• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 13
  • 10
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 110
  • 110
  • 110
  • 61
  • 36
  • 34
  • 21
  • 20
  • 19
  • 19
  • 18
  • 18
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Small molecule signaling and detection systems in protists and bacteria

Rajamani, Sathish 13 September 2006 (has links)
No description available.
92

Advanced Fluorescence Microscopy to Study Plasma Membrane Protein Dynamics

Piguet, Joachim January 2010 (has links)
Membrane protein dynamics is of great importance for living organisms. The precise localization of proteins composing a synapse on the membrane facing a nerve terminus is essential for proper functioning of the nervous system. In muscle fibers, the nicotinic acetylcholine is densely packed under the motor nerve termini. A receptor associated protein, rapsyn, acts as a linker between the receptor and the other components of the synaptic suramolecular assembly. Advances in fluorescence microscopy have allowed to measure the behavior of a single receptor in the cell membrane. In this work single-molecule microscopy was used to track the motion of ionotropic acetylcholine (nAChR) and serotonin (5HT3R) receptors in the plasma membrane of cells. We present methods for measuring single-molecule diffusion and their analysis. Single molecule tracking has shown a high dependence of acetylcholine receptors diffusion on its associated protein rapsyn. Comparing muscle cells that either express rapsyn or are devoid of it, we found that rapsyn plays an important role on receptor immobilization. A three-fold increase of receptor mobility was observed in muscle cells devoid of rapsyn. However, in these cells, a certain fraction of immobilized receptors was also found immobile. Furthermore, nAChR were strongly confined in membrane domains of few tens of nanometers. This showed that membrane composition and membrane associated proteins influence on receptor localization. During muscle cell differentiation, the fraction of immobile nAChR diminished along with the decreasing nAChR and stable rapsyn expression levels. The importance of rapsyn in nAChR immobilization has been further confirmed by measurements in HEK 293 cells, where co-expression of rapsyn increased immobilization of the receptor. nAChR is a ligand-gated ion-channel of the Cys-loop family. In mammals, members of this receptor family share general structural and functional features. They are homo- or hetero-pentamers and form a membrane-spanning ion channel. Subunits have three major regions, an extracellular ligand binding domain, a transmembrane channel and a large intracellular loop. 5HT3R was used as a model to study the effect of this loop on receptor mobility. Single-molecule tracking experiments on receptors with progressively larger deletions in the intracellular loop did not show a dependence of the size of the loop on the diffusion coefficient of mobile receptors. However, two regions were identified to play a role in receptor mobility by changing the fractions of immobile and directed receptors. Interestingly, a prokaryotic homologue of cys-loop receptors, ELIC, devoid of a large cytoplasmic loop was found to be immobile or to show directed diffusion similar as the wild-type 5HT3R. The scaffolding protein rapsyn stabilizes nAChR clusters in a concentration dependent manner. We have measured the density and self-interactions of rapsyn using FRET microscopy. Point-mutations of rapsyn, known to provoke myopathies, destabilized rapsyn self-interactions. Rapsyn-N88K, and R91L were found at high concentration in the cytoplasm suggesting that this modification disturbs membrane association of rapsyn. A25V was found to accumulate in the endoplasmic reticulum. Fluorescent tools to measure intracellular concentration of calcium ions are of great value to study the function of neurons. Rapsyn is highly abundant at the neuromuscular junction and thus is a genuine synaptic marker. A fusion protein of rapsyn with a genetically encoded ratiometric calcium sensor has been made to probe synapse activity. This thesis has shown that the combined use of biologically relevant system and modern fluorescence microscopy techniques deliver important information on pLGIC behaviour in the cell membrane. / <p>QC 20151217</p>
93

Étude des déterminants moléculaires de la signalisation des récepteurs couplés aux protéines G et développement d'outils pour l'étude de l'effecteur bêta-arrestine.

Audet, Martin 08 1900 (has links)
Les récepteurs couplés aux protéines G (RCPG) constituent la plus grande famille de protéines membranaires du génome humain. Ils transmettent les signaux extracellulaires provenant de plusieurs stimuli comme les odeurs, les ions, les hormones et les neurotransmetteurs, à l'intérieur des cellules. En se liant aux RCPGs, ces molécules contribuent à la stabilisation des changements conformationnels activateurs qui se propagent jusqu'au domaine intracellulaire des récepteurs. Ces derniers engagent ensuite un ou plusieurs effecteurs, comme les protéines G hétérotrimériques et les β-arrestines (βarrs), qui activent une cascade d'événements moléculaires menant à la réponse cellulaire.Récemment, la publication de structures cristallines de RCPGs liant des ligands diffusibles a offert une opportunité de raffiner à une résolution atomique les modèles des mécanismes de transduction des signaux. Dans la première partie de cette thèse, nous avons donc exploré les déterminants de la signalisation du récepteur prototypique β2-adrénergique (β2AR), induite par les β-bloqueurs. En ne tenant compte que de leur efficacités sur le β2AR dans les voies de l'adénylate cyclase (AC) et des protéines kinases activées par les facteurs mitogéniques (MAPK), les β-bloqueurs peuvent être classés en 3 groupes distincts (agoniste inverse AC / agoniste MAPK, antagoniste neutre AC / agoniste MAPK et agoniste inverse AC / agoniste inverse MAPK). Afin de déterminer le lien entre leur efficacité et leur mode de liaison, nous avons réalisé des expériences d'arrimages moléculaires in silico entre des β-bloqueurs de chacun des groupes et la structure cristalline du β2AR liée au carazolol. De manière intéressante, les ligands à l'intérieur d'un groupe partagent un mode de liaison, alors que ceux des ligands entre les groupes divergent, suggérant que le mode de liaison des β-bloqueurs pourrait être utilisé pour prédire leur l'efficacité. En accord avec cette hypothèse, nous avons prédit et confirmé l'efficacité agoniste MAPK du carazolol, un inverse agoniste AC du β2AR se liant au récepteur de manière similaire au groupe inverse agoniste AC / agoniste MAPK. De manière intéressante, le groupement aryl des ligands agonistes inverses agonistes AC / agoniste MAPK, le seul groupement chimique variable de ce groupe, est prédite pour lier la région des 3e et 5e hélices transmembranaires (TM3 et TM5). Nous avons donc émis l'hypothèse que cette région pourrait être un déterminant de l'efficacité de ces ligands. En accord avec cette dernière, la mutation de 2 résidus (T118I, S203A) localisés proches du site de liaison des groupements aryls des β-bloqueurs, prévient l'efficacité agoniste inverse de l'ICI-118551 sur la voie de l'AC sans affecter l'efficacité d'un agoniste, indiquant que cette région est importante pour la transmission de l'effet agoniste inverse, du moins sur la voie de l'AC. Les βarrs sont des protéines d'échafaudage qui coordonnent la formation de complexes avec plusieurs dizaines d'effecteurs de signalisation. Originalement identifiées pour leur rôle dans la désensibilisation et l'internalisation des RCPGs, elles sont aussi d'importants effecteurs de la signalisation des RCPGs indépendante des protéines G hétérotrimériques. Cependant, contrairement aux protéines G hétérotrimériques, il n'existe que peu d'outils pour les étudier. Ainsi, la deuxième partie de la thèse est dédiée au développement d'outils pour l'étude des βarrs. À cette fin, nous avons d'abord tenté de transposer une méthode de mesure de l'interaction entre 2 protéines par la technologie de transfert d'énergie de bioluminescence par résonance (BRET) en microscopie et chez des souris transgéniques afin de mesurer de manière subcellulaire et dans un contexte natif l'engagement de la βarr à des RCPGs. Ainsi, nous avons établi les preuves de principe que le BRET peut être utilisé pour localiser l'interaction entre la βarr et le récepteur de la vasopressine de type 2 (V2R) sur une cellule au microscope et pour détecter l'interaction entre la βarr et le β2AR sur des tissus de souris transgéniques exprimant ces protéines fusionnées avec des partenaires BRET. Finalement, il n'existe aucun inhibiteur pharmacologique ciblant les βarrs. Ainsi, grâce à la combinaison d'approches de criblage virtuel sur un modèle de la structure des βarrs et d'essais de validation cellulaire, nous avons développé un inhibiteur pharmacologique des βarrs. À l'aide de cet outil, nous avons confirmé l'implication des βarrs dans l'activation des MAPK par le V2R, mais aussi montré un nouveau rôle des βarrs dans le recyclage du β2AR. Les connaissances et outils développés dans cette thèse permettront de mieux comprendre les déterminants moléculaires de la signalisation des RCPGs et entre autres, grâce à des nouvelles approches pour étudier le rôle cellulaire et physiologique des βarrs. / G Protein-Coupled Receptors (GPCR) are members of the largest family of membrane protein in the human genome. They transduce the signal from a variety of stimuli like odors, ions, hormones and neurotransmitters, inside the cells. By binding directly to the receptors, these molecules stabilize activating conformational changes that are allosterically propagated through transmembrane to intracellular domains. Effectors like heterotrimeric G protein and β-arrestins (βarrs) are then engaged by activated receptors and trigger a cascade of signalling events leading to a cellular response. Recently, the resolution of the crystal structure of GPCR that bind to freely diffusible ligands provided the opportunity to refine at an atomic level the models describing the mecanisms of receptor signal transduction. In the first section of this thesis, we have explored the determinants of the prototypical β2-adrenergic receptor (β2AR) signalling induced by β-blockers. Given their efficacy on Adenylate Cyclase (AC) and Mitogen-Activated Protein Kinase (MAPK) pathways, β-blockers can be classified within 3 signalling groups (AC inverse agonist / MAPK agonist, AC neutral antagonist / MAPK agonist and inverse agonist for AC and MAPK). In order to gain insight on the relation between their efficacy and binding mode, we performed in silico binding experiments between β-blockers from each group and the β2AR crystal structure bound to carazolol. Interestingly, ligands within a group share similar binding mode in contrast to those of different groups, suggesting that β-blockers binding mode could be used to predict their efficacy. In accordance to this hypothesis, we have predicted and confirmed that carazolol, an AC inverse agonist that bind to β2AR in a similar way than the AC inverse agonist / MAPK agonist group, is indeed an agonist for MAPK pathway. Moreover, aryl chemical function from AC inverse agonist / MAPK agonist ligands, barely the only variable structure feature of this group, was predicted to bind β2AR nearby the transmembrane helices 3 and 5 (TM3 and TM5). We thus have predicted that this region would be a determinant of the AC inverse agonist / MAPK agonist ligand efficacy. Accordingly, we found that mutation of 2 residues (T118I, S203A) close to the aryl moiety binding site prevents inverse agonist efficacy of ICI-118551 on AC pathway, without affecting agonist efficacy, indicating that this receptor region is important for the efficacy of these group of β-blockers, at least on AC inverse agonism.βarrs are scaffolding proteins that coordinate protein complex formation with dozen of signalling effectors. First identified for their role on GPCR desensitization and internalization, βarrs are also an important heterotrimeric G protein independent GPCR signalling effectors. However, in contrast to heterotrimeric G protein, only a few tools are available for their study. Thus, the second section of this thesis aim at developing tools for the study of βarrs. For this purpose, we had attempted to transpose a method to measure protein-protein interaction that use Bioluminescence Resonance Energy Transfer (BRET) technology, in microscopy and in transgenic mice, in order to detect subcellular localization and in a native context the engagement of βarr to RCPGs. Thus, we have established a proof of principle that BRET can be combined with microscopy to locate an interaction between βarr and the type 2 vasopressin receptor (V2R) within a cell. Moreover, we have established a second proof of principle that we can detect βarrs recruitment to β2AR on cells extracted from tissues of transgenic mice expressing these proteins fused to BRET partner. Finally, there is no pharmacological inhibitor of βarrs. Thus, using a combination of virtual screening and cellular validation approches, we have developed the first pharmacological βarrs inhibitor. With this novel tool, we have confirmed the implication of βarrs in V2R-mediated MAPK activation, but also showed a new role of βarrs in β2AR recycling.The finding and the tools presented in this thesis should allow to better understand the molecular determinants of GPCR signalling, and among other things, by proposing new tools to study βarrs cellular and physiological roles.
94

Characterization of a novel class of anti-HCV agents targeting protein-protein interactions

Park, Alex 09 1900 (has links)
Le virus de l’hépatite C (VHC) est un agent causateur de maladies du foie important responsable d’une pandémie affectant près de 180 millions d’individus mondialement. L’absence de symptômes dans les premières années d’infection entraîne des diagnostics tardifs qui empêchent la prise en charge rapide des patients avant l’apparition d’une fibrose et, dans près de 16 % des cas d’infection, d’une cirrhose. En exploitant les interactions protéine-protéine membranaires, des essais utilisant la technologie BRET, dans les cellules vivantes, ont été précédemment optimisés afin d’établir le réseau complet des interactions du VHC. En utilisant les fondements de cette étude, un essai à haut débit dans les cellules vivantes a été réalisé pour identifier de nouveaux composés anti-VHC ciblant une nouvelle interaction NS3/4A-NS3/4A. Approximativement 110,000 petites molécules ont été criblées pour leurs effets sur l’homodimérization de NS3/4A et ont été classées par rapport à leur spécificité et à leur puissance contre le VHC. Au terme de cette étude, UM42811 a été identifié comme un activateur potentiel de l’interaction NS3/4A-NS3/4A offrant une activité antivirale prometteuse dotant une excellente fenêtre thérapeutique. Par la suite, un séquençage exhaustif des virus, soumis à un traitement de UM42811, a permis d’établir le profil de résistance du VHC contre ce composé. Grâce à cette fine cartographie, il a été possible d’identifier un nouveau mécanisme d’inhibition de NS3/4A qui est indépendant de son activité protéase. En utilisant les données de notre groupe sur les interactions VHC-hôte, il a été possible de continuer la caractérisation fonctionnelle du composé UM42811 en étudiant son effet sur les interactions potentiellement bénéfiques à la persistance virale. Pour ce faire, les protéines associées au transport nucléaire et mitochondriale qui sont des interactants de choix de NS3/4A ont été priorisées. Parmi ces facteurs de l’hôte, l’étude de karyopherin subunit beta 1 (KPNB1) et de heat shock protein 60 (HSP60) a été priorisée. De façon intéressante, les expériences de co-immunoprécipitation ont démontré que UM42811 était capable de prévenir l’interaction KPNB1-NS3/4A ainsi que l’interaction HSP60-NS3/4A. De plus, les études ii fonctionnelles et les analyses d’immunobuvardage de type western ont démontré que l’interaction KPNB1-NS3/4A avait des effets délétères sur l’induction des gènes stimulés par l’interféron (ISG). Finalement, il a été démontré que KPNB1 est possiblement clivé par NS3/4A suggérant la présence potentielle d’un mécanisme de subversion ou d’échappement. En bref, cette étude démontre la puissance des stratégies impliquant les interactions protéine-protéine dans les cellules vivantes pour l’identification de nouveaux composés inhibiteurs, caractérise un nouveau mécanisme d’inhibition anti-VHC et révèle la possibilité d’un nouveau mécanisme d’évasion du système immunitaire. / Hepatitis C virus (HCV) is an important causative agent for liver diseases and is responsible for a worldwide pandemic affecting roughly 180 million individuals worldwide. Late diagnosis following the progression to fibrosis and to cirrhosis, in nearly 16% of chronic infections, is attributed to the absence of symptoms in the first years of infection. By exploiting membrane protein-protein interactions (PPI), live cell assays using bioluminescence resonance energy transfer (BRET) technology have previously been optimized to complete a comprehensive hepatitis C virus (HCV) protein interaction network. Using the groundwork laid by this network study, a high-throughput assay (HTS) cell-based assay was implemented to identify novel inhibitory compounds targeting an unreported NS3/4A-NS3/4A interaction. Approximately 110,000 compounds from a small-molecule collection were screened to monitor modulation of NS3/4A homodimerization and were discriminated based on specificity and potency. UM42811 was identified as a potential NS3/4A-NS3/4A interaction activator and found to have a promising antiviral activity boasting an excellent therapeutic window. Combined deep sequencing and mutation mapping have yielded a resistance profile based on statistical and functional probability pointing towards a novel inhibitory mechanism targeting the HCV NS3/4A independent from protease activity inhibition. Data from an HCV to host protein interaction network generated by our group was used to analyze alternative effects of UM42811 on interactions which potentially benefit viral persistence. NS3/4A-specific host interactors were heavily associated with nuclear and mitochondrial transport based on Gene Ontology (GO). Among these specific interactors, karyopherin subunit beta 1 (KPNB1) and heat shock protein 60 (HSP60) were selected for further study. Interestingly, co-immunoprecipitation experiments revealed that UM42811 was able to prevent both KPNB1-NS3/4A and HSP60-NS3/4A interactions. Moreover, functional and western analysis revealed the KPNB1-NS3/4A interaction to have deleterious effects on iv interferon stimulated gene (ISG) induction. Unexpectedly, analysis revealed a putative NS3/4A mediated cleavage of KPNB1. Overall, this study demonstrates the strength of cell-based PPI strategies in the identification of novel HCV antiviral compounds, characterizes a novel inhibitory mechanism for HCV and reveals a potentially novel viral immune evasion mechanism.
95

À la recherche de meilleurs traitements analgésiques : interactions entre le récepteur opioïde δ et ses différents agonistes

Lagréou, Alexandre 09 1900 (has links)
Les opioïdes restent encore à l’heure actuelle les composés pharmacologiques les plus efficaces pour traiter les différentes formes de douleurs, et donc fournir une analgésie thérapeutique. Cependant, l’administration répétée de ces composés entraîne des effets secondaires majeurs comme la dépression respiratoire, la tolérance, mais également, il a été montré que certains de ces opioïdes pouvaient engendrer des états proépileptiques. D’un point de vue thérapeutique, il existe donc un réel besoin pour de nouveaux et meilleurs traitements analgésiques, n’élicitant pas ces effets secondaires. Notre laboratoire étudie la signalétique des récepteurs couplés aux protéines G comme les récepteurs opioïdes et leur capacité de sélectivité fonctionnelle depuis des années, et en particulier celle du récepteur delta opioïde (DOP). En effet, celui-ci présenterait moins d’effets indésirables que le récepteur mu opioïde (MOP) qui est la cible principale des opioïdes classiques comme la morphine. Cependant, il semblerait que le DOP justement soit à l’origine des états proépileptiques précédemment décrits. Ainsi malgré la promesse initiale des agonistes delta par rapport à la diminution des effets secondaires, les effets proépileptiques de certains ont notamment contribué à une baisse d’intérêt vers le DOP et aucun de ses agonistes n’a pu passer les phases de tests cliniques. Cependant, il a été démontré que certains agonistes delta n’entraînaient pas d’effet proépileptique; tandis que d’autres oui. Comment expliquer un tel phénomène ? Ceci est la question que pose la présente recherche. Ainsi notre objectif sera d’obtenir et de comparer les signatures pharmacologiques des agonistes connus pour être proépileptiques versus ceux qui ne le sont pas ; par rapport à la transduction de signal via le récepteur delta opioïde et sa protéine G hétérotrimérique ; et par rapport à un de ses effecteurs principaux pour l’analgésie, un canal potassique rectifiant entrant. Cette comparaison se fera selon les paramètres du modèle classique de la pharmacologie, comme l’efficacité et la puissance ; mais également avec un outil plus récent appelé modèle opérationnel, utilisant des paramètres comme l’affinité et le coefficient de transduction. Pour se faire, le transfert d'énergie par résonance de bioluminescence ou BRET sera utilisé afin de caractériser les différentes voies signalétiques impliquées. Cette recherche s’inscrit dans un vaste contexte de collaboration entre différents laboratoires, et au sein de chacun d’entre eux, dans l’espoir de pouvoir synthétiser un jour, de meilleurs composés pharmacologiques, capables de cibler uniquement les voies médiatrices des effets thérapeutiques voulus, ici l’analgésie ; sans éliciter celles entraînant les effets secondaires associés, ici, les états proconvulsifs. L’aboutissement de cette recherche permettrait donc d’impacter la vie de millions de gens en souffrance, et c’est pourquoi il nous semble plus qu’important de continuer à l’entreprendre. / Opioids are still nowadays the most efficacious pharmacological compounds available to treat the different types of pain, and therefore provide a therapeutic analgesia. However, repeated administration of those compounds lead to major secondary effects like respiratory depression, tolerance, but also it was shown that some opioid compounds could induce seizures. From a therapeutical point of view, there is a serious need for new and better analgesic treatments that do not elicit such adverse effects. Our lab has been studying for years the signaletics of G-protein coupled receptors like the opioid receptors, and their capacity for functional selectivity, especially more recently the one of the delta opioid receptor (DOP). Indeed, this receptor elicits fewer adverse effects compared to the mu opioid receptor (MOP) that is the main target of all clinically used opioids such as morphine. However, it seems like the DOP itself would be responsible for the pro-epileptic states previously described. Thus, despite initial promises of the delta agonists towards reducing adverse effects whilst providing analgesia, the pro-convulsive effects that some seem to elicit have induced a loss of interest towards the DOP, and so far none of its agonists have gone further than pre-clinical trials. However, it has been shown that not all of those DOP agonists had those pro-convulsive adverse effects. How to explain such a phenomenon? This is the question which the present research will be asking. Thus our goal is to obtain and compare pharmacological signatures of the agonists known for being pro-convulsive versus those that are not ; regarding the transduction of signals through the delta opioid receptor and its heterotrimeric G-Protein ; and also regarding one of its main effectors to induce analgesia, an inwardly rectifying potassium channel. This comparison will be done according to the classical parameters of pharmacology, such as efficacy and potency ; but also according to the newest operational model, with parameters such as affinity and transduction coefficients. In order to do so, bioluminescence resonance energy transfer or BRET, will be used in order to characterize and quantify the signalling pathways there implicated. This research is embedded in a vast collaboration context, in between laboratories around the world, and within those laboratories as well, in hope to be able to one day synthesize, better pharmacological compounds, capable of targeting only the pathways responsible for the desired effects, here analgesia ; without triggering the associated adverse effects, here pro-convulsive states. The culmination of this research could allow to impact the lives of millions of people throughout the world, and this is why it is more than important for us to keep on pursuing it.
96

Organisation and Recognition of Artificial Transmembrane Peptides

Rost, Ulrike 11 August 2016 (has links)
No description available.
97

Assemblage oligomérique des récepteurs couplés aux protéines G avec les RAMPs

Héroux, Madeleine 03 1900 (has links)
Les récepteurs couplés aux protéines G (RCPGs) constituent la plus grande classe de récepteurs membranaires impliqués dans la transmission des signaux extracellulaires. Traditionnellement, la transmission de la signalisation par les RCPGs implique l’activation d’une protéine G hétéro-trimérique qui pourra à son tour moduler l’activité de divers effecteurs intracellulaires. Ce schéma classique de signalisation s’est complexifié au fils des années et l’on sait maintenant qu’en plus d’interagir avec les protéines G, les RCPGs s’associent avec une panoplie d’autres protéines afin de transmettre adéquatement les signaux extracellulaires. En particulier, la découverte d’une famille de protéines transmembranaires modulant la fonction des RCPGs, baptisées protéines modifiant l’activité des récepteurs (« receptor activity-modifying proteins » ; RAMPs), a changé la façon de concevoir la signalisation par certains RCPGs. Dans le cas du récepteur similaire au récepteur de la calcitonine (« calcitonin-like receptor » ; CLR), l’association avec les RAMPs permet l’acheminement à la surface cellulaire du récepteur tout en modulant ses propriétés pharmacologiques. Lorsqu’il est associé avec RAMP1, le CLR fonctionne comme un récepteur du peptide relié au gène de la calcitonine (« calcitonin gene-related peptide » ; CGRP), alors qu’il devient un récepteur de l’adrénomedulline lorsqu’il interagit avec RAMP2 ou RAMP3. D’autre part, en plus d’interagir avec des protéines accessoires transmembranaires telles les RAMPs, les RCPGs peuvent aussi s’associer entre eux pour former des oligomères de récepteurs. Dans cette thèse, nous nous sommes penchés sur les interactions entre les RCPGs et les RAMPs, et plus particulièrement sur l’interrelation entre ce type d’association RCPG/RAMP et l’assemblage en oligomères de récepteurs, en utilisant le récepteur du CGRP comme modèle d’étude. Une première étude nous a tout d’abord permis de confirmer l’interaction entre le récepteur CLR et RAMP1, dans un contexte de cellules vivantes. Nous avons démontré que ce complexe CLR/RAMP1 active la protéine G et recrute la protéine de signalisation -arrestine suite à une stimulation par le CGRP. Ensuite, nous avons déterminé que même s’il doit obligatoirement former un hétéro-oligomère avec les RAMPs pour être actif, le CLR conserve malgré tout sa capacité à interagir avec d’autres RCPGs. En plus d’observer la présence d’homo-oligomère de CLR, nous avons constaté que tout comme les RCPGs, les RAMPs peuvent eux-aussi s’associer entre eux pour former des complexes oligomériques pouvant comprendre différents sous-types (RAMP1/RAMP2 et RAMP1/RAMP3). Cette observation de la présence d’homo-oligomères de CLR et de RAMP1, nous a amené à nous questionner sur la stœchiométrie d’interaction du complexe CLR/RAMP1. Dans une deuxième étude ayant pour but d’établir la composition moléculaire du récepteur CGRP1 in vivo, nous avons développé une nouvelle approche permettant l’étude de l’interaction entre trois protéines dans un contexte de cellules vivantes. Cette technique baptisée BRET/BiFC, est basée sur le transfert d’énergie de résonance de bioluminescence entre un donneur luminescent, la Renilla luciférase, et un accepteur fluorescent, la protéine fluorescente jaune (YFP), reconstituée suite au ré-assemblage de ces deux fragments. En utilisant cette approche, nous avons pu déterminer que le récepteur CGRP1 est constitué d’un homo-oligomère de CLR interagissant avec un monomère de RAMP1. En démontrant un assemblage oligomérique asymétrique pour le récepteur CGRP1 à partir d’une nouvelle approche biophysique, nous croyons que les travaux présentés dans cette thèse ont contribué à élargir nos connaissances sur le fonctionnement de la grande famille des RCPGs, et seront utile à la poursuite des recherches sur les complexes protéiques impliqués dans la signalisation. / G protein coupled receptors (GPCRs) constitute the largest family of membrane receptors involved in signal transduction. Traditionally, signal transduction by GPCRs involves the activation of a hetero-trimeric G protein which will then modulate the activity of several intracellular effectors. We can now appreciate the fact that in addition to their interaction with G proteins, GPCRs also associate with several other proteins, in order to allow proper signal transduction. In particular, the discovery of a family of proteins called receptor activity-modifying proteins (RAMPs) has challenged the traditional views of signal transduction by some GPCRs. In the case of the calcitonin-like receptor (CLR), the association with RAMPs allows the proper cell surface targeting of the receptor in addition to modulate it’s pharmacological properties. Co-expression of CLR with RAMP1 leads to a calcitonin gene-related peptide (CGRP) receptor, whereas CLR association with RAMP2 or RAMP3 promotes the formation of an adrenomedullin receptor. In addition to their interaction with transmembrane accessory proteins such as RAMPs, GPCRs can also interact with other receptors to form receptors oligomers. In this thesis, we were interested in the interactions between GPCRs and RAMPs, and particularly, in the link between these GPCR/RAMP interactions and the assembly of receptor oligomers, using CGRP1 receptor as a model. We first confirmed the interaction between CLR and RAMP1 in living cells. We showed that this CLR/RAMP1 complex activates G proteins and recruits the signalling protein -arrestin upon CGRP stimulation. Next, we demonstrated that even if the CLR requires hetero-oligomeric assembly with RAMPs in order to be active, this receptor can still interact with other GPCRs. In addition to CLR homo-oligomers, we observed that RAMPs can also self-associate to form oligomeric complexes which can involve different subtypes (RAMP1/RAMP2 and RAMP1/RAMP3). This observation of the presence of CLR and RAMP1 homo-oligomers raised the question of the stoiechiometry of interaction of the CLR/RAMP1 complex. In order to establish the molecular composition of the CGRP1 receptor in vivo, we developed a novel approach allowing the detection of the interaction between three proteins in living cells. This method called BRET/BiFC is based on the bioluminescence resonance energy transfer between a luminescent energy donor, Renilla luciferase, and a fluorescent energy acceptor, the yellow fluorescent protein (YFP), reconstituted after the re-association of its two fragments. Using this approach, we showed that the CGRP1 receptor consist of a homo-oligomer of CLR interacting with a monomer of RAMP1. By demonstrating the asymmetrical organization of the CGRP1 receptor complex using a novel biophysical approach, we believe that the results presented herein have contributed to increase our knowledge of the mechanisms of function of the large family of GPCRs and will be useful for the pursuit of research on protein complexes involved in signalling pathways.
98

Molecular biophysics of strong DNA bending and the RecQ DNA helicase

Harrison, Ryan M. January 2014 (has links)
Molecular biophysics is a rapidly evolving field aimed at the physics-based investigation of the biomolecular processes that enable life. In this thesis, we explore two such processes: the thermodynamics of DNA bending, and the mechanism of the RecQ DNA helicase. A computational approach using a coarse-grained model of DNA is employed for the former; an experimental approach relying heavily on single-molecule fluorescence for the latter. There is much interest in understanding the physics of DNA bending, due to both its biological role in genome regulation and its relevance to nanotechnology. Small DNA bending fluctuations are well described by existing models; however, there is less consensus on what happens at larger bending fluctuations. A coarse-grained simulation is used to fully characterize the thermodynamics and mechanics of duplex DNA bending. We then use this newfound insight to harmonize experimental results between four distinct experimental systems: a 'molecular vise', DNA cyclization, DNA minicircles and a 'strained duplex'. We find that a specific structural defect present at large bending fluctuations, a 'kink', is responsible for the deviation from existing theory at lengths below about 80 base pairs. The RecQ DNA helicase is also of much biological and clinical interest, owing to its essential role in genome integrity via replication, recombination and repair. In humans, heritable defects in the RecQ helicases manifest clinically as premature aging and a greatly elevated cancer risk, in disorders such as Werner and Bloom syndromes. Unfortunately, the mechanism by which the RecQ helicase processes DNA remains poorly understood. Although several models have been proposed to describe the mechanics of helicases based on biochemical and structural data, ensemble experiments have been unable to address some of the more nuanced questions of helicase function. We prepare novel substrates to probe the mechanism of the RecQ helicase via single-molecule fluorescence, exploring DNA binding, translocation and unwinding. Using this insight, we propose a model for RecQ helicase activity.
99

Entwicklung molekularer Werkzeuge zur Erforschung des Lipidstoffwechsels

Pinkert, Thomas 11 July 2017 (has links)
Im Rahmen dieser Arbeit wurden fluoreszierende Sphingomyelin-Analoga zu Studium der sauren Sphingomyelinase (ASM) synthetisiert. Ausgehend von L-Serin wurde ein Sphingosin-Derivat mit natürlicher Stereochemie dargestellt. Anschließend wurde mittels Phosphorodichloridat-Chemie eine Aminoethylphosphat-Gruppe installiert. Zweifache Fluoreszenzmarkierung ergab Sonden mit der Fähigkeit zu Förster-Resonanzenergietransfer (FRET). Diese wurden als Substrate der ASM akzeptiert und erlaubten die Verfolgung der Enzymaktivität in vitro. Durch die Analyse der photophysikalischen Eigenschaften der Fluorophore wurde das allgemeine Konzept der Phasentrennungs-gestützten Signalverstärkung (PS) abgeleitet. Dieses Konzept wurde erfolgreich bestätigt durch die Synthese einer 30-mal leistungsfähigeren zweiten Generation der FRET-Sonde. Ein homogener Assay wurde entwickelt, der die Quantifizierung der ASM-Aktivität erlaubte. Unter Verwendung von gereinigter rekombinanter humaner ASM, HeLa-Zelllysaten oder Lysaten von murinen embryonalen Fibroblasten (MEFs) als Enzymquelle wurde ausschließlich unter den von der ASM bevorzugten Bedingungen eine vollständige und spezifische Hydrolyse der Sonde beobachtet. Des Weiteren erlaubte die Sonde die Detektion relativer Unterschiede der Aktivität der ASM in kultivierten MEFs mittels Fluoreszenzmikroskopie mit Zweiphotonenanregung (2PE). / Fluorescent sphingomyelin analogues have been synthesized to probe the acid sphingomyelinase (ASM). Starting from L-serine, a sphingosine with natural stereochemistry was synthesized. Subsequently, phosphorodichloridate chemistry was used to install an aminoethyl phosphate moiety. Dual fluorescent labeling afforded probes capable of Förster resonance energy transfer (FRET). They were recognized as substrates of ASM and allowed for monitoring of the enzyme’s activity in vitro. Through analysis of the fluorophores’ photophysical properties, the general concept of partition aided amplification of a FRET probe’s signal (PS) was developed. This concept was successfully confirmed by the synthesis of a second-generation probe with 30-fold improved response. A homogenous assay was developed, which allowed for a quantitation of ASM activity. Using either purified recombinant human ASM, or lysates of HeLa cells or mouse embryonic fibroblasts (MEFs) as an enzyme source, complete and specific cleavage was observed exclusively under conditions preferred by ASM. Furthermore, the probe enabled the detection of relative levels of ASM activity in cultivated MEFs using fluorescence microscopy with two-photon excitation (2PE).
100

Assemblage oligomérique des récepteurs couplés aux protéines G avec les RAMPs

Héroux, Madeleine 03 1900 (has links)
Les récepteurs couplés aux protéines G (RCPGs) constituent la plus grande classe de récepteurs membranaires impliqués dans la transmission des signaux extracellulaires. Traditionnellement, la transmission de la signalisation par les RCPGs implique l’activation d’une protéine G hétéro-trimérique qui pourra à son tour moduler l’activité de divers effecteurs intracellulaires. Ce schéma classique de signalisation s’est complexifié au fils des années et l’on sait maintenant qu’en plus d’interagir avec les protéines G, les RCPGs s’associent avec une panoplie d’autres protéines afin de transmettre adéquatement les signaux extracellulaires. En particulier, la découverte d’une famille de protéines transmembranaires modulant la fonction des RCPGs, baptisées protéines modifiant l’activité des récepteurs (« receptor activity-modifying proteins » ; RAMPs), a changé la façon de concevoir la signalisation par certains RCPGs. Dans le cas du récepteur similaire au récepteur de la calcitonine (« calcitonin-like receptor » ; CLR), l’association avec les RAMPs permet l’acheminement à la surface cellulaire du récepteur tout en modulant ses propriétés pharmacologiques. Lorsqu’il est associé avec RAMP1, le CLR fonctionne comme un récepteur du peptide relié au gène de la calcitonine (« calcitonin gene-related peptide » ; CGRP), alors qu’il devient un récepteur de l’adrénomedulline lorsqu’il interagit avec RAMP2 ou RAMP3. D’autre part, en plus d’interagir avec des protéines accessoires transmembranaires telles les RAMPs, les RCPGs peuvent aussi s’associer entre eux pour former des oligomères de récepteurs. Dans cette thèse, nous nous sommes penchés sur les interactions entre les RCPGs et les RAMPs, et plus particulièrement sur l’interrelation entre ce type d’association RCPG/RAMP et l’assemblage en oligomères de récepteurs, en utilisant le récepteur du CGRP comme modèle d’étude. Une première étude nous a tout d’abord permis de confirmer l’interaction entre le récepteur CLR et RAMP1, dans un contexte de cellules vivantes. Nous avons démontré que ce complexe CLR/RAMP1 active la protéine G et recrute la protéine de signalisation -arrestine suite à une stimulation par le CGRP. Ensuite, nous avons déterminé que même s’il doit obligatoirement former un hétéro-oligomère avec les RAMPs pour être actif, le CLR conserve malgré tout sa capacité à interagir avec d’autres RCPGs. En plus d’observer la présence d’homo-oligomère de CLR, nous avons constaté que tout comme les RCPGs, les RAMPs peuvent eux-aussi s’associer entre eux pour former des complexes oligomériques pouvant comprendre différents sous-types (RAMP1/RAMP2 et RAMP1/RAMP3). Cette observation de la présence d’homo-oligomères de CLR et de RAMP1, nous a amené à nous questionner sur la stœchiométrie d’interaction du complexe CLR/RAMP1. Dans une deuxième étude ayant pour but d’établir la composition moléculaire du récepteur CGRP1 in vivo, nous avons développé une nouvelle approche permettant l’étude de l’interaction entre trois protéines dans un contexte de cellules vivantes. Cette technique baptisée BRET/BiFC, est basée sur le transfert d’énergie de résonance de bioluminescence entre un donneur luminescent, la Renilla luciférase, et un accepteur fluorescent, la protéine fluorescente jaune (YFP), reconstituée suite au ré-assemblage de ces deux fragments. En utilisant cette approche, nous avons pu déterminer que le récepteur CGRP1 est constitué d’un homo-oligomère de CLR interagissant avec un monomère de RAMP1. En démontrant un assemblage oligomérique asymétrique pour le récepteur CGRP1 à partir d’une nouvelle approche biophysique, nous croyons que les travaux présentés dans cette thèse ont contribué à élargir nos connaissances sur le fonctionnement de la grande famille des RCPGs, et seront utile à la poursuite des recherches sur les complexes protéiques impliqués dans la signalisation. / G protein coupled receptors (GPCRs) constitute the largest family of membrane receptors involved in signal transduction. Traditionally, signal transduction by GPCRs involves the activation of a hetero-trimeric G protein which will then modulate the activity of several intracellular effectors. We can now appreciate the fact that in addition to their interaction with G proteins, GPCRs also associate with several other proteins, in order to allow proper signal transduction. In particular, the discovery of a family of proteins called receptor activity-modifying proteins (RAMPs) has challenged the traditional views of signal transduction by some GPCRs. In the case of the calcitonin-like receptor (CLR), the association with RAMPs allows the proper cell surface targeting of the receptor in addition to modulate it’s pharmacological properties. Co-expression of CLR with RAMP1 leads to a calcitonin gene-related peptide (CGRP) receptor, whereas CLR association with RAMP2 or RAMP3 promotes the formation of an adrenomedullin receptor. In addition to their interaction with transmembrane accessory proteins such as RAMPs, GPCRs can also interact with other receptors to form receptors oligomers. In this thesis, we were interested in the interactions between GPCRs and RAMPs, and particularly, in the link between these GPCR/RAMP interactions and the assembly of receptor oligomers, using CGRP1 receptor as a model. We first confirmed the interaction between CLR and RAMP1 in living cells. We showed that this CLR/RAMP1 complex activates G proteins and recruits the signalling protein -arrestin upon CGRP stimulation. Next, we demonstrated that even if the CLR requires hetero-oligomeric assembly with RAMPs in order to be active, this receptor can still interact with other GPCRs. In addition to CLR homo-oligomers, we observed that RAMPs can also self-associate to form oligomeric complexes which can involve different subtypes (RAMP1/RAMP2 and RAMP1/RAMP3). This observation of the presence of CLR and RAMP1 homo-oligomers raised the question of the stoiechiometry of interaction of the CLR/RAMP1 complex. In order to establish the molecular composition of the CGRP1 receptor in vivo, we developed a novel approach allowing the detection of the interaction between three proteins in living cells. This method called BRET/BiFC is based on the bioluminescence resonance energy transfer between a luminescent energy donor, Renilla luciferase, and a fluorescent energy acceptor, the yellow fluorescent protein (YFP), reconstituted after the re-association of its two fragments. Using this approach, we showed that the CGRP1 receptor consist of a homo-oligomer of CLR interacting with a monomer of RAMP1. By demonstrating the asymmetrical organization of the CGRP1 receptor complex using a novel biophysical approach, we believe that the results presented herein have contributed to increase our knowledge of the mechanisms of function of the large family of GPCRs and will be useful for the pursuit of research on protein complexes involved in signalling pathways.

Page generated in 0.0605 seconds