Spelling suggestions: "subject:"depresentation theory"" "subject:"prepresentation theory""
151 |
The Portrait of a Homeland : An Analysis of the Image of Sweden and Swedish Poverty in the Swedish American Post, Year 1887Williams, Elin January 2022 (has links)
In the late 1800’s, Sweden was undergoing a population growth and had experienced several crop failures. With the majority of the population being farmers, the migration to North America gave Swedish emigrants an economic opportunity that wasn’t available in the homeland. This resulted in a mass exodus. During the nineteenth and early twentieth centuries, around 1.25 million Swedes left their home country in search for a better life in the United States of America. In the year of 1890, around 478,000 Swedes had moved across the sea in search for better yields and economic prosperity.There is no exact number of how many Swedish-language newspapers that were published in North America to cater to the large number of Swedish immigrants, but an estimate says that between 600 and 1,000 Swedish language newspapers were published in the United States. The aim with this thesis is to analyze the representation of Sweden to Swedes who emigrated to look for a better life in the USA. The purpose of the study was to research how Swedish poverty was represented in the news. The research questions focus on how Sweden is represented in the Swedish American Post in 1887; how Swedish poverty is described and represented in the news and what representations of poverty can be seen in the material. The study was conducted through a qualitative text and thematic analysis of 48 newspapers from the Swedish emergency year of 1887, when the emigration hit its peak. The analysis of the data draws on theories of representation and social change, and the theoretical concepts of how the media can influence people’s lives and perceptions. The study found that the newspaper presents a somewhat simplified picture of poverty that rarely goes into underlying factors or societal structures but represents poverty mainly through personal stories of private individuals. The thesis also reveals that the image of Sweden is based on nostalgic, often fictional features of the homeland and news that often focused on accidents and deaths. This is interpreted as that the newspaper, on the one hand, gave the readers a relaxing read which spoke to their possible homesickness, and also contributed to confirm the decision to emigrate to the USA as something positive.
|
152 |
On the Nilpotent Representation Theory of GroupsMilana D Golich (18423324) 23 April 2024 (has links)
<p dir="ltr">In this article, we establish results concerning the nilpotent representation theory of groups. In particular, we utilize a theorem of Stallings to provide a general method that constructs pairs of groups that have isomorphic universal nilpotent quotients. We then prove by counterexample that absolute Galois groups of number fields are not determined by their universal nilpotent quotients. We also show that this is the case for residually nilpotent Kleinian groups and in fact, there exist non-isomorphic pairs that have arbitrarily large nilpotent genus. We additionally provide examples of non-isomorphic curves whose geometric fundamental groups have isomorphic universal nilpotent quotients and the isomorphisms are compatible with the outer Galois actions. </p>
|
153 |
Gender as Subject of Aid : A Multimodal Critical Discourse Analysis of Beneficiary Representations by the Swedish Red Cross on InstagramVäpnare, Maja January 2024 (has links)
This study aims to explore how the Swedish Red Cross’s work for gender equality in light of Agenda 2030 is reflected in representations of beneficiaries in Instagram communication. It also aims to understand how representations of beneficiaries are produced and reproduced concerning gender, stereotypes, and power relations. The research questions that are used to reach the aim are ‘How is Agenda 2030 focusing on gender present in the representations of beneficiaries in the Swedish Red Cross’s communication on Instagram?’, and ‘How do representations of beneficiaries contribute to stereotyping, feminization, and de-masculinization of the MajorityWorld?’. Based on a qualitative interpretative approach and multimodal critical discourse analysis, visual and textual content in posts from the national Instagram account of the Swedish Red Cross have been collected and analyzed through the theoretical framework of representation theory and postcolonial theory. The findings show that the most prominent beneficiary groups represented in terms of gender are women and children, which aligns with stereotypical and colonial narratives that infantilize and feminize the Majority World. This study further shows that the commitment to the global goals of gender equality and the Swedish national identity as a gender equality promoter is insufficient to deconstruct colonial discourses in INGO communication.
|
154 |
Lieu singulier des variétés duales : approche géométrique et applications aux variétés homogènes.Frédéric, Holweck 10 September 2004 (has links) (PDF)
On doit à Friedrich Knop un étonnant théorème qui établit un lien entre algèbres de Lie simples de type A-D-E, et singularités simples de même type. Le résultat est le suivant : on considère la projectivisation de l'orbite de plus haut poids pour l'action adjointe d'un groupe de Lie simple sur son algèbre de Lie (une telle variété est appelée variété adjointe). Il existe alors un hyperplan tangent à l'orbite ayant un unique point singulier du même type que celui de l'algèbre de Lie. Ce théorème est le point de départ de nos travaux. Afin de mieux comprendre ce lien, nous étudions la géométrie des variétés duales des variétés adjointes. Dans le premier chapitre nous prouvons une version duale du théorème de Knop. Notre théorème permet d'obtenir le discriminant d'une singularité simple à partir de la duale de la variété adjointe. L'hyperplan considéré par Knop s'interprète alors comme un point très singulier de la duale. Dans le deuxième chapitre nous considérons le lieu singulier de la duale pour une variétés projective lisse. Nous montrons que l'existence de certaines strates de dimensions maximales équivaut à l'existence de section hyperplane de la variété d'origine admettant des points singuliers d'un type donné. Nous insistons alors sur l'importance de deux strates qui ont un sens géométrique : la duale de la variété des tangentes et la duale de la variété des sécantes. Enfin dans un dernier chapitre nous appliquons ces résultats à l'étude de la normalité des duales des variétés homogènes.
|
155 |
Braided Hopf algebras, double constructions, and applicationsLaugwitz, Robert January 2015 (has links)
This thesis contains four related papers which study different aspects of double constructions for braided Hopf algebras. The main result is a categorical action of a braided version of the Drinfeld center on a Heisenberg analogue, called the Hopf center. Moreover, an application of this action to the representation theory of rational Cherednik algebras is considered. Chapter 1 : In this chapter, the Drinfeld center of a monoidal category is generalized to a class of mixed Drinfeld centers. This gives a unified picture for the Drinfeld center and a natural Heisenberg analogue. Further, there is an action of the former on the latter. This picture is translated to a description in terms of Yetter-Drinfeld and Hopf modules over quasi-bialgebras in a braided monoidal category. Via braided reconstruction theory, intrinsic definitions of braided Drinfeld and Heisenberg doubles are obtained, together with a generalization of the result of Lu (1994) that the Heisenberg double is a 2-cocycle twist of the Drinfeld double for general braided Hopf algebras. Chapter 2 : In this chapter, we present an approach to the definition of multiparameter quantum groups by studying Hopf algebras with triangular decomposition. Classifying all of these Hopf algebras which are of what we call weakly separable type, we obtain a class of pointed Hopf algebras which can be viewed as natural generalizations of multiparameter deformations of universal enveloping algebras of Lie algebras. These Hopf algebras are instances of a new version of braided Drinfeld doubles, which we call asymmetric braided Drinfeld doubles. This is a generalization of an earlier result by Benkart and Witherspoon (2004) who showed that two-parameter quantum groups are Drinfeld doubles. It is possible to recover a Lie algebra from these doubles in the case where the group is free and the parameters are generic. The Lie algebras arising are generated by Lie subalgebras isomorphic to sl2. Chapter 3 : The universal enveloping algebra <i>U</i>(tr<sub>n</sub>) of a Lie algebra associated to the classical Yang-Baxter equation was introduced in 2006 by Bartholdi-Enriquez-Etingof-Rains where it was shown to be Koszul. This algebra appears as the A<sub><i>n</i>-1</sub> case in a general class of braided Hopf algebras in work of Bazlov-Berenstein (2009) for any complex reection group. In this chapter, we show that the algebras corresponding to the series <i>B<sub>n</sub></i> and <i>D<sub>n</sub></i>, which are again universal enveloping algebras, are Koszul. This is done by constructing a PBW-basis for the quadratic dual. We further show how results of Bazlov-Berenstein can be used to produce pairs of adjoint functors between categories of rational Cherednik algebra representations of different rank and type for the classical series of Coxeter groups. Chapter 4 : Quantum groups can be understood as braided Drinfeld doubles over the group algebra of a lattice. The main objects of this chapter are certain braided Drinfeld doubles over the Drinfeld double of an irreducible complex reflection group. We argue that these algebras are analogues of the Drinfeld-Jimbo quantum enveloping algebras in a setting relevant for rational Cherednik algebra. This analogy manifests itself in terms of categorical actions, related to the general Drinfeld-Heisenberg double picture developed in Chapter 2, using embeddings of Bazlov and Berenstein (2009). In particular, this work provides a class of quasitriangular Hopf algebras associated to any complex reflection group which are in some cases finite-dimensional.
|
156 |
Partitions aléatoires et théorie asymptotique des groupes symétriques, des algèbres d'Hecke et des groupes de Chevalley finis / Random partitions and asymptotic theory of symmetric groups, Hecke algebras and finite Chevalley groupsMéliot, Pierre-Loïc 17 December 2010 (has links)
Au cours de cette thèse, nous avons étudié des modèles de partitions aléatoires issus de la théorie des représentations des groupes symétriques et des groupes de Chevalley finis classiques, en particulier les groupes GL(n,Fq). Nous avons démontré des résultats de concentration gaussienne pour :- les q-mesures de Plancherel (de type A), qui correspondent à l'action de GL(n,Fq) sur la variété des drapeaux complets de (Fq)^n, et sont liées à la théorie des représentations des algèbres d'Hecke des groupes symétriques.- l'analogue en type B du modèle précédent, correspondant à l'action de Sp(2n,Fq) sur la variété des drapeaux totalement isotropes complets dans (Fq)^2n.- les mesures de Schur-Weyl, qui correspondent aux actions commutantes de GL(N,C) et Sn sur l'espace des n-tenseurs d'un espace vectoriel de dimension N.- et les mesures de Gelfand, qui correspondent à la représentation du groupe symétrique qui est la somme directe sans multiplicité de toutes les représentations irréductibles de Sn.Dans chaque cas, nous avons établi une loi des grands nombres et un théorème central limite tout à fait semblable à la loi des grands nombres de Logan-Shepp-Kerov-Vershik (1977) et au théorème central limite de Kerov (1993) pour les mesures de Plancherel des groupes symétriques.Nos résultats peuvent presque tous être traduits en termes de combinatoire des mots, et d'autre part, les techniques employées sont inspirées des techniques de la théorie des matrices aléatoires. Ainsi, on a calculé pour chaque modèle l'espérance de fonctions polynomiales sur les partitions, qui jouent un rôle tout à fait analogue aux polynômes traciaux en théorie des matrices aléatoires. L'outil principal des preuves est ainsi une algèbre d'observables de diagrammes de Young, qu'on peut aussi interpréter comme algèbre de permutations partielles. Nous avons tenté de généraliser cette construction au cas d'autres groupes et algèbres, et nous avons construit une telle généralisation dans le cas des algèbres d'Hecke des groupes symétriques. Ces constructions rentrent dans le cadre très abstrait des fibrés de semi-groupes par des semi-treillis ; dans le même contexte, on peut formaliser des problèmes combinatoires sur les permutations, par exemple le problème du calcul des nombres de Hurwitz / During this thesis, we have studied models of random partitions stemming from the representation theory of the symmetric groups and the classical finite Chevalley groups, in particular the groups GL(n,Fq). We have shown results of gaussian concentration in the case of:- q-Plancherel measures (of type A), that correspond to the action of GL(n,Fq) on the variety of complete flags of (Fq)^n, and are related to the representation theory of the Hecke algebras of the symmetric groups.- the analogue in type B of the aforementioned model, that corresponds to the action of Sp(2n,Fq) on the variety of complete totally isotropic flags in (Fq)^2n.- Schur-Weyl measures, that correspond to the two commuting actions of GL(N,C) and Sn on the space of n-tensors of a vector space of dimension N.- Gelfand measures, that correspond to the representation of the symmetric group which is the multiplicity-free direct sum of all irreducible representations of Sn.In each case, we have established a law of large numbers and a central limit theorem similar to the law of large numbers of Logan-Shepp-Kerov-Vershik (1977) and to Kerov's central limit theorem (1993) for the Plancherel measures of the symmetric groups. Almost all our results can be restated in terms of combinatorics of words, and besides, the tools of the proofs are inspired by the usual techniques of random matrix theory. Hence, we have computed for each model the expectation of polynomial functions on partitions, that play a role similar to the tracial polynomials in random matrix theory. The principal tool of the proofs is therefore an algebra of observables of diagrams, that can also be interpreted as an algebra of partial permutations. We have tried to generalize this construction to the case of other groups and algebras, and we have constructed such a generalization in the case of the Hecke algebras of the symmetric groups. These constructions belong to the abstract setting of semilattice bundles over semigroups; in the same setting, one can formalize combinatorial problems on permutations, for instance the problem of computing the Hurwitz numbers
|
157 |
Graded blocks of group algebrasBogdanic, Dusko January 2010 (has links)
In this thesis we study gradings on blocks of group algebras. The motivation to study gradings on blocks of group algebras and their transfer via derived and stable equivalences originates from some of the most important open conjectures in representation theory, such as Broue’s abelian defect group conjecture. This conjecture predicts the existence of derived equivalences between categories of modules. Some attempts to prove Broue’s conjecture by lifting stable equivalences to derived equivalences highlight the importance of understanding the connection between transferring gradings via stable equivalences and transferring gradings via derived equivalences. The main idea that we use is the following. We start with an algebra which can be easily graded, and transfer this grading via derived or stable equivalence to another algebra which is not easily graded. We investigate the properties of the resulting grading. In the first chapter we list the background results that will be used in this thesis. In the second chapter we study gradings on Brauer tree algebras, a class of algebras that contains blocks of group algebras with cyclic defect groups. We show that there is a unique grading up to graded Morita equivalence and rescaling on an arbitrary basic Brauer tree algebra. The third chapter is devoted to the study of gradings on tame blocks of group algebras. We study extensively the class of blocks with dihedral defect groups. We investigate the existence, positivity and tightness of gradings, and we classify all gradings on these blocks up to graded Morita equivalence. The last chapter deals with the problem of transferring gradings via stable equivalences between blocks of group algebras. We demonstrate on three examples how such a transfer via stable equivalences is achieved between Brauer correspondents, where the group in question is a TI group.
|
158 |
Simmetries in binary differential equations / Simetrias em equações diferenciais bináriasPatricia Tempesta 28 April 2017 (has links)
The purpose of this thesis in to introduce the systematic study of symmetries in binary differential equations (BDEs). We formalize the concept of a symmetric BDE, under the linear action of a compact Lie group. One of the main results establishes a formula that relates the algebraic and geometric effects of the occurrence of the symmetry in the problem. Using tools from invariant theory and representation theory for compact Lie groups we deduce the general forms of equivariant binary differential equations under compact subgroups of O(2). A study about the behavior of the invariant straight lines on the configuration of homogeneous BDEs of degree n is done with emphasis on cases in which n = 0 and n = 1. Also for the linear case (n = 1) the equivariant normal forms are presented. Symmetries of linear 1-forms are also studied and related with symmetries of tangent orthogonal vectors fields associated with it. / O objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.
|
159 |
Simmetries in binary differential equations / Simetrias em equações diferenciais bináriasTempesta, Patricia 28 April 2017 (has links)
The purpose of this thesis in to introduce the systematic study of symmetries in binary differential equations (BDEs). We formalize the concept of a symmetric BDE, under the linear action of a compact Lie group. One of the main results establishes a formula that relates the algebraic and geometric effects of the occurrence of the symmetry in the problem. Using tools from invariant theory and representation theory for compact Lie groups we deduce the general forms of equivariant binary differential equations under compact subgroups of O(2). A study about the behavior of the invariant straight lines on the configuration of homogeneous BDEs of degree n is done with emphasis on cases in which n = 0 and n = 1. Also for the linear case (n = 1) the equivariant normal forms are presented. Symmetries of linear 1-forms are also studied and related with symmetries of tangent orthogonal vectors fields associated with it. / O objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.
|
160 |
Sociala koder på arbetsplatsen : En kvalitativ studie om sociala koder på arbetsplatsen och dess möjliga begränsningar och tillgångar för den mänskliga arbetskraften. / Social codes in the workplace : A qualitative study of social codes in the workplace and its possible limitations and resources for the human workforce.Mesch, Mikaela, Freij, Gabriella January 2018 (has links)
En kvalitativ studie genomfördes kring fenomenet sociala koder för att skapa förståelse och fördjupa kunskaper kring vilken möjlig påverkan sociala koder kan ha på mänsklig arbetskraft i arbetslivet. Studiens resultat visade på att sociala koder förekommer på samtliga respondenters arbetsplatser. Detta tolkades innebära att sociala koder berör samtliga individer i arbetslivet. Frågeställningarna för studien var om det fanns sociala koder på arbetsmarknaden, och hur dessa kan påverka den mänskliga arbetskraften i arbetslivet. Ambitionen var att genomföra intervjuer för att sedan använda en fenomenologisk analys som kunde belysa skillnader och likheter kring respondenternas subjektiva upplevelser. I studien deltog fyra deltagare mellan åldrarna 23-56 år. Syftet var att få en mer djupgående förståelse för begreppet sociala koder, snarare än att generalisera resultatet till andra områden. Nyckelord utformades och formulerades sedan till fem teman som antogs beskriva sociala koder och dess inverkan på den mänskliga arbetskraften. Studiens teman benämndes som: tolkning av regler och social interaktion, utanförskap och gemenskap, varierande påverkan, förändringsbarhet och arbetskultur. Resultatet i studien baserades på subjektiva upplevelser och tolkades därefter i en diskussion kring hur detta resultat var användbart för övriga deltagare i arbetslivet. / A qualitative study regarding the phenomenon social codes was made to create a deeper understanding and develop knowledge about how social codes possibly could have an effect on human labor. The results of the study showed that social codes existed on all the participants workplaces. This was interpreted to imply that social codes was affecting all individuals in a social context on work. The questions of issue was if social codes existed on the labor market, and if these codes could possibly affect the human capital. The aim of the study was to implement interviews with four participants. Further it continued with a phenomenological analysis to illustrate differences and similarities within the results of the interviews. The participants of the study was between 23-56 years old. The study was not made to be able to generalise the studies results to a whole population, but instead to find a more profound description of the phenomenon social codes. Keywords were formulated and then decomposed into five themes to describe social codes and their impact on the human capital. The themes of the study was interpretation of rules and social interaction, alienation and communion, varied impact, changeability and work culture. The results of the study was based on subjective experiences and thoughts, which were interpreted into the discussion about how these results were useful for other employees.
|
Page generated in 0.1382 seconds