• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 19
  • 16
  • 12
  • 11
  • 8
  • 6
  • 2
  • 2
  • Tagged with
  • 222
  • 222
  • 77
  • 53
  • 39
  • 35
  • 34
  • 32
  • 31
  • 29
  • 24
  • 21
  • 21
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Differential calculus on h-deformed spaces / Calcul différentiel sur des espaces h-déformés

Herlemont, Basile 16 November 2017 (has links)
L'anneau $\Diff(n)$ des opérateurs différentiels $\h$-déformés apparaît dans la théorie des algèbres de réduction.Dans cette thèse, nous construisons les anneaux des opérateurs différentiels généralisés sur les espaces vectoriels $\h$-déformés de type $\gl$. Contrairement aux espaces vectoriels $q$-déformés pour lequel l'anneau des opérateurs différentiels est unique \`a isomorphisme pr\`es, l'anneau généralisé des opérateurs différentiels $\h$-déformés $\Diffs(n)$ est indexée par une fonction rationnelle $\sigma$ en $n$ variables, solution d'un syst\`eme d\'eg\'en\'er\'e d'\'equations aux diff\'erences finies. Nous obtenons la solution g\'en\'erale de ce syst\`eme. Nous montrons que le centre de $\Diffs(n)$ est un anneau des polynômes en $n$ variables. Nous construisons un isomorphisme entre des localisations de l'anneau $\Diffs(n)$ et de l’algèbre de Weyl $\text{W}_n$ l’étendue par $n$ indéterminés. Nous présentons des conditions irréductibilité des modules de dimension fini de $\Diffs(n)$. Finalement, nous discutons des difficultés a trouver les constructions analogues pour l'anneau $\Diff(n,N)$ correspondant \`a $N$ copies de $\Diff(n)$. / The ring $\Diff(n)$ of $\h$-deformed differential operators appears in the theory of reduction algebras. In this thesis, we construct the rings of generalized differential operators on the $\h$-deformed vector spaces of $\gl$-type. In contrast to the $q$-deformed vector spaces for which the ring of differential operators is unique up to an isomorphism, the general ring of $\h$-deformed differential operators $\Diffs(n)$ is labeled by a rational function $\sigma$ in $n$ variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system. We show that the center of $\Diffs(n)$ is a ring of polynomials in $n$ variables. We construct an isomorphism between certain localizations of $\Diffs(n)$ and the Weyl algebra $\W_n$ extended by $n$ indeterminates. We present some conditions for the irreducibility of the finite dimensional $\Diffs(n)$-modules. Finally, we discuss difficulties for finding analogous constructions for the ring $\Diff(n, N)$ formed by several copies of $\Diff(n)$.
192

Zur Konstruktion einfacher Charaktere und der Fortsetzungen ihrer Heisenbergdarstellungen für lokale zentral-einfache Algebren

Grabitz, Martin 05 July 2000 (has links)
In dieser Dissertationsschrift soll erkl{\"a}rt werden, wie auf der Grundlage von einfachen Strata, wie sie in einer gemeinsamen Arbeit mit Broussous \cite{BG} betrachtet wurden, einfache Charaktere f{\"u}r lokale einfache Algebren konstruiert werden k{\"o}nnen, wobei die Konstruktion den Vorbildern von Bushnell und Kutzko im zerfallenden Fall \cite{BK1} und von Zink \cite{Z7} im Falle eines Schiefk{\"o}rpers folgt. Der Begriff des einfachen Charakters geht auf die Arbeit \cite{BK1} zur{\"u}ck und bezeichnet eine ausgezeichnete Auswahl von Heisenbergcharakteren, die zu einem stabilen Darstellungsfilter geh{\"o}ren, der gem{\"a}{ss} \cite{Z2}(Hauptsatz 1.4) einem Darstellungsfilter zugeordnet wird, der zu einer absteigenden Normalreihe $$1+\R\supset1+\R^2\supset\ldots$$ geh{\"o}rt, wobei $\R$ das Jacobsonradikal einer erblichen Ordnung bezeichnet. Wir werden hier nur von Hauptordnungen ausgehen, d.h. von dem Fall, da{ss} $\R$ und seine Potenzen gebrochene Hauptideale sind. Diese Vorgehensweise und auch die besondere Auswahl der Heisenbergcharaktere in Form von einfachen Charakteren, wird durch die Konstruktion im Falle eines Schiefk{\"o}rpers \cite{Z7} und durch den abstrakten Matchingsatz \cite{BDKV} gerechtfertigt. Im Falle eines lokalen zentralen Schiefk{\"o}rpers ist n{\"a}mlich der Bewertungsring die einzige erbliche Ordnung und die einfachen Charaktere sind alle Heisenbergcharaktere die zu einem stabilen Darstellungsfilter geh{\"o}ren, der gem{\"a}{ss} \cite{Z2}(Hauptsatz 1.4) einem Darstellungsfilter, der zur absteigenden Normalreihe $$1+\pin_D\supset1+\pin_D^2\supset\ldots$$ geh{\"o}rt, zugeordnet wird, wobei $\pin_D$ das Bewertungsideal des Schiefk{\"o}rpers $D$ bezeichnet. Der abstrakte Matchingsatz liefert nun die Existenz einer Bijektion zwischen den irreduziblen glatten Darstellungen der multiplikativen Gruppe des lokalen zentralen Schiefk{\"o}rpers $D$ und den irreduziblen quadratintegrierbaren glatten Darstellungen einer beliebigen anderen lokalen zentraleinfachen Algebra vom selben reduzierten Grad {\"u}ber demselben nicht-archimedischen Grundk{\"o}rper $F$, welche den Charakter einer Darstellung in dem Sinne erh{\"a}lt, da{ss} die Charakterwerte auf den Konjugationsklassen elliptischer Elemente der verschiedenen Algebren, welche mithilfe ihrer Minimalpolynome identifiziert werden k{\"o}nnen, bis auf ein Vorzeichen {\"u}bereinstimmen. Wir werden hier kanonische Bijektionen zwischen den einfachen Charakteren f{\"u}r verschiedene zentraleinfache Algebren vom selben reduzierten Grad {\"u}ber demselben Grundk{\"o}rper angeben, von denen wir erwarten, da{ss} sie mit der Abbildung des abstrakten Matchingsatzes vertr{\"a}glich sind. Das dieses in der Tat der Fall ist, wurde bisher nur in einfachen F{\"a}llen wie \cite{He} und \cite{BH2} gezeigt, jedoch wurde in der Arbeit \cite{Z4} bereits mithilfe der Konstruktionen von \cite{Z7} und \cite{BK3} eine Bijektion zwischen den irreduziblen glatten Darstellungen der multiplikativen Gruppe des lokalen zentralen Schiefk{\"o}rpers $D$ vom Index $N$ {\"u}ber einem Grundk{\"o}rper $F$ und den irreduziblen essentiell quadratintegrierbaren glatten Darstellungen von $Gl_N(F)$ konstruiert, welche den Artinf{\"u}hrer und den formalen Grad einer Darstellung erh{\"a}lt. Da die Abbildung des abstrakten Matchingsatzes dieselben Forderungen erf{\"u}llt, kommt dies der gew{\"u}nschten Vertr{\"a}glichkeit schon sehr nahe und wir erf{\"u}llen mit unserer Konstruktion insbesondere die in der Arbeit \cite{Z4} gemachte Forderung die dort im Bezug auf die einfachen Charaktere getroffen Auswahlen noch unabh{\"a}ngiger von den jeweiligen Algebren zu gestalten. Die hier getroffene Auswahl wird durch die Verwendung sogenannter spezieller approximierender Folgen getroffen, welche sich aus einer Verallgemeinerung der in \cite{BG} gemachten {\"U}berlegungen ergeben. Im Anschlu{ss} an die Konstruktion und den Vergleich einfacher Charaktere werden wir in einer gro{ss}en Anzahl von F{\"a}llen zeigen, da{ss} sich die Heisenbergdarstellungen, die wir zu den einfachen Charakteren erhalten, in kanonischer Weise fortsetzen lassen und wir erwarten von diesen Fortsetzungen, da{ss} sie analoge Eigenschaften besitzen, wie die sogenannten ``$\beta$-Fortsetzungen'' von \cite{BK1}(5.2.1) im zerfallenden Fall. Damit k{\"o}nnen wir in diesen F{\"a}llen eine Liste von hypothetischen einfachen Typen angeben, von denen wir vermuten, da{ss} sie alle Bernsteinkomponenten parametrisieren, welche irreduzible essentiell quadratintegrierbare Darstellungen enthalten. Insbesondere vermuten wir, da{ss} sich die supercuspidalen Darstellungen mittels kompakter Induktion aus Fortsetzungen solcher einfacher Typen auf eine kompakt modulo Zentrum Untergruppe gewinnen lassen. Um die Vollst{\"a}ndigkeit dieser Konstruktion zu demonstrieren, h{\"a}tten wir allerdings noch die Eigenschaft ``Verkettung impliziert Konjugation'' zu zeigen, welche wir ebenfalls auf eine Folgearbeit verschieben m{\"u}ssen. Beabsichtig w{\"a}re dann ein Vollst{\"a}ndigkeitsbeweis mit dem abstrakten Matchingsatz wie bei L. Corwin \cite{Co} oder in \cite{Z4}. Wir weisen hier nur in Spezialf{\"a}llen nach, dass die Typendarstellungen, welche wir hier angegeben haben, tats{\"a}chlich Typen im Sinne von \cite{BK4}(4.1)(4.2) sind. Insbesondere sind es auch unsere Berechnungen in der Arbeit \cite{GSZ}, welche dem von uns im Geiste von \cite{Z7} und \cite{BK1} gemachten Ans{\"a}tzen hohe Evidenz geben. / In this thesis, we try to explain how simple characters for arbitrary central simple algebras over a non-archimedian local field $F$ can be constructed. Moreover, we introduce a kind of matching of simple characters between different algebras of fixed reduced degree. If the index of the algebra $A$ is odd or $A=M_l(D)$, where $l$ is an arbitrary prime number and $D$ a central division algebra over $F$, we can extend the Heisenberg representations associated to the simple characters to level-0 and obtain a hypothetical list of simple types. For $A=M_l(D)$ and if the residual field of $F$ is not the field with two elements, we can proof that all so-called maximal simple types in our list are simple types in the sense of \cite{BK4} and their extensions to their stabelizers induce supercupidal representations of $G_l(D)$. Using the the heuristical relation via the abstract matching theorem of \cite{BDKV} to the cases of a division algebra due to \cite{Z5} and to the split case due to \cite{BK1}, we conjecture that all supercuspidal representations of $Gl_l(D)$ can be obtained by this way.
193

O ensino da função logarítmica por meio de uma sequência didática ao explorar suas representações com o uso do software GeoGebra

Santos, Adriana Tiago Castro dos 17 February 2011 (has links)
Made available in DSpace on 2016-04-27T16:57:04Z (GMT). No. of bitstreams: 1 Adriana Tiago Castro dos Santos.pdf: 7471618 bytes, checksum: 9c75079b97e8ac1990c5f20df0d9a3a8 (MD5) Previous issue date: 2011-02-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This study aims at developing, to apply and to analyze a didactic sequence which has involved the logarithm function theme using the software GeoGebra as a pedagogical strategy. For this purpose we have chosen the Registers of Semiotic Representation Theory as theoretical framework, as described by Duval (2009) as well as the Advanced Mathematical Thinking Processes, according to Dreyfus (1991). We have used the project of Didactic Engineering (ARTIGUE, DOUADY, MORENO, 1995) as methodological reference. The activities chosen to compose the sequence were retrieved from Math Teacher´s book of the High School to the first grade third quarter of 2009 (SÃO PAULO, 2009) with some adaptations which we judged necessary. The fellows of this survey were students of a public school in São Paulo State in the town of Itaquaquecetuba who were observed during eight presence meetings. The analyses of the production achieved by the students in connection with the transcriptions of the dialogues recorded in audio during the proposal of the didactic sequence pointed out that there were difficulties in making the conversion from the graphic register in the initial record to the registers: algebraic and in the natural language in the final record. Based on the report of the participants, the use of the software GeoGebra has contributed to the visualization and to the understanding of the graphic performance of the studied functions. The Advanced Mathematical Thinking Processes involved in the strategies of the solutions of the students were: the discovery by using investigation, changing of representation for the same concept, generalization and abstraction. According to Dreyfus (1991) these processes are relevant to the understanding of a mathematical concept. After the analyses of the results we have concluded that the application of the didactical sequences using the software GeoGebra was efficient strategy to achieve our initially proposed objectives / Este estudo tem como objetivo elaborar, aplicar e analisar uma sequência didática que envolveu o tema função logarítmica utilizando o software GeoGebra como uma estratégia pedagógica. Para tanto escolhemos como aporte teórico a Teoria dos Registros de Representação e Semiótica descrita por Duval (2009) e os processos do Pensamento Matemático Avançado segundo Dreyfus (1991). Como referencial metodológico, utilizamos os pressupostos da Engenharia Didática (ARTIGUE, DOUADY, MORENO, 1995). As escolhas das atividades para compor a sequência foram retiradas do Caderno do Professor de Matemática da 1ª Série do Ensino Médio volume 3 (SÃO PAULO, 2009) com algumas adaptações que julgamos necessárias. Os sujeitos da pesquisa foram estudantes do 3º ano do Ensino Médio de uma escola da rede estadual de São Paulo no Município de Itaquaquecetuba, durante oito encontros presenciais. As análises das produções realizadas pelos alunos em conjunto com as transcrições dos diálogos gravados em áudio durante a aplicação da sequência didática apontaram que houve dificuldade em fazer a conversão do registro gráfico no registro de partida para os registros: algébrico e na língua natural no registro de chegada. Segundo relato dos participantes, o uso do software GeoGebra contribuiu para a visualização e para a compreensão do comportamento gráfico das funções estudadas. Os processos do Pensamento Matemático Avançado envolvido nas estratégias de resoluções dos estudantes foram: a descoberta por meio de investigação, mudança de representação de um mesmo conceito, generalização e abstração. Segundo Dreyfus (1991) esses processos são relevantes para a compreensão de um conceito matemático. Após as análises dos resultados concluímos que a aplicação da sequência didática utilizando o software GeoGebra foi uma estratégia eficiente para atingir os nossos objetivos propostos inicialmente
194

Reconversion et aménagement durable des friches urbaines polluées : élaboration d'une méthode participative d'évaluation et d'aide multicritère à la décision / Sustainable contaminated brownfield redevelopment : implementation of a participatory multicriteriadecision aid support system

Tendero, Marjorie 31 May 2018 (has links)
La reconversion des friches urbaines est unepriorité pour préserver les sols. Ce sont souvent des sitespollués ; ce qui engendre de nombreux obstacles pour lesreconvertir. Les bénéfices découlant de la reconversionsont sous-estimés tandis que les coûts sont surestimés parles opérateurs techniques et fonciers. L’impact de lastigmatisation du site amène les riverains à ne pass’approprier les nouveaux usages. Le choix de ces usagespeut être à l'origine de conflits entre les parties prenantes.Cette thèse s'intéresse à la reconversion des frichespolluées en tenant compte à la fois de lamultidimensionnalité des parties prenantes, de leurspréférences, et de leurs perceptions. Nous étudions lesobstacles et les leviers pouvant être mobilisés pourpromouvoir leur reconversion à partir d’une enquête auprès de 76 opérateurs techniques et fonciers dans unepremière partie.Dans la seconde, nous analysonsl’importance des stigmates associés aux friches polluéesauprès des riverains et futurs usagers. Une premièreenquête, menée au niveau national (803 observations)analyse leurs perceptions, représentations et préférencesvis-à-vis de ces sites. Ces dernières sont précisées à l’aided’une expérience à choix discrets (338 observations)administrée sur cinq communes impactées par ce type desite. Dans une troisième partie, nous appliquons unedémarche d’aide multicritère à la décision participativedans le cas d’une friche urbaine polluée. Elle identifie lesprojets les plus consensuels en regroupant l’ensemble desparties prenantes. Ils corresponde / Brownfield redevelopment is a key priority topreserve soils. Brownfields are often contaminated yet.Therefore, it creates numerous obstacles to reuse them.Firstly, brownfields redevelopment’s benefits areunderestimated whereas costs are overestimated bydevelopers. Secondly, brownfields are plagued with thestigma effect. This effect persists even after remediationprocess (e.g., individuals may not use facilities on aformer contaminated brownfield). Thirdly, new uses cancause conflicts between the stakeholders. As such, thisthesis deals with contaminated brownfieldredevelopment taking into account both themultidimensionality of stakeholders, their preferencesand their perceptions. developers. In a first part, we study barriers to brownfieldredevelopment and how to tackle them using a surveyamong 76 French developers.In a second part, weanalyse the importance of the stigma associated withcontaminated brownfields. A first survey (803observations), conducted at national level, investigatesindividuals’ perceptions, representations and preferencesregarding brownfield redevelopment. A second survey(338 observations), conducted among five municipalitiesimpacted by such sites, specifies their preferences usinga discrete choice experiment. In the third part, we applya participatory multicriteria decision aid. It determinesthe most consensual projects in the case of acontaminated site. They correspond to individuals’preferences that were previously analysed.
195

On Representations of the Jacobi Group and Differential Equations

Webster, Benjamin 01 January 2018 (has links)
In PDEs with nontrivial Lie symmetry algebras, the Lie symmetry naturally yield Fourier and Laplace transforms of fundamental solutions. Applying this fact we discuss the semidirect product of the metaplectic group and the Heisenberg group, then induce a representation our group and use it to investigate the invariant solutions of a general differential equation of the form .
196

Sur la structure cellulaire et la théorie de la représentation des algèbres de Temperley-Lieb à couture

Langlois-Rémillard, Alexis 12 1900 (has links)
No description available.
197

Modèle de Littelmann pour cristaux géométriques, fonctions de Whittaker sur des groupes de Lie et mouvement brownien.

Chhaibi, Reda 24 January 2013 (has links) (PDF)
De façon générale, cette thèse s'intéresse aux liens entre théorie des représentations et probabilités. Elle se subdivise en principalement trois parties. Dans un premier volet plutôt algébrique, nous construisons un modèle de chemins pour les cristaux géométriques de Berenstein et Kazhdan, pour un groupe de Lie complexe semi-simple. Il s'agira pour l'essentiel de décrire la structure algébrique, ses morphismes naturels et ses paramétrisations. La théorie de la totale positivité y jouera un role particulièrement important. Ensuite, nous avons choisi d'anticiper sur les résultats probabilistes et d'exhiber une mesure canonique sur les cristaux géométriques. Celle-ci utilise comme ingrédients le superpotentiel de variété drapeau, et une mesure invariante sous les actions cristallines. La mesure image par l'application poids joue le role de mesure de Duistermaat-Heckman. Sa transformée de Laplace définit les fonctions de Whittaker, fournissant une formule intégrale particulièrement intéressante pour tous les groupes de Lie. Il apparait alors clairement que les fonctions de Whittaker sont aux cristaux géométriques, ce que les caractères sont aux cristaux combinatoires classiques. La règle de Littlewood-Richardson est aussi exposée. Enfin nous présentons l'approche probabiliste permettant de trouver la mesure canonique. Elle repose sur l'idée fondamentale que la mesure de Wiener induira la bonne mesure sur les structures algébriques du modèle de chemins. Dans une dernière partie, nous démontrons comment notre modèle géométrique dégénère en le modèle de Littelmann continu classique, pour retrouver des résultats connus. Par exemple, la mesure canonique sur un cristal géométrique de plus haut poids dégénère en une mesure uniforme sur un polytope, et retrouve les paramétrisations des cristaux continus.
198

Variétés de drapeaux et opérateurs différentiels

Jauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0. On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider. On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0. In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem. We also present a detailled construction of the sheaf of differential operators on a variety.
199

Représentations galoisiennes et phi-modules : aspects algorithmiques

Le Borgne, Jérémy 03 April 2012 (has links) (PDF)
Nous nous intéressons aux aspects algorithmiques de la théorie des représentations modulo p de groupes de Galois p-adiques. À cet effet, l'un des outils introduits par Fontaine est la théorie de ϕ-modules : un ϕ-module sur un corps K de caractéristique p est la donnée d'un espace vectoriel de dimension finie sur K muni d'un endomorphisme ϕ, semi-linéaire par rapport au morphisme de Frobenius sur K. Les représentations à coefficients dans un corps fini du groupe de Galois absolu de K forment une catégorie équivalente à la catégorie des ϕ-modules dits " étales " sur K. Le but des travaux rassemblés ici est donner des algorithmes pour décrire le plus complètement possible la représentation associée à un ϕ-module donné. Nous étudions en préambule les ϕ-modules sur les corps finis, ce qui nous permet d'obtenir de nouveaux résultats décrivant les polynômes tordus sur un corps fini, qui sont des ob jets utilisés notamment en théorie des codes correcteurs. Cela nous permet d'améliorer en partie l'algorithme dû à Giesbrecht pour la factorisation de ces polynômes. Nous nous intéressons ensuite à la catégorie des ϕ-modules sur un corps de séries formelles de caractéristique p. Nous donnons une classification des ob jets simples de cette catégorie lorsque le corps résiduel est algébrique- ment clos, et décrivons un algorithme efficace pour décomposer un ϕ-module en ϕ-modules " isoclines ". Nous donnons des applications à l'étude algorithmique des représentations de p-torsion de groupes de Galois p-adiques.
200

Schémas de Hilbert invariants et théorie classique des invariants

Terpereau, Ronan 05 November 2012 (has links) (PDF)
Pour toute variété affine W munie d'une opération d'un groupe réductif G, le schéma de Hilbert invariant est un espace de modules qui classifie les sous-schémas fermés de W, stables par l'opération de G, et dont l'algèbre affine est somme directe de G-modules simples avec des multiplicités finies préalablement fixées. Dans cette thèse , on étudie d'abord le schéma de Hilbert invariant, noté H, qui paramètre les sous-schémas fermés GL(V)-stables Z de W=n1 V oplus n2 V^* tels que k[Z] est isomorphe à la représentation régulière de GL(V) comme GL(V)-module. Si dim(V)<3,on montre que H est une variété lisse, et donc que le morphisme de Hilbert-Chow gamma: H -> W//G est une résolution des singularités du quotient W//G. En revanche, si dim(V)=3, on montre que H est singulier. Lorsque dim(V)<3, on décrit H par des équations et aussi comme l'espace total d'un fibré vectoriel homogène au dessus d'un produit de deux grassmanniennes. On se place ensuite dans le cadre symplectique en prenant n1=n2 et en remplaçant W par la fibre en 0 de l'application moment mu: W -> End(V). On considère alors le schéma de Hilbert invariant H' qui paramètre les sous-schémas contenus dans mu^{-1}(0). On montre que H' est toujours réductible, mais que sa composante principale Hp' est lisse lorsque dim(V)<3. Dans ce cas, le morphisme de Hilbert-Chow est une résolution (parfois symplectique) des singularités du quotient mu^{-1}(0)//G. Lorsque dim(V)<3, on décrit Hp' comme l'espace total d'un fibré vectoriel homogène au dessus d'une variété de drapeaux. Enfin, on obtient des résultats similaires lorsque l'on remplace GL(V) par un autre groupe classique (SL(V), SO(V), O(V), Sp(V)) que l'on fait opérer d'abord dans W=nV, puis dans la fibre en 0 de l'application moment.

Page generated in 0.1209 seconds