181 |
A regularized arithmetic Riemann-Roch theorem via metric degenerationDe Gaetano, Giovanni 14 June 2018 (has links)
Das Hauptresultat dieser Arbeit ist ein regularisierter arithmetischer Satz von Riemann-Roch für ein hermitesches Geradenbündel, die isometrisch zum Geradenbündel den Spitzenformen vom geraden Gewicht ist, auf eine arithmetische Fläche, deren komplexe Faser isometrisch zu einer hyperbolischen Riemannschen Fläche ohne elliptische Punkte ist.
Der Beweis des Resultats erfolgt durch metrische Degeneration: Wir regularisieren die betreffenden Metriken in einer Umgebung der Singularitäten, wenden dann den arithmetischen Riemann-Roch-Satz von Gillet und Soulé an und lassen schließlich den Parameter gegen Null gehen. Durch die metrische Degeneration entsteht auf beiden Seiten der Formel ein divergenter Term. Die asymptotische Entwicklung der Divergenz berechnet sich auf der einen Seite direkt aus der Definition der glatten arithmetischen Selbstschnittzahlen.
Der divergente Term auf der anderen Seite ist die zeta-regularisierte Determinante des zu den regularisierten Metriken assoziierten Laplace-Operators, der auf den 1-Formen mit Werten in dem betrachteten hermitischen Geradenbündel operiert. Wir definieren und berechnen zuerst eine Regularisiereung des entsprechenden zu den singulären Metriken assoziierten Laplace-Operators; diese wird später im regularisierten Riemann-Roch-Satz auftauchen. Zu diesem Zweck passen wir Ideen von Jorgenson-Lundelius, D'Hoker-Phong und Sarnak auf die vorliegende Situation an und verallgemeinern diese.
Schließlich beweisen wir eine Formel für den zum betrachteten hermitischen Geradenbündel assoziierten Wärmeleitungskern auf der Diagonalen bei einer Modellspitze. Diese Darstellung steht im Zusammenhang mit einer Entwicklung nach zur Whittaker-Gleichung assoziierten Eigenfunktionen, die im Anhang bewiesen wird. Weitere Abschätzungen des zum betrachteten hermitischen Geradenbündel gehörigen Wärmeleitungskern auf der komplexe Faser der arithmetischen Fläche schließen den Beweis des Hauptresultats ab. / The main result of the dissertation is an arithmetic Riemann-Roch theorem for the hermitian line bundle of cusp form of given even integer weights on an arithmetic surface whose complex fiber is isometric to an hyperbolic Riemann surface without elliptic points.
The proof proceeds by metric degeneration: We regularize the metric under consideration in a neighborhood of the singularities, then we apply the arithmetic Riemann-Roch theorem of Gillet and Soulé, and finally we let the parameter go to zero. Both sides of the formula blow up through metric degeneration. On one side the exact asymptotic expansion is computed from the definition of the smooth arithmetic intersection numbers.
The divergent term on the other side is the zeta-regularized determinant of the Laplacian acting on 1-forms with values in the chosen hermitian line bundle associated to the regularized metrics. We first define and compute a regularization of the determinant of the corresponding Laplacian associated to the singular metrics, which will later occur int he regularized arithmetic Riemann-Roch theorem. To do so we adapt and generalize ideas od Jorgenson-Lundelius, D'Hoker-Phong, and Sarnak.
Then, we prove a formula for the on-diagonal heat kernel associated to the chosen hermitian line bundle on a model cusp, from which its behavior close to a cusp is transparent. This expression is related to an expansion in terms of eigenfunctions associated to the Whittaker equation, which we prove in an appendix. Further estimates on the heat kernel associated to the chosen hermitian line bundle on the complex fiber of the arithmetic surface prove the main theorem.
|
182 |
Arithmetic intersections on modular curvesFukuda, Miguel Daygoro Grados 13 February 2017 (has links)
Eine wichtige Invariante von Modulkurven ist die arithmetische Selbstschnittzahl der relativ dualisierenden Garbe. Auf dem minimalen regulären Modell von X(N) ist diese Selbstschnittzahl durch den gewöhnlichen Schnitt einiger ausgezeichneter vertikaler Divisoren (dem geometrischen Beitrag) und durch die Auswertung der kanonischen Greenschen Funktion an einigen Spitzen (dem analytischen Beitrag) vollständig festgelegt. Das Ziel dieser Arbeit ist es, jeden dieser Beiträge in Abhängigkeit von der Stufe N zu bestimmen und das asymptotische Verhalten der Selbstschnittzahl zu studieren, wenn die Stufe N gegen unendlich geht. / An important invariant of modular curves is the arithmetic self-intersection of the relative dualizing sheaf. On the minimal regular model of X(N) this self-intersection is completely described by the usual intersection of some distinguished vertical divisors (geometric contribution) and the evaluation of the canonical Green’s function at certain cusps (analytic contribution). The aim of this thesis is to determine each of these contributions in terms of the level N and study the asymptotic behaviour of the self-intersection as N tends to infinity.
|
183 |
Variational methods for evolutionLiero, Matthias 07 March 2013 (has links)
Das Thema dieser Dissertation ist die Anwendung von Variationsmethoden auf Evolutionsgleichungen parabolischen und hyperbolischen Typs. Im ersten Teil der Arbeit beschäftigen wir uns mit Reaktions-Diffusions-Systemen, die sich als Gradientensysteme schreiben lassen. Hierbei verstehen wir unter einem Gradientensystem ein Tripel bestehend aus einem Zustandsraum, einem Entropiefunktional und einer Dissipationsmetrik. Wir geben Bedingungen an, die die geodätische Konvexität des Entropiefunktionals sichern. Geodätische Konvexität ist eine wertvolle aber auch starke strukturelle Eigenschaft und schwer zu zeigen. Wir zeigen anhand zahlreicher Beispiele, darunter ein Drift-Diffusions-System, dass dennoch interessante Systeme existieren, die diese Eigenschaft besitzen. Einen weiteren Punkt dieser Arbeit stellt die Anwendung von Gamma-Konvergenz auf Gradientensysteme dar. Wir betrachten hierbei zwei Modellsysteme aus dem Bereich der Mehrskalenprobleme: Erstens, die rigorose Herleitung einer Allen-Cahn-Gleichung mit dynamischen Randbedingungen und zweitens, einer Interface-Bedingung für eine eindimensionale Diffusionsgleichung jeweils aus einem reinen Bulk-System. Im zweiten Teil der Arbeit beschäftigen wir uns mit dem sog. Weighted-Inertia-Dissipation-Energy-Prinzip für Evolutionsgleichungen. Hierbei werden Trajektorien eines Systems als (Grenzwerte von) Minimierer(n) einer parametrisierten Familie von Funktionalen charakterisiert. Dies erlaubt es, Werkzeuge aus der Theorie der Variationsrechung auf Evolutionsprobleme anzuwenden. Wir zeigen, dass Minimierer der WIDE-Funktionale gegen Lösungen des Ausgangsproblems konvergieren. Hierbei betrachten wir getrennt voneinander den Fall des beschränkten und des unbeschränkten Zeitintervalls, die jeweils mit verschiedenen Methoden behandelt werden. / This thesis deals with the application of variational methods to evolution problems governed by partial differential equations. The first part of this work is devoted to systems of reaction-diffusion equations that can be formulated as gradient systems with respect to an entropy functional and a dissipation metric. We provide methods for establishing geodesic convexity of the entropy functional by purely differential methods. Geodesic convexity is beneficial, however, it is a strong structural property of a gradient system that is rather difficult to achieve. Several examples, including a drift-diffusion system, provide a survey on the applicability of the theory. Next, we demonstrate the application of Gamma-convergence, to derive effective limit models for multiscale problems. The crucial point in this investigation is that we rely only on the gradient structure of the systems. We consider two model problems: The rigorous derivation of an Allen-Cahn system with bulk/surface coupling and of an interface condition for a one-dimensional diffusion equation. The second part of this thesis is devoted to the so-called Weighted-Inertia-Dissipation-Energy principle. The WIDE principle is a global-in-time variational principle for evolution equations either of conservative or dissipative type. It relies on the minimization of a specific parameter-dependent family of functionals (WIDE functionals) with minimizers characterizing entire trajectories of the system. We prove that minimizers of the WIDE functional converge, up to subsequences, to weak solutions of the limiting PDE when the parameter tends to zero. The interest for this perspective is that of moving the successful machinery of the Calculus of Variations.
|
184 |
Coassociative submanifolds and G2-instantons in Joyce’s generalised Kummer constructionsGutwein, Dominik 24 October 2024 (has links)
In dieser Dissertation konstruieren wir neue Beispiele von koassoziativen Untermannigfaltigkeiten und G2-Instantonen in kompakten G2-Mannigfaltigkeiten, die aus Joyces verallgemeinerter Kummer Konstruktion hervorgehen. Die besondere Eigenschaft der in dieser Arbeit gefundenen koassoziativen Untermannigfaltigkeiten ist, dass ihr (topologisch bestimmtes) Volumen gegen Null geht, wenn die umgebende Mannigfaltigkeit sich ihrem Orbifaltigkeits-Limes annähert. Dies ist im Sinne eines Vorschlags von Halverson und Morrison, der darauf hinweist, dass bestimmte Entartungen (oder, allgemeiner, die Perioden) von G2-Strukturen durch das Verhalten von G2-topologischen Größen wie dem Volumen von assoziativen und koassoziativen Untermannigfaltigkeiten nachweisbar sein könnten.
Die Konstruktion dieser koassoziativen Untermannigfaltigkeiten ist Inhalt von Kapitel 3 und basiert auf der Deformation von „Modell-Untermannigfaltigkeiten“. Diese Untermannigfaltigkeiten liegen innerhalb des kritischen Bereiches der umgebenden Mannigfaltigkeit, in welchem die Metrik entartet. Abschnitt 3.3 beinhaltet zahlreiche Beispiele von koassoziativen Untermannigfaltigkeiten, die wir durch diese Methode konstruieren. Des Weiteren beschreiben wir die Deformationsfamilie dieser koassoziativen Untermannigfaltigkeiten.
In Kapitel 4 konstruieren wir neue Beispiele von G2-Instantonen über verallgemeinerten Kummer Konstruktionen. Wir konzentrieren uns hierbei hauptsächlich auf Auflösungen von Orbifaltigkeiten, deren singuläre Strata von Kodimension 6 sind. Wie im vorherigen Kapitel basiert die Konstruktion dieser Instantonen auf einem Klebesatz, welcher einen Zusammenhang deformiert, der (im quantifizierten Sinne) fast ein G2-Instanton ist. Außerdem benutzen wir Gruppenwirkungen um die Obstruktionen zu reduzieren. Mithilfe dieser Methode konstruieren wir in Abschnitt 4.4 eine unendliche Familie von G2-Instantonen auf einem Bündel über einer bestimmten Kummer Konstruktion. / In this thesis we construct new examples of coassociative submanifolds and G2-instantons in compact G2-manifolds arising from Joyce’s generalised Kummer construction. The special feature of the coassociative submanifolds found in this thesis is that their (topologically determined) volume shrinks to zero as the ambient manifold approaches its orbifold limit. This is in the spirit of a proposal by Halverson and Morrison which indicates that certain degenerations (or, more general, the periods) of G2-structures may be detectable by the behaviour of G2-topological quantities such as the volume of associative and coassociative submanifolds.
The construction of these coassociative submanifolds is the content of Chapter 3. It is based on the deformation of ‘model-submanfiolds’. These submanifolds lie within the critical locus of the ambient manifold in which the metric degenerates. Section 3.3 contains numerous examples of coassociative submanifolds which we construct via this method. Furthermore, we give a description of the deformation family of these coassociative submanifolds.
In Chapter 4 we construct new examples of G2-instantons over generalised Kummer constructions. We focus mainly on resolutions of orbifolds whose singular strata are of codimension 6. As in the previous chapter, the construction of these instantons is based on a gluing theorem which deforms a connection that is (in a quantified sense) close to being a G2-instanton. Furthermore, we use group actions to reduce the obstructions. Using this method, we construct in Section 4.4 an infinite family of G2-instantons on a bundle over one particular Kummer construction.
|
185 |
Nonparametric estimation for stochastic delay differential equationsReiß, Markus 13 February 2002 (has links)
Sei (X(t), t>= -r) ein stationärer stochastischer Prozess, der die affine stochastische Differentialgleichung mit Gedächtnis dX(t)=L(X(t+s))dt+sigma dW(t), t>= 0, löst, wobei sigma>0, (W(t), t>=0) eine Standard-Brownsche Bewegung und L ein stetiges lineares Funktional auf dem Raum der stetigen Funktionen auf [-r,0], dargestellt durch ein endliches signiertes Maß a, bezeichnet. Wir nehmen an, dass eine Trajektorie (X(t), -r 0, konvergiert. Diese Rate ist schlechter als in vielen klassischen Fällen. Wir beweisen jedoch eine untere Schranke, die zeigt, dass keine Schätzung eine bessere Rate im Minimax-Sinn aufweisen kann. Für zeit-diskrete Beobachtungen von maximalem Abstand Delta konvergiert die Galerkin-Schätzung immer noch mit obiger Rate, sofern Delta is in etwa von der Ordnung T^(-1/2). Hingegen wird bewiesen, dass für festes Delta unabhängig von T die Rate sich signifikant verschlechtern muss, indem eine untere Schranke von T^(-s/(2s+6)) gezeigt wird. Außerdem wird eine adaptive Schätzung basierend auf Wavelet-Thresholding-Techniken für das assoziierte schlechtgestellte Problem konstruiert. Diese nichtlineare Schätzung erreicht die obige Minimax-Rate sogar für die allgemeinere Klasse der Besovräume B^s_(p,infinity) mit p>max(6/(2s+3),1). Die Restriktion p>=max(6/(2s+3),1) muss für jede Schätzung gelten und ist damit inhärent mit dem Schätzproblem verknüpft. Schließlich wird ein Hypothesentest mit nichtparametrischer Alternative vorgestellt, der zum Beispiel für das Testen auf Gedächtnis verwendet werden kann. Dieser Test ist anwendbar für eine L^2-Trennungsrate zwischen Hypothese und Alternative der Ordnung T^(-s/(2s+2.5)). Diese Rate ist wiederum beweisbar optimal für jede mögliche Teststatistik. Für die Beweise müssen die Parameterabhängigkeit der stationären Lösungen sowie die Abbildungseigenschaften der assoziierten Kovarianzoperatoren detailliert bestimmt werden. Weitere Resultate von allgemeinem Interessen beziehen sich auf die Mischungseigenschaft der stationären Lösung, eine Fallstudie zu exponentiellen Gewichtsfunktionen sowie der Approximation des stationären Prozesses durch autoregressive Prozesse in diskreter Zeit. / Let (X(t), t>= -r) be a stationary stochastic process solving the affine stochastic delay differential equation dX(t)=L(X(t+s))dt+sigma dW(t), t>= 0, with sigma>0, (W(t), t>=0) a standard one-dimensional Brownian motion and with a continuous linear functional L on the space of continuous functions on [-r,0], represented by a finite signed measure a. Assume that a trajectory (X(t), -r 0. This rate is worse than those obtained in many classical cases. However, we prove a lower bound, stating that no estimator can attain a better rate of convergence in a minimax sense. For discrete time observations of maximal distance Delta, the Galerkin estimator still attains the above asymptotic rate if Delta is roughly of order T^(-1/2). In contrast, we prove that for observation intervals Delta, with Delta independent of T, the rate must deteriorate significantly by providing the rate estimate T^(-s/(2s+6)) from below. Furthermore, we construct an adaptive estimator by applying wavelet thresholding techniques to the corresponding ill-posed inverse problem. This nonlinear estimator attains the above minimax rate even for more general classes of Besov spaces B^s_(p,infinity) with p>max(6/(2s+3),1). The restriction p >= 6/(2s+3) is shown to hold for any estimator, hence to be inherently associated with the estimation problem. Finally, a hypothesis test with a nonparametric alternative is constructed that could for instance serve to decide whether a trajectory has been generated by a stationary process with or without time delay. The test works for an L^2-separation rate between hypothesis and alternative of order T^(-s/(2s+2.5)). This rate is again shown to be optimal among all conceivable tests. For the proofs, the parameter dependence of the stationary solutions has to be studied in detail and the mapping properties of the associated covariance operators have to be determined exactly. Other results of general interest concern the mixing properties of the stationary solution, a case study for exponential weight functions and the approximation of the stationary process by discrete time autoregressive processes.
|
186 |
Flexible Regression for Different Types of Multivariate Functional DataVolkmann, Alexander 14 October 2024 (has links)
In dieser Dissertation werden neue Regressionsansätze für multivariate longitudinale oder funktionale Daten entwickelt, die eine flexible Modellierung von interessierenden Kovariableneffekten ermöglichen. Die Abhängigkeit innerhalb und zwischen den verschiedenen Zielgrößen wird über latente multivariate Gauss-Prozesse modelliert. Die Regressionsansätze folgen einem zweistufigen Verfahren, in dem in einem vorgelagerten Schritt multivariate funktionale Hauptkomponentenanalysen eingesetzt werden, um sparsame empirische Basen für die Gauss-Prozesse zu konstruieren. Drei verschiedene Regressionsmodelle werden für verschiedene Arten multivariater longitudinaler oder funktionaler Daten entwickelt. Das erste Projekt führt das zweistufige Verfahren für multivariate normalverteilte funktionale Daten ein, die eine gekreutzte oder genestete Datenstruktur aufweisen können. Das Regressionsmodell ist im frequentistischen Rahmenmodell der funktionalen additiven gemischten Modelle eingebettet und wird durch Anwendungen auf Bewegungsdaten und Sprachdaten illustriert. Das zweite Projekt entwickelt ein bayesianisches Regressionsgerüst für multilevel multivariate funktionale Daten, die verschiedenen punktweisen Verteilungen folgen. Das erlaubt es, verschiedene Datentypen, wie etwa binäre, Zähl- oder kontinuierliche funktionale Daten gleichzeitig zu modellieren, was durch eine Anwendung auf Berliner Verkehrsdaten veranschaulicht wird. Das dritte Projekt vereint multivariate longitudinale normalverteilte Daten mit einer Ereigniszeit-Zielgröße in einem gemeinsamen bayesianischen Modellierungsansatz. Solche Modelle werden oft im medizinischen Bereich verwendet, beispielsweise wenn der Fokus der Analyse auf der Schätzung der Assoziation zwischen longitudinalen Messungen von Biomarkern und dem Überleben von Patienten mit chronischen Lebererkrankung liegt. / In this thesis, novel regression approaches for multivariate longitudinal or functional data are developed, which allow to flexibly model the covariate effects of interest. The dependency within and between the different outcomes is modeled using latent multivariate Gaussian processes. The regression approaches adopt a two-step procedure where, in a preliminary step, multivariate functional principal component analyses are employed to generate parsimonious empirical bases for the Gaussian processes. Three different regression models are developed for different types of longitudinal or multivariate functional data. The first project establishes the two-step procedure for multivariate Gaussian functional data which can exhibit a crossed or nested multilevel structure. The regression model is embedded in the frequentist functional additive mixed model framework and is demonstrated by applications in movement data and speech production data. The second project develops a Bayesian regression framework for multilevel multivariate functional data that follow different pointwise distributions. This allows to simultaneously model data of different types such as binary, count, or continuous functional data, which is illustrated by an application to Berlin traffic data. The third project combines multivariate longitudinal Gaussian data with a time-to-event outcome in a Bayesian joint modelling approach. Such models are often used in medical contexts where the main point of interest lies in estimating the association between longitudinal measurements of biomarkers and e.g. the survival of patients as in the presented application to a chronic liver disease. All projects are accompanied by simulation studies to assess the estimation accuracy and the models' limitations.
|
187 |
On a Fokker–Planck equation coupled with a constraint / analysis of a lithium-ion battery modelHuth, Robert 09 August 2012 (has links)
In dieser Arbeit untersuchen wir zwei Modelle, die das Laden und Entladen einer Lithium-Ionen Batterie beschreiben. Beide Modelle spiegeln eine Hysterese in dem Spannungs-Ladungs-Verlauf wider. Wir skizzieren den Modellierungsprozess von einem diskreten vielteilchen Modell sowie einem kontinuierlichen vielteilchen Modell. Das erste führt zu einer axiomatischen Beschreibung der Evolution makroskopischer Größen, während das zweite in eine nichtlineare Fokker-Planck Gleichung mündet. Wir zeigen die Existenz und Eindeutigkeit von Lösungen der nichtlinearen Fokker-Planck Gleichung und untersuchen deren qualitative Eigenschaften. Wir benutzen Interpolationsräume und Halbgruppen sektorieller Operatoren um den semilinearen Charakter der partiellen Differentialgleichung auszunutzen. Um globale Existenz zu erhalten, schätzen wir die Dissipation einer mit dem Modell verknüpften Energie ab. Diese Energie ist verwandt mit der L-log-L Norm, welche wir mithilfe einer Gagliardo-Nirenberg Ungleichung zu der L^2 Norm in Verbindung setzen können. Die notwendigen und hinreichenden Bedingungen zur globalen Existenz von Lösungen sind aus physikalischer Sicht plausibel. Der Ladezustand der Batterie muss innerhalb der Werte Voll und Leer sein. In numerischen Experimenten untersuchen wir das qualitative Verhalten von Lösungen. Wir zeigen die Konvergenz der numerischen Lösungen zu den exakten Lösungen. Dafür nutzen wir ähnliche Techniken wie bei der lokalen Existenztheorie. Wir beobachten die Tendenz von Lösungen sich um bestimmte Punkte zu konzentrieren. Unterstützt durch die formale Asymptotik zeigt dies für eine bestimmte Wahl von Parameter-Skalierungen, dass Lösungen gegen Dirac-Maße konvergieren. In diesem Grenzverhalten wird das System durch die Evolution von makroskopischen Größen beschrieben, welche wir auch in dem diskreten vielteilchen Modell wiederfinden. In diesen makroskopischen Größen lässt sich eine Hysterese beobachten. / We discuss two models which describe the charging and discharging of a lithium-ion battery and especially the hysteretical behaviour therein. We give an overview on the modelling process for a discrete many particle model and a continuous many particle model. The former results in an axiomatic description of macroscopic quantities while the latter gives a nonlinear Fokker-Planck equation. The nonlinear Fokker-Planck equation is analysed with respect to existence and uniqueness of solutions as well as qualitative behaviour of solutions. The nonlinearity in this partial differential equation stems from a coefficient which depends on the solution first non-local and second in a higher order. We use interpolation spaces and semigroups generated from sectorial operators to show the existence and uniqueness of solutions locally in time. The global existence in time relies on estimates for the dissipation of an energy. The suitable energy is related to the L-log-L norm and so a Gagliardo-Nirenberg inequality is needed to connect this back to L^2 estimates. It turns out that the conditions for global in time existence of solutions are physical reasonable. One needs that the loading state of the battery shall stay between totally empty and totally full. In numerical experiments we investigate the qualitative behaviour of solutions to the nonlinear Fokker-Planck equation. We are able to show convergence of the numerical solutions to the exact solution. We observe that solutions tend to concentrate at certain points. Supported by results from formal asymptotic expansions, we document the limiting behaviour in a certain scaling of the appearing parameters, which is the formation of Dirac measures. The evolution of the global quantities, which we observe in numerical simulations, is the same as what results from the discrete many particle model and one observes hysteretic behaviour in macroscopic quantities.
|
188 |
Disentangling sources of anomalous diffusionThiel, Felix 02 November 2015 (has links)
Zufällige Bewegungen wie Diffusion sind ein allgegenwärtiges Phänomen, anzufinden nicht nur in der Physik. Das Hauptobjekt von Diffusionsmodellen ist oft die mittlere quadratische Verschiebung eines Teilchens, welche für sogenannte normal-diffusive Prozesse linear mit der Zeit anwächst. Anomale Diffusion bezeichnet Prozesse, für welche sie nicht-linear wächst; ein wichtiges Beispiel ist die Bewegung großer Moleküle in biologischen Zellen. Erscheinungen wie schwache Ergodizitätsbrechung sind ebenfalls bei anomaler Diffusion zu finden, und es gibt viele mathematische Modelle zu ihrer Beschreibung. Oft ist es schwierig für ein bestimmtes Experiment das "richtige" Modell, d.h. die physikalische Ursache der Anomalie, zu finden. Eine Methode zur Trennung oder Identifikation der physikalischen Ursachen wird also dringend benötigt. In dieser Arbeit stellten wir uns diesem Problem. Zuerst betrachteten wir ein recht allgemeines Modell zur Diffusion in ungeordneten Medien. Mithilfe der Netzwerktheorie trennten wir zwei Mechanismen, nämlich energetische und strukturelle Unordnung, welche beide zu anomaler Diffusion führen. Diese Klassen wurden dann in die Sprache der stochastischen Prozesse übertragen. Das erlaubte uns eine einfache Methode, die des fundamentalen Momentes, zu formulieren. Jene Methode ist in der Lage die energetischen und strukturellen Anteile eines Diffusionsprozesses voneinander zu trennen. Zuletzt behandelten wir Ergodizität und Ergodizitätsbrechung aus der Sicht der energetischen und strukturellen Unordnung. / Random motion, in particular diffusion, is a ubiquitous phenomenon that is encountered not only in physics. The main object of a diffusion model is usually the mean squared displacement (msd) of a particle, which for so-called normal diffusion grows linearly in time. Anomalous diffusion denotes processes, in which the msd grows non-linearly; an important example is the motion of large molecules in biological cells. Many interesting properties like weak ergodicity breaking are connected to anomalous diffusion, and there are many mathematical models exhibiting anomalous behaviour. Given an experiment, it is often difficult to decide, what is the "correct" model, i.e. the physical cause for the anomaly. Therefore, a method capable of separation and identification of different physical mechanisms is urgently required. This thesis approached the mentioned issue. First of all, we considered a quite general model for diffusion in disordered media. We used some network theory to distinguish two physical mechanisms - energetic and structural disorder. Both cause anomalous diffusion. Those classes of disorder were then translated into the language of stochastic processes. This put ourselves in position to propose a simple method, the fundamental moment, that is capable of separating the energetic and structural components of a diffusion process. At last, we discussed ergodicity and ergodicity breaking from the point of view of energetic and structural disorder.
|
189 |
Optimal Trading with Multiplicative Transient Price Impact for Non-Stochastic or Stochastic LiquidityFrentrup, Peter 28 October 2019 (has links)
Diese Arbeit untersucht eine Reihe multiplikativer Preiseinflussmodelle für das Handeln in einer riskanten Anlage. Unser risikoneutraler Investor versucht seine zu erwartenden Handelserlöse zu maximieren. Zunächst modellieren wir den vorübergehende Preiseinfluss als deterministisches Funktional der Handelsstrategie. Wir stellen den Zusammenhang mit Limit-Orderbüchern her und besprechen die optimale Strategie zum Auf- bzw. Abbau einer Anlageposition bei a priori unbeschränkem Anlagehorizont. Anschließend lösen wir das Optimierungsproblem mit festem Anlagehorizon in zwei Schritten. Mittels Variationsrechnung lässt sich die freie Grenzefläche, die Kauf- und Verkaufsregionen trennt, als lokales Optimum identifizieren, was entscheidend für die Verifikation globaler Optimalität ist. Im zweiten Teil der Arbeit erweitern wir den zwischengeschalteten Markteinflussprozess um eine stochastische Komponente, wodurch optimale Strategien dynamisch an zufällige Liquiditätsschwankungen adaptieren. Wir bestimmen die optimale Liquidierungsstrategie im zeitunbeschränkten Fall als die reflektierende Lokalzeit, die den Markteinfluss unterhalb eines explizit beschriebenen nicht-konstanten Grenzlevels hält. Auch dieser Beweis kombiniert Variationsrechnung und direkten Methoden. Um nun eine Zeitbeschränkung zu ermöglichen, müssen wir Semimartingalstrategien zulassen. Skorochods M1-Toplogie ist der Schlüssel, um die Klasse der möglichen Strategien in einer umfangreichen Familie von Preiseinflussmodellen, welche sowohl additiven, als auch multiplikativen Preiseinfluss umfasst, mit deterministischer oder stochastischer Liquidität, eindeutig von endlichen Variations- auf allgemeine càdlàg Strategien zu erweitern. Nach Einführung proportionaler Transaktionskosten lösen wir das entsprechende eindimensionale freie Grenzproblem des optimalen unbeschränkten Handels und beleuchten mögliche Lösungsansätze für das Liquidierungsproblem, das mit dem Verkauf der letzten Anleihe endet. / In this thesis, we study a class of multiplicative price impact models for trading a single risky asset. We model price impact to be multiplicative so that prices are guaranteed to stay non-negative. Our risk-neutral large investor seeks to maximize expected gains from trading. We first introduce a basic variant of our model, wherein the transient impact is a deterministic functional of the trading strategy. We draw the connection to limit order books and give the optimal strategy to liquidate or acquire an asset position infinite time horizon. We then solve the optimization problem for finite time horizon two steps. Calculus of variations allows to identify the free boundary surface that separates buy and sell regions and moreover show its local optimality, which is a crucial ingredient for the verification giving (global) optimality. In the second part of the thesis, we add stochasticity to the auxiliary impact process. This causes optimal strategies to dynamically adapt to random changes in liquidity. We identify the optimal liquidation strategy in infinite horizon as the reflection local time which keeps the market impact process below an explicitly described non-constant free boundary level. Again the proof technique combines classical calculus of variations and direct methods. To now impose a time constraint, we need to admit semimartingale strategies. Skorokhod's M1 topology is key to uniquely extend the class of admissible controls from finite variation to general càdlàg strategies in a broad class of market models including multiplicative and additive price impact, with deterministic or stochastic liquidity. After introducing proportional transaction costs in our model, we solve the related one-dimensional free boundary problem of unconstrained optimal trading and highlight possible solution methods for the corresponding liquidation problem where trading stops as soon as all assets are sold.
|
190 |
A class of mixed finite element methods based on the Helmholtz decomposition in computational mechanicsSchedensack, Mira 26 June 2015 (has links)
Diese Dissertation verallgemeinert die nichtkonformen Finite-Elemente-Methoden (FEMn) nach Morley und Crouzeix und Raviart durch neue gemischte Formulierungen für das Poisson-Problem, die Stokes-Gleichungen, die Navier-Lamé-Gleichungen der linearen Elastizität und m-Laplace-Gleichungen der Form $(-1)^m\Delta^m u=f$ für beliebiges m=1,2,3,... Diese Formulierungen beruhen auf Helmholtz-Zerlegungen. Die neuen Formulierungen gestatten die Verwendung von Ansatzräumen beliebigen Polynomgrades und ihre Diskretisierungen stimmen für den niedrigsten Polynomgrad mit den genannten nicht-konformen FEMn überein. Auch für höhere Polynomgrade ergeben sich robuste Diskretisierungen für fast-inkompressible Materialien und Approximationen für die Lösungen der Stokes-Gleichungen, die punktweise die Masse erhalten. Dieser Ansatz erlaubt außerdem eine Verallgemeinerung der nichtkonformen FEMn von der Poisson- und der biharmonischen Gleichung auf m-Laplace-Gleichungen für beliebiges m>2. Ermöglicht wird dies durch eine neue Helmholtz-Zerlegung für tensorwertige Funktionen. Die neuen Diskretisierungen lassen sich nicht nur für beliebiges m einheitlich implementieren, sondern sie erlauben auch Ansatzräume niedrigster Ordnung, z.B. stückweise affine Polynome für beliebiges m. Hat eine Lösung der betrachteten Probleme Singularitäten, so beeinträchtigt dies in der Regel die Konvergenz so stark, dass höhere Polynomgrade in den Ansatzräumen auf uniformen Gittern dieselbe Konvergenzrate zeigen wie niedrigere Polynomgrade. Deshalb sind gerade für höhere Polynomgrade in den Ansatzräumen adaptiv generierte Gitter unabdingbar. Neben der A-priori- und der A-posteriori-Analysis werden in dieser Dissertation optimale Konvergenzraten für adaptive Algorithmen für die neuen Diskretisierungen des Poisson-Problems, der Stokes-Gleichungen und der m-Laplace-Gleichung bewiesen. Diese werden auch in den numerischen Beispielen dieser Dissertation empirisch nachgewiesen. / This thesis generalizes the non-conforming finite element methods (FEMs) of Morley and Crouzeix and Raviart by novel mixed formulations for the Poisson problem, the Stokes equations, the Navier-Lamé equations of linear elasticity, and mth-Laplace equations of the form $(-1)^m\Delta^m u=f$ for arbitrary m=1,2,3,... These formulations are based on Helmholtz decompositions. The new formulations allow for ansatz spaces of arbitrary polynomial degree and its discretizations coincide with the mentioned non-conforming FEMs for the lowest polynomial degree. Also for higher polynomial degrees, this results in robust discretizations for almost incompressible materials and approximations of the solution of the Stokes equations with pointwise mass conservation. Furthermore this approach also allows for a generalization of the non-conforming FEMs for the Poisson problem and the biharmonic equation to mth-Laplace equations for arbitrary m>2. A new Helmholtz decomposition for tensor-valued functions enables this. The new discretizations allow not only for a uniform implementation for arbitrary m, but they also allow for lowest-order ansatz spaces, e.g., piecewise affine polynomials for arbitrary m. The presence of singularities usually affects the convergence such that higher polynomial degrees in the ansatz spaces show the same convergence rate on uniform meshes as lower polynomial degrees. Therefore adaptive mesh-generation is indispensable especially for ansatz spaces of higher polynomial degree. Besides the a priori and a posteriori analysis, this thesis proves optimal convergence rates for adaptive algorithms for the new discretizations of the Poisson problem, the Stokes equations, and mth-Laplace equations. This is also demonstrated in the numerical experiments of this thesis.
|
Page generated in 0.0216 seconds