H2 gas did not improve densification. In addition, these specimens had increased hardness with increasing graphene concentration, however, their fracture toughness was not affected by graphene content. For sintered specimens by SPS, the sintering temperature of 1350 ° C resulted in better densification values. In addition, for this type of sintering, both hardness and fracture toughness were affected by the content of graphene
44

Desenvolvimento de sensores eletroquímicos de carbono visando à detecção de furosemida em amostras farmacêuticas e clínicas / Development of carbon electrochemical sensors for the detection of furosemide in pharmaceutical and clinical samples

Vanessa Neiva de Ataide 03 April 2018 (has links)
Nos últimos anos, materiais baseados em grafeno têm atraído grande interesse na área eletroquímica devido às suas excelentes propriedades eletrônicas. Neste trabalho, apresentamos a obtenção de óxido de grafeno reduzido utilizando métodos eletroquímicos. A redução eletroquímica do óxido de grafeno (OG) foi realizada na superfície de um eletrodo de carbono vítreo (ECV) utilizando voltametria cíclica. O óxido de grafeno reduzido eletroquimicamente (OG-RE) foi caracterizado utilizando espectroscopia Raman, microscopia eletrônica de varredura (MEV), microscopia de força atômica (MFA), espectroscopia de fotoelétrons excitados por raios-X (XPS) e espectroscopia de impedância eletroquímica. A relação ID/IG obtida através dos espectros Raman do OG e do OG-RE foram de 0,98 e 1,15, respectivamente, indicando que o processo de redução resultou em uma maior desorganização estrutural. A espectroscopia de fotoelétrons de raios-X mostrou que a proporção entre C e O no OG foi de 45,7% e, que após a redução eletroquímica essa relação diminuiu para 38,5%. O eletrodo modificado com OG-RE foi empregado para quantificação de furosemida (FUR) em amostras farmacêuticas utilizando voltametria de pulso diferencial e análise por injeção em fluxo com detecção amperométrica. Os limites de detecção e quantificação calculados para o método proposto foram de 0,35 e 1,18 µmol L-1, respectivamente. Visando à aplicação em amostras de interesse clínico, fabricou-se um sensor descartável e de baixo custo para a detecção de FUR utilizando papel sulfite pintado com lápis de desenho e ativado por laser de CO2. Os estudos voltamétricos utilizando o [Ru(NH3)6]Cl3 mostraram que o transporte de massa neste dispositivo foi governado por difusão e que o tratamento com laser diminui a resistência a transferência de carga, assim como resultou em um menor problema relacionado ao envenenamento da superfície do eletrodo / In recent years, graphene-based materials have attracted great interest in the area of electrochemistry due to its excellent electronic properties. In this work, we present the production of reduced graphene oxide using electrochemical methods. The electrochemical reduction of graphene oxide (GO) was carried out on the surface of a glassy carbon electrode (GCE) using the cyclic voltammetry technique. Electrochemically reduced graphene oxide (ER-GO) was characterized using Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), Xray excited photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). ID / IG ratio obtained through Raman spectra of GO and ER-GO were 0.98 and 1.15, respectively, indicating that the reduction process resulted in greater structural disorganization. XPS showed that the ratio between C and O in the GO was 45.7% and that after electrochemical reduction this ratio decreased to 38.5%. The ER-GO modified electrode was used as a sensor for furosemide (FUR) in pharmaceutical samples using the techniques of differential pulse voltammetry and flow injection analysis with amperometric detection. The limits of detection and quantification for the proposed method were 0.35 and 1.18 µmol L-1, respectively. Aiming to the application in clinical samples a disposable, low-cost paper-based sensor for the detection of FUR was fabricated using office paper painted with drawing pencil and activated by CO2 laser. Voltammetric studies using [Ru(NH3)6]Cl3 have shown that mass transport in this device was controlled by diffusion and the laser decreases resistance to charge transfer, as well as, avoided the problem with electrode surface poisoning
45

Oxydes de manganèse et ses composites à base de nanotubes de carbone ou de graphène pour la réalisation de supercondensateurs / Manganese oxides and its composites made of carbon nanotubes or graphene for the realization of supercapacitors

Mery, Adrien 19 October 2016 (has links)
Les travaux réalisés dans cette thèse ont porté sur la synthèse d’oxydes de manganèse et leur association dans des composites avec des matériaux carbonés (NTC, Graphène), pour une utilisation comme matériaux d’électrodes de supercondensateurs fonctionnant en milieux aqueux. Les caractérisations physico-chimiques et électrochimiques ont été menées sur ces matériaux afin d’évaluer leurs performances et étudier l’effet de la nanostructuration. Il s’est avéré que la réalisation de nanocomposites MnO2/ nanotubes de carbone ou MnO2/ oxydes de graphène réduits contribue à l’amélioration des performances électrochimiques. Plusieurs compositions Mn/C ont été étudiées afin de réaliser un matériau d’électrode de supercondensateur optimisé. Des dispositifs asymétriques en milieux aqueux ont été assemblés associant les meilleurs nanocomposites avec une électrode négative de graphène. De nettes améliorations en termes de densités d’énergie et de puissance ont été obtenues sur ces systèmes asymétriques fonctionnant sur 2 volts en milieux aqueux. / The work realized in this thesis focused on the synthesis of manganese oxides and their assembly in composites with carbon materials (CNT, graphene) for supercapacitor applications in aqueous media. Physico-chemical and electrochemical characterizations were conducted to evaluate the effect of the nanostruturation. It was found that nanocomposites MnO2/CNT and MnO2/ reduced graphene oxide contributed to improve the electrochemical performances in aqueous media. Several compositions Mn/C were tested to estimate the best ratio for optimized electrode materials. In order to maximize the energy of the devices, asymmetric devices in aqueous media were assembled using graphene as negative electrode and nanocomposites for positive. Clear improvements in term of energy and power densities were obtained with these systems working at 2 volts in aqueous media.
46

Desenvolvimento de sensores eletroquímicos de carbono visando à detecção de furosemida em amostras farmacêuticas e clínicas / Development of carbon electrochemical sensors for the detection of furosemide in pharmaceutical and clinical samples

Ataide, Vanessa Neiva de 03 April 2018 (has links)
Nos últimos anos, materiais baseados em grafeno têm atraído grande interesse na área eletroquímica devido às suas excelentes propriedades eletrônicas. Neste trabalho, apresentamos a obtenção de óxido de grafeno reduzido utilizando métodos eletroquímicos. A redução eletroquímica do óxido de grafeno (OG) foi realizada na superfície de um eletrodo de carbono vítreo (ECV) utilizando voltametria cíclica. O óxido de grafeno reduzido eletroquimicamente (OG-RE) foi caracterizado utilizando espectroscopia Raman, microscopia eletrônica de varredura (MEV), microscopia de força atômica (MFA), espectroscopia de fotoelétrons excitados por raios-X (XPS) e espectroscopia de impedância eletroquímica. A relação ID/IG obtida através dos espectros Raman do OG e do OG-RE foram de 0,98 e 1,15, respectivamente, indicando que o processo de redução resultou em uma maior desorganização estrutural. A espectroscopia de fotoelétrons de raios-X mostrou que a proporção entre C e O no OG foi de 45,7% e, que após a redução eletroquímica essa relação diminuiu para 38,5%. O eletrodo modificado com OG-RE foi empregado para quantificação de furosemida (FUR) em amostras farmacêuticas utilizando voltametria de pulso diferencial e análise por injeção em fluxo com detecção amperométrica. Os limites de detecção e quantificação calculados para o método proposto foram de 0,35 e 1,18 µmol L-1, respectivamente. Visando à aplicação em amostras de interesse clínico, fabricou-se um sensor descartável e de baixo custo para a detecção de FUR utilizando papel sulfite pintado com lápis de desenho e ativado por laser de CO2. Os estudos voltamétricos utilizando o [Ru(NH3)6]Cl3 mostraram que o transporte de massa neste dispositivo foi governado por difusão e que o tratamento com laser diminui a resistência a transferência de carga, assim como resultou em um menor problema relacionado ao envenenamento da superfície do eletrodo / In recent years, graphene-based materials have attracted great interest in the area of electrochemistry due to its excellent electronic properties. In this work, we present the production of reduced graphene oxide using electrochemical methods. The electrochemical reduction of graphene oxide (GO) was carried out on the surface of a glassy carbon electrode (GCE) using the cyclic voltammetry technique. Electrochemically reduced graphene oxide (ER-GO) was characterized using Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), Xray excited photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). ID / IG ratio obtained through Raman spectra of GO and ER-GO were 0.98 and 1.15, respectively, indicating that the reduction process resulted in greater structural disorganization. XPS showed that the ratio between C and O in the GO was 45.7% and that after electrochemical reduction this ratio decreased to 38.5%. The ER-GO modified electrode was used as a sensor for furosemide (FUR) in pharmaceutical samples using the techniques of differential pulse voltammetry and flow injection analysis with amperometric detection. The limits of detection and quantification for the proposed method were 0.35 and 1.18 µmol L-1, respectively. Aiming to the application in clinical samples a disposable, low-cost paper-based sensor for the detection of FUR was fabricated using office paper painted with drawing pencil and activated by CO2 laser. Voltammetric studies using [Ru(NH3)6]Cl3 have shown that mass transport in this device was controlled by diffusion and the laser decreases resistance to charge transfer, as well as, avoided the problem with electrode surface poisoning
47

[en] CHIPLESS RFID SENSOR USING GRAPHENE BASED STRUCTURES / [pt] SENSOR RFID SEM CHIP UTILIZANDO ESTRUTURAS BASEADAS EM GRAFENO

RENATO SILVEIRA FEITOZA 14 November 2017 (has links)
[pt] Estruturas baseadas em grafeno como óxido de grafeno (OG) e óxido de grafeno reduzido (OGr) vêm sendo amplamente utilizadas em aplicações de sensoriamento resistivo de gás. Entretanto, poucos projetos são efetuados utilizando métodos pervasivos e não intrusivos, que são importantes para aplicações onde intervenções podem ser problemáticas. Este trabalho apresenta a implementação de protótipos de sensores sem fio de baixo custo baseados na tecnologia de RFID sem chip, para sensoriamento de vapor de álcool, utilizando uma topologia de antena miniaturizada baseada em Metamateriais (MTMs) carregada com OGr. Simulações utilizando o método dos elementos finitos são efetuadas de forma a encontrar o melhor local para deposição das estruturas sensíveis ao vapor de álcool. É observado que a estrutura responde a variações de resistividade de OGr apenas para uma determinada faixa de valores. O tempo de redução térmica de OG necessário para atingir este espectro de valores é experimentalmente determinado, estando entre 60 e 90 min à 200 Graus Celsius. Amostras de GO são fabricadas utilizando o método de Hummer modificado, e são depositadas nos gaps das antenas. Posteriormente, são reduzidas por 60, 75 e 90 minutos. O setup de medição consistiu em medições do coeficiente de reflexão em banda X. Após um determinado tempo para estabilização, álcool isopropílico e também etanol são colocados em contato com a amostra em um recipiente fechado por 1h30, e a resposta foi observada. Resultados com sensibilidade de até 11,5 por cento foram obtidos. / [en] Graphene oxide (GO) and reduced graphene oxide (rGO) based structures have been widely applied for resistive gas sensing applications. However, few projects are developed using pervasive and non-intrusive methods, which are important for applications where intervention can be an issue. This work presents the implementation of low-cost wireless sensor prototypes based on chipless RFID technology, for alcohol vapor sensing, by using a metamaterial (MTM) based miniaturized antenna loaded with rGO. Simulations are performed using finite element method in order to find the best place to deposit the alcohol vapor sensitive structures. It is observed that the structure responds to resistivity variations only for a determined range of values. The GO reduction time necessary to reach this spectrum of values is experimentally determined, and it is found to be between 60 and 90 min at 200 Celsius degrees. GO samples are synthesized using a modified Hummer s method, and deposited in the gaps of the antenna structures. Later, they are reduced for 60, 75 and 90 min. The measurement setup consists in reflection coefficient characterization at X band frequencies. After a stabilization time, isopropyl alcohol and ethanol are put in contact with the samples in a closed container for 1h30, and the response is observed. Sensitivities up to 11,5 percent are obtained.
48

Ecotoxicité comparative de l'oxyde de graphène et d'autres nanoparticules de carbone chez des organismes aquatiques modèles : d'une évaluation en conditions monospécifiques vers l'étude d'une chaîne trophique expérimentale / Comparative ecotoxicity of graphene oxide and other carbon-based nanoparticles in freshwater model organisms : from an assessment in monospecific conditions towards the study of an experimental trophic chain

Lagier, Laura 08 November 2017 (has links)
L'écotoxicité de différentes nanoparticules de carbone (NPC) a été évaluée chez des organismes aquatiques, en particulier chez Xenopus laevis. Il a été montré que la surface des NPC est le paramètre le plus pertinent pour décrire l'inhibition de croissance chez le xénope, indépendamment de leur forme allotropique et de leur état de dispersion. L'induction des micronoyaux a aussi été étudiée chez le xénope, et l'oxyde de graphène (GO) s'est révélé génotoxique à faible dose, résultat corroboré par l'étude de l'expression des gènes. Les mécanismes de toxicité impliqués seraient notamment liés aux fonctions oxygénées de la particule. De plus, le GO a aussi entrainé de la génotoxicité chez Pleurodeles waltl. et de la tératogénicité, des retards de développement et de l'inhibition de croissance chez Chironomus riparius. La mise en interaction de ces organismes au sein d'un mésocosme a également conduit à l'observation de génotoxicité chez le pleurodèle en présence de GO. / The ecotoxicity of different carbon-based nanoparticles (CNPs) was assessed in freshwater organisms, especially in Xenopus laevis. The surface of the CNPs was shown to be the more relevant parameter to describe the growth inhibition in Xenopus, regardless of their allotropic form and their state of dispersion. Micronucleus induction was also studied in Xenopus and graphene oxide (GO) was found genotoxic at low dose. This result was in compliance with the study of genes expression. The involved toxicity mechanisms would be related to the oxidized functions of the CNP. Moreover, GO was also found responsible for genotoxicity in Pleurodeles waltl. and for teratogenicity, development delay and growth inhibition in Chironomus riparius. These organisms have finally been put together in a mesocosm, which has also led to genotoxicity in Pleurodeles in the presence of GO.
49

Development of Metal Nanoparticle-Doped Polyanilino-Graphene Oxide High Performance Supercapacitor Cells

Dywili, Nomxolisi Ruth January 2018 (has links)
Philosophiae Doctor - PhD (Chemistry) / Supercapacitors, also known as ultracapacitors or electrochemical capacitors, are considered one of the most important subjects concerning electricity or energy storage which has proven to be problematic for South Africa. In this work, graphene oxide (GO) was supported with platinum, silver and copper nanoparticles anchored with dodecylbenzenesulphonic acid (DBSA) doped polyaniline (PANI) to form nanocomposites. Their properties were investigated with different characterization techniques. The high resolution transmission electron microscopy (HRTEM) revealed GO's nanosheets to be light, flat, transparent and appeared to be larger than 1.5 ?m in thickness. This was also confirmed by high resolution scanning electron microscopy (HRSEM) with smooth surfaces and wrinkled edges observed with the energy dispersive X-ray analysis (EDX) confirming the presence of the functional groups such as carbon and oxygen. The HRTEM analysis of decorated GO with platinum, silver and copper nanoparticles (NPs) revealed small and uniformly dispersed NPs on the surface of GO with mean particle sizes of 2.3 ± 0.2 nm, 2.6 ± 0.3 nm and 3.5 ± 0.5 nm respectively and the surface of GO showed increasing roughness as observed in HRSEM micrographs. The X-ray fluorescence microscopy (XRF) and EDX confirmed the presence of the nanoparticles on the surface of GO as platinum, silver and copper which appeared in abundance in each spectra. Anchoring the GO with DBSA doped PANI revealed that single GO sheets were embedded into the polymer latex, which caused the DBSA-PANI particles to become adsorbed on their surfaces. This process then appeared as dark regions in the HRTEM images. Morphological studies by HRSEM also supported that single GO sheets were embedded into the polymer latex as composite formation appeared aggregated and as bounded particles with smooth and toothed edges.
50

Electrochemical Investigations Related to High Energy Li-O2 and Li-Ion Rechargeable Batteries

Kumar, Surender January 2015 (has links) (PDF)
A galvanic cell converts chemical energy into electrical energy. Devices that carry out these conversions are called batteries. In batteries, generally the chemical components are contained within the device itself. If the reactants are supplied from an external source as they are consumed, the device is called a fuel cell. A fuel cell converts chemical energy into electrical energy as long as the chemicals are supplied from external reserves. The working principle of a metal-air battery involves the principles of both batteries and fuel cells. The anode of a metal-air cell is stored inside the cell, whereas O2 for the air-electrode is supplied from either atmosphere or a tank. There are several metal-air batteries available academically, which include Zn-air, Alair, Fe-air, Mg-air, Ca-air, Li-air and Na-air batteries. So far, only Zn-air battery is successfully commercialized. Li-air battery is attractive compared to other metal-air batteries because of its high theoretical energy density (11140 Wh kg-1). The energy density of Li-air battery is 3 - 5 times greater than state-of-art Li-ion battery. Li-air (or Li-O2) battery comprises Li-metal as the anode and a porous cathode. The cathode and the anode are separated by a suitable separator soaked in an organic electrolyte. Atmospheric air can enter the battery through the porous cathode. Out of the mixture of gases present in the air, only O2 is electrochemically active. For optimization purpose, most of researchers use pure O2 gas instead of air. Li-air battery is not commercialized till now because of several issues associated with it. The issues include: (i) sluggish kinetics of O2 electrode reaction, (ii) decomposition of the electrolyte during charge-discharge cycling, (iii) formation of Li dendrites, (iv) contamination by moisture, etc. Among these scientific and technical problems related to Li-O2 cell system, studies on rechargeable O2 electrode with fast kinetics of oxygen reduction reaction (ORR) during the cell discharge and oxygen evolution reaction (OER) during charge in non-aqueous electrolytes are important. In non-aqueous electrolytes, the 1-electron reduction of O2 to form superoxide (O2 -) is known to occur as the first step. (ii) Subsequently, superoxide undergoes reduction to peroxide (O2 2-) and then to oxide (O2-). The kinetics of ORR is slow in non-aqueous electrolytes. Furthermore, the reaction needs to be reversible for rechargeable Li-air batteries. In order to realize fast kinetics, a suitable catalyst is essential. The catalyst should be bifunctional for both of ORR and OER in rechargeable battery applications. Noble metal particles have been rarely investigated as catalysts for O2 electrode of Li-O2 cells. Graphene has two-dimensional planar structure with sp2 bonded carbon atoms. It has become an important electrode material owing to its high electronic conductivity and large surface area. It has been investigated for applications such as supercapacitors, Li-ion batteries, and fuel cells. Catalyst nanoparticles prepared and anchored to graphene sheets are expected to sustain discrete existence without undergoing agglomeration and therefore they possess a high catalytic stability for long term experiments as well as applications. In this context, it is intended to explore the catalytic activity of noble metal nanoparticles dispersed on reduced graphene oxide (RGO) for O2 electrode of Li-O2 cells. While a majority of the investigations reported in the thesis involves noble metal and alloy particles dispersed on RGO sheets, results on polypyrrole-RGO composite and also magnesium cobalt silicate for Li-O2 system are included. A chapter on electrochemical impedance analysis of LiMn2O4, a cathode material of Li-ion batteries, is also presented in the thesis. Introduction on electrochemical energy storage systems, in particular on Li-O2 system is provided in the 1st Chapter of the thesis. Synthesis of Ag nanoparticles anchored to RGO and catalytic activity are presented in the 2nd Chapter. Ag-RGO is prepared by insitu reduction of Ag+ ions and graphene oxide in aqueous phase by ethylene glycol as the reducing agent. The product is characterized by powder XRD, UV-VIS, IR, Raman, AFM, XPS, SEM and TEM studies. The SEM images show the layered morphology of graphene and TEM images confirm the presence of Ag nanoparticles of average diameter less than 5 nm anchored to RGO (Fig. 1a). Ag-RGO is investigated for ORR in alkaline (1 M KOH), neutral (1 M K2SO4) and non-aqueous 0.1 M tetrabutyl ammonium perchlorate in dimethyl sulphoxide (TBAP-DMSO) electrolytes. The ORR follows 4e- reduction in aqueous and 1e- reduction pathway in non-aqueous electrolytes. Li-O2 cells are assembled with Ag-RGO as (iii) Fig. 1. (a) TEM image of Ag-RGO and (b) charge-discharge voltage profiles of Li-O2 (Ag-RGO) cells. oxygen electrode catalyst in non-aqueous electrolyte (1 M LiPF6-DMSO) and subjected to charge-discharge cycling at several current densities. The discharge capacity values obtained are 11950 (11.29), 9340 (5.00), and 2780 mAh g-1 (2.47 mAh cm-2) when discharged at 0.2, 0.5, 0.8 mA cm-2, respectively (Fig. 1b). Powder XRD studies of discharged electrodes indicate the formation of Li2O2 and Li2O during the cell discharge. In addition to these studies, Na-O2 cells are also assembled with Ag-RGO in non-aqueous electrolyte. It is concluded that the chemistry Li-O2 and Na-O2 cells are similar except for the capacity values. Metal nanoparticles of Au, Pd and Ir are decorated on RGO sheets by reduction of metal ions on graphene oxide by NaBH4. Au-RGO, Pd-RGO and Ir-RGO are characterized by various physicochemical techniques. Particle size of metal nanoparticles ranges from 2 to Fig.2. Charge-discharge voltage profiles Li-O2(RGO) (i) and Li-O2(Au-RGO) (ii) cells at current density 0.3 mA cm-2. 0 2500 5000 7500 10000 12500 15000 10 nm on graphene sheets. All samples are studied for ORR in aqueous and non-aqueous electrolytes by cyclic voltammetry and rotating disk electrode experiments. Li-O2 cells are assembled in 1 M LiPF6-DMSO and discharge capacity values obtained are 3344, 8192 and 11449 mAh g-1 with Au-RGO, Pd-RGO and Ir-RGO, respectively, at 0.2 mA cm-2 current density. The results of these studies are described in Chapter 3. Synthesis and electrochemical activity of Pt-based alloy nanoparticles (Pt3Ni, Pt3Co and Pt3Fe) on RGO are presented in Chapter 4. The Pt3Ni alloy particles are prepared by simultaneous reduction of Pt4+, Ni2+ and graphene oxide by hydrazine in ethylene glycol medium. Pt3Co-RGO and Pt3Fe-RGO are also prepared similar to Pt3Ni-RGO. Formation of alloys is confirmed with XRD studies. O2 reduction reaction on Pt-alloys in non-aqueous electrolyte follows 1e- reduction to O2 -. RDE results show that Pt3Ni-RGO is a better catalyst than Pt for O2 reduction (Fig. 3). Li-O2 cells are assembled with all samples and subjected to Fig. 3. Linear sweep voltammograms of Pt3Ni-RGO, Pt3Co-RGO and Pt3Fe-RGO in 0.1 M TBAPDMSO with 1600 rpm at 10 mV s-1 scan rate. The area of GC electrode was 0.0314 cm2 with a catalyst mass of 200 μg. charge-discharge cycling at several current densities. The initial discharge capacity values obtained are 14128, 5000 and 10500 mAh g-1 with Pt3Ni-RGO, Pt3Co-RGO and Pt3Fe-RGO, respectively, as the air electrode catalysts. Polypyrrole (PPY) is an attractive conducting polymer with advantages such as high electronic conductivity and electrochemical stability. A combination of advantages of graphene and PPY composite are explained in the Chapter 5. PPY is grown on already synthesized RGO sheets by oxidative polymerization of pyrrole in an acidic PY composite is characterized by XRD and Raman spectroscopy studies. Li-O2 cells are assembled in non-aqueous electrolyte and subjected for charge-discharge cycling at different current densities. The discharge capacity value of Li-O2(PPY-RGO) cell is 3358 mAh g-1 Fig. 4. (a) Discharge-charge performance of Li-O2(PPY-RGO) cell with a current density of 0.2 mA cm-2 limiting to a capacity of 1000 mAh g-1 and (b) variation of cut-off voltages on cycling. (3.94 mAh cm-2) in the first cycle. Li-O2(PPY-RGO) cell delivers 3.7 times greater discharge capacity than Li-O2(RGO) cell. Cycling stability of Li-O2 (PPY-RGO) cell is investigated by charge-discharge cycling by limiting the capacity to 1000 mAh g-1, and the cell voltage at the end of discharge and at the end of charge are found constant at 2.75 and 4.10 V, respectively (Fig. 4 a, b). This study shows that PPY-RGO is stable in Li-O2 cells. Electrochemical impedance study shows that charge-transfer resistant is 500 Ω for freshly assembled Li- O2(PPY-RGO) cell and it decreases to 200 Ω after 1st discharge. Synthesis of magnesium cobalt silicate and its electrochemical activity are presented in Chapter 6. MgCoSiO4 is synthesized by mixed solvothermal approach and characterized by various physicochemical techniques. Cubic shaped MgCoSiO4 is investigated for oxygen evolution reaction (OER) activity in alkaline and neutral media. The current values at 0.95 versus SHE are 43, 0.18, 16 mA cm-2 on MgCoSiO4, bare carbon paper and Pt foil electrodes, respectively (Fig. 5), indicating that MgCoSiO4 is a good catalyst for OER. The onset potential for OER is 0.68 V versus SHE on MgCoSiO4 in 1 M KOH. OER activity on MgCoSiO4 is also studied in K2SO4 and phosphate buffer electrolytes. The results indicate good catalytic activity of MgCoSiO4 in neutral electrolytes also. The catalytic activity of Fig. 5. Cyclic voltammograms of bare carbon paper (i), Pt foil (ii), MgCoSiO4 coated carbon (iii) electrodes in 1 M KOH (sweep rate = 5 mV s-1, loading level = 1.15 mg, area = 0.5 cm-2). MgCoSiO4 towards ORR in aqueous and non-aqueous electrolytes is studied by RDE experiments. Li-O2 cells are assembled with bifunctional MgCoSiO4 catalyst in 1 M LiPF6- DMSO electrolyte and the discharge capacity values obtained are 7721 (8.27), 2510 (1.66) and 1053 mAh g-1 (0.92 mAh cm-2) when discharged at 0.3, 0.5 and 0.8 mA cm-2 current densities, respectively. Electrochemical impedance spectroscopy (EIS) measurements of LiMn2O4 electrode are carried out at different temperatures from -10 to 50 0C and in the potential range from 3.50 to 4.30 V, and the data are analysed in Chapter 7. In the EIS spectra recorded over the frequency range from 100 kHz to 0.01 Hz at different temperatures, there are two semicircles present in the Nyquist plot (Fig. 6a). But in 3.90 to 4.10 V versus Li/Li+(1M) potential range at low temperatures (-10 to 15 oC) range, another semicircle also appears (Fig. 6b). Impedance parameters such as solution resistant (Rs), charge-transfer resistance (Rct), doublelayer capacitance (Cdl), electronic resistance (Re) and Warburg impedance (WR), etc., are obtained by analysis of the EIS data. The variations of resistances with temperature are analysed by Arrhenius-like relationships and the apparent activation energies of the corresponding transport properties are evaluated. The values of activation energy for chargetransfer process are 0.37, 0.30 and 0.42 eV, at 3.50, 3.90 and 4.10 V versus Li/Li+(1M), respectively. The chemical diffusion coefficient of Li+ ions into LiMn2O4 calculated from EIS data. The values of diffusion coefficient calculated are in the range of 2.50 x 10-12 - 4.10 Fig. 6. Nyquist plot of impedance study of Li/LiMn2O4 cell at 3.50 V (a) and 3.90 V (b) at -10 0C. Details of the above studies are described in the thesis.

Page generated in 0.0726 seconds