11 |
Circuit Simulation Including Full-Wave Maxwell's Equations / Modeling Aspects and Numerical AnalysisStrohm, Christian 15 March 2021 (has links)
Diese Arbeit widmet sich der Simulation von elektrischen/elektronischen Schaltungen welche um elektromagnetische Bauelemente erweitert werden. Im Fokus stehen unterschiedliche Kopplungen der Schaltungsgleichungen, modelliert mit der modifizierten Knotenanalyse, und den elektromagnetischen Bauelementen mit deren verfeinerten Modell basierend auf den vollen Maxwell-Gleichungen in der Lorenz-geeichten A-V Formulierung welche durch Finite-Integrations-Technik räumlich diskretisiert werden. Eine numerische Analyse erweitert die topologischen Kriterien für den Index der resultierenden differential-algebraischen Gleichungen, wie sie bereits in anderen Arbeiten mit ähnlichen Feld/Schaltkreis-Kopplungen hergeleitet wurden. Für die Simulation werden sowohl ein monolithischer Ansatz als auch Waveform-Relaxationsmethoden untersucht. Im Mittelpunkt stehen dabei Zeitintegration, Skalierungsmethoden, strukturelle Eigenschaften und ein hybride Ansatz zur Lösung der zugrundeliegenden linearen Gleichungssysteme welcher den Einsatz spezialisierter Löser für die jeweiligen Teilsysteme erlaubt. Da die vollen Maxwell-Gleichungen zusätzliche Ableitungen in der Kopplungsstruktur verursachen, sind bisher existierende Konvergenzaussagen für die Waveform-Relaxation von gekoppelten differential-algebraischen Gleichungen nicht anwendbar und motivieren eine neue Konvergenzanalyse. Auf dieser Analyse aufbauend werden hinreichende topologische Kriterien entwickelt, welche eine Konvergenz von Gauß-Seidel- und Jacobi-artigen Waveform-Relaxationen für die gekoppelten Systeme garantieren. Schließlich werden numerische Benchmarks zur Verfügung gestellt, um die eingeführten Methoden und Theoreme dieser Abhandlung zu unterstützen. / This work is devoted to the simulation of electrical/electronic circuits incorporating electromagnetic devices. The focus is on different couplings of the circuit equations, modeled with the modified nodal analysis, and the electromagnetic devices with their refined model based on full-wave Maxwell's equations in Lorenz gauged A-V formulation which are spatially discretized by the finite integration technique. A numerical analysis extends the topological criteria for the index of the resulting differential-algebraic equations, as already derived in other works with similar field/circuit couplings. For the simulation, both a monolithic approach and waveform relaxation methods are investigated. The focus is on time integration, scaling methods, structural properties and a hybrid approach to solve the underlying linear systems of equations with the use of specialized solvers for the respective subsystems. Since the full-Maxwell approach causes additional derivatives in the coupling structure, previously existing convergence statements for the waveform relaxation of coupled differential-algebraic equations are not applicable and motivate a new convergence analysis. Based on this analysis, sufficient topological criteria are developed which guarantee convergence of Gauss-Seidel and Jacobi type waveform relaxation schemes for introduced coupled systems. Finally, numerical benchmarks are provided to support the introduced methods and theorems of this treatise.
|
12 |
Aspects of guaranteed error control in computations for partial differential equationsMerdon, Christian 17 September 2013 (has links)
Die Online-Version dieses Dokuments enthält Software, die unter denBedingungen der GNU General Public License verbreitet wird, entwedergemäß Version 3 der Lizenz oder jeder späteren Version. WeitereInformationen über Autoren und Lizenzbedingungen befinden sich inAppendix A des Dokuments sowie in LICENSE.txt in der eingebettetenzip-Datei. Die zip-Datei kann mit geeigneter Software geöffnet werden,z.B. mit Acrobat Reader und 7-Zip, oder KDE Okular und GNU zip. / Diese Arbeit behandelt garantierte Fehlerkontrolle für elliptische partielle Differentialgleichungen anhand des Poisson-Modellproblems, des Stokes-Problems und des Hindernisproblems. Hierzu werden garantierte obere Schranken für den Energiefehler zwischen exakter Lösung und diskreten Finite-Elemente-Approximationen erster Ordnung entwickelt. Ein verallgemeinerter Ansatz drückt den Energiefehler durch Dualnormen eines oder mehrerer Residuen aus. Hinzu kommen berechenbare Zusatzterme, wie Oszillationen der gegebenen Daten, mit expliziten Konstanten. Für die Abschätzung der Dualnormen der Residuen existieren viele verschiedene Techniken. Diese Arbeit beschäftigt sich vorrangig mit Equilibrierungsschätzern, basierend auf Raviart-Thomas-Elementen, welche effiziente garantierte obere Schranken ermöglichen. Diese Schätzer werden mit einem Postprocessing-Verfahren kombiniert, das deren Effizienz mit geringem zusätzlichen Rechenaufwand deutlich verbessert. Nichtkonforme Finite-Elemente-Methoden erzeugen zusätzlich ein Inkonsistenzresiduum, dessen Dualnorm mit Hilfe diverser konformer Approximationen abgeschätzt wird. Ein Nebenaspekt der Arbeit betrifft den expliziten residuen-basierten Fehlerschätzer, der für gewöhnlich optimale und leicht zu berechnende Verfeinerungsindikatoren für das adaptive Netzdesign liefert, aber nur schlechte garantierte obere Schranken. Eine neue Variante, die auf den equilibrierten Flüssen des Luce-Wohlmuth-Fehlerschätzers basiert, führt zu stark verbesserten Zuverlässigkeitskonstanten. Eine Vielzahl numerischer Experimente vergleicht alle implementierten Fehlerschätzer und zeigt, dass effiziente und garantierte Fehlerkontrolle in allen vorliegenden Modellproblemen möglich ist. Insbesondere zeigt ein Modellproblem, wie die Fehlerschätzer erweitert werden können, um auch auf Gebieten mit gekrümmten Rändern garantierte obere Schranken zu liefern. / This thesis studies guaranteed error control for elliptic partial differential equations on the basis of the Poisson model problem, the Stokes equations and the obstacle problem. The error control derives guaranteed upper bounds for the energy error between the exact solution and different finite element discretisations, namely conforming and nonconforming first-order approximations. The unified approach expresses the energy error by dual norms of one or more residuals plus computable extra terms, such as oscillations of the given data, with explicit constants. There exist various techniques for the estimation of the dual norms of such residuals. This thesis focuses on equilibration error estimators based on Raviart-Thomas finite elements, which permit efficient guaranteed upper bounds. The proposed postprocessing in this thesis considerably increases their efficiency at almost no additional computational costs. Nonconforming finite element methods also give rise to a nonconsistency residual that permits alternative treatment by conforming interpolations. A side aspect concerns the explicit residual-based error estimator that usually yields cheap and optimal refinement indicators for adaptive mesh refinement but not very sharp guaranteed upper bounds. A novel variant of the residual-based error estimator, based on the Luce-Wohlmuth equilibration design, leads to highly improved reliability constants. A large number of numerical experiments compares all implemented error estimators and provides evidence that efficient and guaranteed error control in the energy norm is indeed possible in all model problems under consideration. Particularly, one model problem demonstrates how to extend the error estimators for guaranteed error control on domains with curved boundary.
|
13 |
Perturbation analysis and numerical discretisation of hyperbolic partial differential algebraic equations describing flow networksHuck, Christoph 05 December 2018 (has links)
Diese Arbeit beschäftigt sich mit verschiedenen mathematischen Fragestellungen hinsichtlich der Modellierung, Analysis und numerischen Simulation von Gasnetzen. Hierbei liegt der Fokus auf der mathematischen Handhabung von partiellen differential-algebraischen Gleichungen, die mit algebraischen Gleichungen gekoppelt sind. Diese bieten einen einfachen Zugang hinsichtlich der Modellierung von dynamischen Strukturen auf Netzen Somit sind sie insbesondere für Gasnetze geeignet, denen im Zuge der steigenden Bedeutung von erneuerbaren Energien ein gestiegenes Interesse seitens der Öffentlichkeit, Politik und Wissenschaft entgegen gebracht wird.
Wir führen zunächst die gängigsten Elemente, die in Gasnetzen benötigt werden ein und formulieren zwei PDAE-Klassen für solche Netze: Eine für reine Rohrnetze, und eine, die zusätzliche Elemente wie Verdichter und Widerstände beinhaltet. Des Weiteren untersuchen wir die Sensitivität der Lösung der Rohrnetz-PDAE hinsichtlich Störungen. Dabei berücksichtigen wir Störungen, die nicht nur den dynamischen Teil der PDAE beeinflussen, sondern auch Störungen in den algebraischen Gleichungen und weisen Stabilitätseigenschaften für die Lösung der PDAE nach.
Darüber hinaus beschäftigen wir uns mit einer neu entwickelten, an die Netztopologie angepassten Ortsdiskretisierung, welche die Stabilitätseigenschaften der PDAE auf DAE Systeme überträgt. Des Weiteren zeigen wir, wie sich die Gasnetz-DAE zu einer gewöhnlichen Differentialgleichung, welche die inhärente Dynamik der DAE widerspiegelt entkoppeln lässt. Dieses entkoppelte System kann darüber hinaus direkt aus den Topologie- und Elementinformationen des Netzes aufgestellt werden. Abschließend demonstrieren wir die Ergebnisse an Benchmark-Gasnetzen. Dabei vergleichen wir sowohl die entkoppelte Differentialgleichung mit dem ursprünglichen DAE System, zeigen aber auch, welche Vorteile die an die Netztopologie angepasste Ortsdiskretisierung gegenüber existierenden Verfahren besitzt. / This thesis addresses several aspects regarding modelling, analysis and numerical simulation of gas networks. Hereby, our focus lies on (partial) differential-algebraic equations, thus systems of partial and ordinary differential equations which are coupled by algebraic equations. These coupled systems allow an easy approach towards the modelling of dynamic structures on networks. Therefore, they are well suited for gas networks, which have gained a rise of attention in society, politics and science due to the focus towards renewable energies.
We give an introduction towards gas network modelling that includes the most common elements that also appear in real gas networks and present two PDAE systems: One for pipe networks and one that includes additional elements like resistors and compressors. Furthermore, we investigate the impact of perturbations onto the pipe network PDAE, where we explicitly allow perturbations to affect the system in the differential as well as in the algebraic components. We conclude that the solution of the PDAE possesses stability properties.
In addition, this thesis introduces a new spatial discretisation that is adapted to the net- work topology. This topology-adapted semi-discretisation results in a DAE which possesses the same perturbation behaviour as the space continuous PDAE. Furthermore, we present a topology based decoupling procedure that allows to reformulate the DAE as an ordinary differential equation (ODE), which represents the inherent dynamics of the DAE system. This ODE, together with a decoupled set of algebraic equations, can be derived from the topology and element information directly. We conclude by demonstrating the established results for several benchmark networks. This includes a comparison of numerical solutions for the decoupled ODE and the DAE system. In addition we present the advantages of the topology-adapted spatial discretisation over existing well established methods.
|
14 |
Simulation of Piecewise Smooth Differential Algebraic Equations with Application to Gas Networks / Aspects of Modelling, Algorithmic Treatment and Numerical AnalysisStreubel, Tom 10 June 2022 (has links)
Zuweilen wird gefördertes Erdgas als eine Brückentechnologie noch eine Weile erhalten bleiben, aber unsere Gasnetzinfrastruktur hat auch in einer Ära post-fossiler Brennstoffe eine Zukunft, um Klima-neutral erzeugtes Methan, Ammoniak oder Wasserstoff zu transportieren.
Damit die Dispatcher der Zukunft, in einer sich fortwährend dynamisierenden Marktsituation, mit sich beständig wechselnden Kleinstanbietern, auch weiterhin einen sicheren Gasnetzbetrieb ermöglichen und garantieren können, werden sie auf moderne, schnelle Simulations- sowie performante Optimierungstechnologie angewiesen sein. Der Schlüssel dazu liegt in einem besseren Verständnis zur numerischen Behandlung nicht differenzierbarer Funktionen und diese Arbeit möchte einen Beitrag hierzu leisten.
Wir werden stückweise differenzierbare Funktionen in sog. Abs-Normalen Form betrachten.
Durch einen Prozess, der Abs-Linearisierung genannt wird, können wir stückweise lineare Approximationsmodelle erster Ordnung, mittels Techniken der algorithmischen Differentiation erzeugen.
Jene Modelle können über Matrizen und Vektoren mittels gängiger Software-Bibliotheken der numerischen linearen Algebra auf Computersystemen ausgedrückt, gespeichert und behandelt werden.
Über die Generalisierung der Formel von Faà di Bruno können auch Splinefunktionen höherer Ordnung generiert werden, was wiederum zu Annäherungsmodellen mit besserer Güte führt.
Darauf aufbauend lassen sich gemischte Taylor-Kollokationsmethoden, darunter die mit Ordnung zwei konvergente generalisierte Trapezmethode, zur Integration von Gasnetzen, in Form von nicht glatten Algebro-Differentialgleichungssystemen, definieren.
Numerische Experimente demonstrieren das Potential.
Da solche implizite Integratoren auch nicht lineare und in unserem Falle zugleich auch stückweise differenzierbare Gleichungssysteme erzeugen, die es als Unterproblem zu lösen gilt, werden wir uns auch die stückweise differenzierbare, sowie die stückweise lineare Newtonmethode betrachten. / As of yet natural gas will remain as a bridging technology, but our gas grid infrastructure does have a future in a post-fossil fuel era for the transportation of carbon-free produced methane, ammonia or hydrogen.
In order for future dispatchers to continue to enable and guarantee safe gas network operations in a continuously changing market situation with constantly switching micro-suppliers, they will be dependent on modern, fast simulation as well as high-performant optimization technology. The key to such a technology resides in a better understanding of the numerical treatment of non-differentiable functions and this work aims to contribute here.
We will consider piecewise differentiable functions in so-called abs-normal form.
Through a process called abs-linearization, we can generate piecewise linear approximation models of order one, using techniques of algorithmic differentiation.
Those models can be expressed, stored and treated numerically as matrices and vectors via common software libraries of numerical linear algebra.
Generalizing the Faà di Bruno's formula yields higher order spline functions, which in turn leads to even higher order approximation models.
Based on this, mixed Taylor-Collocation methods, including the generalized trapezoidal method converging with an order of two, can be defined for the integration of gas networks represented in terms of non-smooth system of differential algebraic equations.
Numerical experiments will demonstrate the potential.
Since those implicit integrators do generate non-linear and, in our case, piecewise differentiable systems of equations as sub-problems, it will be necessary to consider the piecewise differentiable, as well as the piecewise linear Newton method in advance.
|
15 |
A Class of Elliptic Obstacle-Type Quasi-Variational Inequalities: Theory and Solution MethodsBrüggemann, Jo Andrea 24 November 2023 (has links)
Quasi-Variationsungleichungen (QVIs) treten in einer Vielzahl mathematischer Modelle auf, welche komplexe Equilibrium-artige Phänomene aus den Natur- oder Sozialwissenschaften beschreiben. Obgleich ihrer vielfältigen Anwendungsmöglichkeiten in Bereichen wie der Biologie, Kontinuumsmechanik, Physik, Geologie und Ökonomie sind Ergebnisse zur allgemeinen theoretischen und algorithmischen Lösung von QVIs in der Literatur eher rar gesät – insbesondere im unendlich-dimensionalen Kontext.
Zentraler Gegenstand dieser Dissertation sind elliptische QVIs vom Hindernis-Typ mit einer zusätzlichen Volumen-Nebenbedingung, die durch ein vereinfachtes Modell eines nachgiebigen Hindernisses aus der Biomedizin motiviert werden. Aussagen zur Existenz von Lösungen werden durch die Charakterisierung der QVI als eine Fixpunkt Gleichung ermöglicht. Zur Lösung der betrachteten QVI selbst wird im Allgemeinen auf eine sequentielle Minimierungsmethode zurückgegriffen und eine Folge von Minimierungs- oder Variationsproblemen vom Hindernis-Typ betrachtet. In diesem Sinne ist für die numerische Behandlung der QVI die effiziente Lösung der auftretenden sequentiellen Probleme maßgeblich. Bei der Entwicklung geeigneter Lösungsmethoden wird insbesondere den Aspekten gitterunabhängige Verfahren sowie adaptive Diskretisierung des kontinuierlichen Problems mittels Finiter Elemente Rechnung getragen: Nach Anwendung der sequentiellen Minimierungsmethode auf die QVI werden die Hindernisprobleme durch eine Folge von Moreau–Yosida-regularisierten Problemen approximiert und anschliessend mit der nichtglatten (semismooth) Newton Methode und einer Pfadverfolgungsstrategie hinsichtlich des Yosida-Parameters gelöst. Die numerische Lösung erfolgt mittels einer adaptiver Finite Elemente Methode (AFEM), wobei die lokale Gitterverfeinerung auf a posteriori Residuen-basierten Schätzern des Approximierungsfehlers beruht. Numerische Experimente schließen die Arbeit ab. / Quasi-variational inequalities (QVIs) are used to describe complex equilibrium-type phenomena in many models in the natural and social sciences. Despite the abundance of different applications of QVIs—e.g., in biology, continuum mechanics, physics, geology, economics—there is only scarce literature on general theoretical and algorithmic approaches to solve problems involving QVIs particularly in infinite dimensions. This thesis focuses on elliptic obstacle-type QVIs with an additional volume constraint that are motivated by the simplified model of a compliant obstacle-type situation stemming from biomedicine. The first part of the thesis establishes existence of solutions to this type of QVIs under different sets of assumptions upon converting the problem to a fixed point equation. Unless the compliant obstacle map exhibits differentiability properties—in which case the problem can be regularised and solved directly in function space—the QVI can only be solved using a sequential variational or minimisation technique that leads to a sequence of obstacle-type problems. The ensuing parts of the thesis cover the efficient (numerical) solution of the emerging sequential problems where a major focus is on the aspects of mesh-independent performance of the solution method and the adaptive discretisation of the continuous problem based on finite elements. The obstacle-type problems resulting from using the sequential minimisation technique on the QVI are solved resorting to Moreau–Yosida-based approximation along with a semismooth Newton solver and a path-following regime for the sake of mesh-independence, which is subject of the second part. The corresponding discretised problems are solved with an adaptive finite element method (AFEM) that uses a posteriori residual-based error estimation techniques for Moreau–Yosida-based approximations of obstacle-type problems, the latter which are explored in the third part. The thesis concludes with numerical experiments.
|
16 |
Analysis and waveform relaxation for a differential-algebraic electrical circuit modelPade, Jonas 22 July 2021 (has links)
Die Hauptthemen dieser Arbeit sind einerseits eine tiefgehende Analyse von nichtlinearen differential-algebraischen Gleichungen (DAEs) vom Index 2, die aus der modifizierten Knotenanalyse (MNA) von elektrischen Schaltkreisen hervorgehen, und andererseits die Entwicklung von Konvergenzkriterien für Waveform Relaxationsmethoden zum Lösen gekoppelter Probleme. Ein Schwerpunkt in beiden genannten Themen ist die Beziehung zwischen der Topologie eines Schaltkreises und mathematischen Eigenschaften der zugehörigen DAE.
Der Analyse-Teil umfasst eine detaillierte Beschreibung einer Normalform für Schaltkreis DAEs vom Index 2 und Abschätzungen, die für die Sensitivität des Schaltkreises bezüglich seiner Input-Quellen folgen. Es wird gezeigt, wie diese Abschätzungen wesentlich von der topologischen Position der Input-Quellen im Schaltkreis abhängen.
Die zunehmend komplexen Schaltkreise in technologischen Geräten erfordern oftmals eine Modellierung als gekoppeltes System. Waveform relaxation (WR) empfiehlt sich zur Lösung solch gekoppelter Probleme, da sie auf die Subprobleme angepasste Lösungsmethoden und Schrittweiten ermöglicht. Es ist bekannt, dass WR zwar bei Anwendung auf gewöhnliche Differentialgleichungen konvergiert, falls diese eine Lipschitz-Bedingung erfüllen, selbiges jedoch bei DAEs nicht ohne Hinzunahme eines Kontraktivitätskriteriums sichergestellt werden kann. Wir beschreiben allgemeine Konvergenzkriterien für WR auf DAEs vom Index 2. Für den Fall von Schaltkreisen, die entweder mit anderen Schaltkreisen oder mit elektromagnetischen Feldern verkoppelt sind, leiten wir außerdem hinreichende topologische Konvergenzkriterien her, die anhand von Beispielen veranschaulicht werden. Weiterhin werden die Konvergenzraten des Jacobi WR Verfahrens und des Gauss-Seidel WR Verfahrens verglichen. Simulationen von einfachen Beispielsystemen zeigen drastische Unterschiede des WR-Konvergenzverhaltens, abhängig davon, ob die Konvergenzbedingungen erfüllt sind oder nicht. / The main topics of this thesis are firstly a thorough analysis of nonlinear differential-algebraic equations (DAEs) of index 2 which arise from the modified nodal analysis (MNA) for electrical circuits and secondly the derivation of convergence criteria for waveform relaxation (WR) methods on coupled problems. In both topics, a particular focus is put on the relations between a circuit's topology and the mathematical properties of the corresponding DAE.
The analysis encompasses a detailed description of a normal form for circuit DAEs of index 2
and consequences for the sensitivity of the circuit with respect to its input source terms.
More precisely, we provide bounds which describe how strongly changes in the input sources of the circuit affect its behaviour. Crucial constants in these bounds are determined in terms of the topological position of the input sources in the circuit.
The increasingly complex electrical circuits in technological devices often call for coupled systems modelling. Allowing for each subsystem to be solved by dedicated numerical solvers and time scales, WR is an adequate method in this setting. It is well-known that while WR converges on ordinary differential equations if a Lipschitz condition is satisfied, an additional convergence criterion is required to guarantee convergence on DAEs. We present general convergence criteria for WR on higher index DAEs. Furthermore, based on our results of the analysis part, we derive topological convergence criteria for coupled circuit/circuit problems and field/circuit problems. Examples illustrate how to practically check if the criteria are satisfied. If a sufficient convergence criterion holds, we specify at which rate of convergence the Jacobi and Gauss-Seidel WR methods converge. Simulations of simple benchmark systems illustrate the drastically different convergence behaviour of WR depending on whether or not the circuit topological convergence conditions are satisfied.
|
Page generated in 0.05 seconds