• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 29
  • 13
  • 9
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 111
  • 111
  • 20
  • 16
  • 12
  • 12
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Salmonella enterica 4, [5], 12: i- = estabilidade do operon fljBA e discriminação por PCR duplex / Salmonella enterica 4, [5], 12: i- : operon fljBA stability and duplex PCR discrimination

Ota, Meire Priscilla, 1984- 23 August 2018 (has links)
Orientador: Marcelo Brocchi / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-23T20:40:21Z (GMT). No. of bitstreams: 1 Ota_MeirePriscilla_M.pdf: 2076382 bytes, checksum: 656fb21011c6e51639a88741d801237c (MD5) Previous issue date: 2013 / Resumo: S. enterica provoca desde enterocolítes até infecções sistêmicas sendo S. enterica I 4,5,12:i:- (flagelar monofásica) responsável por diversos surtos de salmonelose em diversas partes do mundo. Sua incidência tem aumentado consideravelmente nas últimas décadas e ela é caracterizada pela ausência da variação de fase flagelar, processo no qual dois tipos de flagelinas são expressos. Este trabalho teve como objetivo estudar a estabilidade do operon fljBA, responsável pela variação de fase flagelar, sob diferentes condições de cultivo. Para isso, o gene cat (resistência ao cloranfenicol) foi inserido próximo ao operon fljBA em linhagens de S. enterica Typhimurium uma vez que este sorovar deu origem a S. enterica I 4,5,12:i:- por deleção de fljBA. A estabilidade do operon foi verificada in vitro e in vivo e após tratamento da cultura com mitomicina C, antibiótico indutor de profagos. Este último tratamento foi utilizado em virtude da presença do fago Fels-2 próximo ao operon fljBA, uma vez que dados da literatura sugerem que a deleção do operon foi em decorrência da excisão/recombinação imprecisa de profagos. Os resultados obtidos sugerem que a deleção do operon parece ser um evento raro, dado que em nenhuma condição testada houve a reversão da resistência frente ao cloranfenicol. Essas observações abrem discussões sobre a essencialidade da variação de fase flagelar na patogenicidade de S. enterica. É possível que os clones que deram origem a S. enterica I 4,5,12:i:- apresentem características genotípicas e fenotípicas compensatórias a perda de variação de fase. Ainda neste trabalho a ausência dos genes fljA e fljB foram confirmadas em amostras clínicas de S. enterica I 4,5,12:i:- isoladas no Brasil, mas a análise de isolados provenientes de granjas sugerem a existência de um novo padrão de deleção do operon fljBA, dados estes que precisam ser melhor investigados. Além disso, foi desenvolvida uma reação de PCR-Duplex para detecção de S. enterica I 4,5,12:i:- (Clone Americano) e diferenciação deste de outros sorovares, particularmente Typhimurium. Este PCR se mostrou eficiente na identificação e diferenciação de S. enterica I 4,5,12:i:- (clone Americano) podendo ser utilizado como técnica complementar as técnicas tradicionais de sorotipagem, visto ser um método rápido, preciso e acurado. Os testes sorológicos são laboriosos e devido ao fato do flagelo de fase II nem sempre ser expresso, amostras do sorovar Typhimurium podem ser erroneamente identificadas como S. enterica I 4,5,12:i: / Abstract: S. enterica causes from enterocolitis to systemic infections with S. enterica serovar I 4,5,12:i:- (monophasic flagelar) responsible for multiple salmonellosis outbreaks worldwide. Its incidence increased considerable in recent years and it is characterized by absence of flagellar phase variation, a process in which normally two flagellins are expressed. This work aimed to study the instability of fljBA operon, responsible for flagellar phase variation under different conditions growth. For this goal, cat gene (resistant for chloramphenicol) was inserted next to fljBA operon in S. enterica Typhimurium strains once this serovar originated S. enterica I 4,5,12:i:- by fljBA deletion. Stability of operon was verified "in vitro", "in vivo" and culture treatment with Mitomycin C, prophages antibiotic inductor. This last treatment was used due the presence of Fels-2 prophage next to fljBA operon since previous works suggest that the deletion of operon is a result of imprecise excision/recombination of prophages. Results from this work suggest that the deletion of operon appear to be a rare event, since in none of condition tested were observed reversion of resistance mark to chloramphenicol. This observation leads to discussions about the essentiality of flagellar phase variation in pathogenicity of S. enterica. It is possible that clones whom originated S. enterica I 4,5,12:i:- presented compensatory genotypic and phenotypic features to the loss of phase variation. Absence of fljA and fljB genes was confirmed in clinic samples of S. enterica serovar I 4,5,12:i:- isolated in Brazil, but poultry samples suggest the presence of a new deletion pattern of fljBA operon, data that needs to be better investigated. Furthermore a Duplex-PCR were designed aiming S. enterica I 4,5,12:i:- (American Clone) and differentiation of it along others serovars, specially Typhimurium. This PCR showed efficient to identification and differentiation of S. enterica I 4,5,12:i:- (American Clone) technique that can be used as a complementary assay to traditional serotyping, since it is a fast, precise and accurate test. Serological tests are laborious and due phase flagellar II not always be expressed, samples of serovar Typhimurium can be misidentified as S. enterica I 4,5,12:i:- / Mestrado / Clinica Medica / Mestra em Clínica Médica
102

Contamination of Fresh Produce with Human Pathogens in Domestic and Commercial Kitchens

Paden, Holly Noelle 10 December 2018 (has links)
No description available.
103

Identification et caractérisation de gènes chez Salmonella enterica sérovar Typhi impliqués dans l’interaction avec les macrophages humains.

Sabbagh, Sébastien 07 1900 (has links)
Le genre bactérien Salmonella regroupe plus de 2500 sérovars, mais peu sont responsables de pathologies humaines. Salmonella enterica sérovar Typhi (S. Typhi) est reconnu pour son importance médicale à travers le globe. S. Typhi cause la fièvre typhoïde chez l’Homme, une maladie infectieuse létale caractérisée par la dissémination systémique de la bactérie vers des organes du système réticulo-endothélial. La fièvre typhoïde représente un fardeau pour la santé mondiale, notamment auprès des pays en développement où les conditions sanitaires sont désuètes. La situation se complique davantage par l’apparition de souches résistantes aux antibiotiques. De plus, les deux vaccins licenciés sont d’efficacité modérée, présentent certaines contraintes techniques et ne sont pas appropriés pour les jeunes enfants et nourrissons. La phase systémique de l’infection par Salmonella repose sur sa survie dans les macrophages du système immunitaire. Dans ce compartiment intracellulaire, la bactérie module les défenses antimicrobiennes grâce à de multiples facteurs de virulence encodés dans son génome. Les mécanismes moléculaires sollicités sont complexes et finement régulés. Malgré les progrès scientifiques réalisés précédemment, plusieurs incompréhensions persistent au sujet de l’adaptation de ce pathogène dans les macrophages de l’hôte. Pour mieux concevoir les déterminants génétiques de S. Typhi impliqués dans l’interaction avec ces cellules, une stratégie de sélection négative a été appliquée afin de vérifier systématiquement l’effet direct des gènes pendant l’infection. En premier temps, une librairie de mutants par transposon chez S. Typhi a été créée pour l’infection de macrophages humains en culture. Après 24 heures d’infection, la présence des mutants fut évaluée simultanément par analyse sur des biopuces de Salmonella. Au total, 130 gènes ont été sélectionnés pour leur contribution potentielle auprès des macrophages infectés. Ces gènes comptaient des composantes d’enveloppe bactérienne, des éléments fimbriaires, des portions du flagelle, des régulateurs, des facteurs de pathogenèse et plusieurs protéines sans fonction connue. En deuxième temps, cette collection de gènes a dirigé la création de 28 mutants de délétion définie chez S. Typhi. Les capacités d’entrée et de réplication intracellulaire de ces mutants au sein des macrophages humains ont été caractérisées. D’abord, les macrophages ont été co-infectés avec les mutants en présence de la souche sauvage, pour vérifier la compétitivité de chacun d’eux envers cette dernière. Ensuite, les mutants ont été inoculés individuellement chez les macrophages et leur infectivité fut mesurée comparativement à celle de la souche sauvage. Sommairement, 26 mutants ont présenté des défauts lorsqu’en compétition, tandis que 14 mutants se sont montrés défectueux lorsque testés seuls. Par ailleurs, 12 mutants ont exposé une déficience lors de l’infection mixte et individuelle, incluant les mutants acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, STY1867-68, STY2346 et SPI-4. Notamment, 35 nouveaux phénotypes défectueux d’entrée ou de survie intracellulaire chez Salmonella ont été révélés par cette étude. Les données générées ici offrent plusieurs nouvelles pistes pour élucider comment S. Typhi manipule sa niche intracellulaire, menant à l’infection systémique. Les gènes décrits représentent des cibles potentielles pour atténuer la bactérie chez l’humain et pourraient contribuer au développement de meilleures souches vaccinales pour immuniser contre la fièvre typhoïde. / The bacterial genus Salmonella holds over 2500 serovars, but few are responsible for human pathologies. Salmonella enterica serovar Typhi (S. Typhi) is recognized across the globe for its medical importance. S. Typhi causes typhoid fever in humans, a lethal infectious disease characterized by systemic dissemination of the bacteria to organs of the reticulo-endothelial system. Typhoid fever represents a burden for public health, notably in developing countries where sanitary conditions are obsolete. The situation is further complicated by the appearance of strains resistant to antibiotics. Moreover, both of the licensed vaccines are of moderate efficiency, present certain technical constraints and are not appropriate for young children and newborns. The systemic phase of infection by Salmonella relies on its survival within macrophages of the immune system. In this intracellular compartment, the bacterium modulates antimicrobial defenses thanks to multiple virulence factors encoded within its genome. Molecular mechanisms taking place are complex and finely regulated. Despite scientific advances made previously, many misunderstandings persist concerning the adaptation of this pathogen within host macrophages. To better conceive the genetic determinants of S. Typhi involved in interaction with these cells, a negative selection strategy was applied to systematically verify the direct effect of genes during infection. Firstly, a library of transposon insertion mutants in S. Typhi was created for infection of cultured human macrophages. After 24 hours of infection, the presence of mutants was evaluated simultaneously by analysis on Salmonella microarrays. In total, 130 genes were selected for their potential contribution within infected macrophages. These genes included bacterial envelope components, fimbrial elements, portions of the flagellum, regulators, pathogenesis factors, and many proteins of unknown function. Secondly, this collection of genes led to the creation of 28 defined deletion mutants in S. Typhi. The ability of entry and intracellular replication of these mutants within human macrophages were characterized. To start, macrophages were coinfected with mutants in the presence of the wild-type strain, in order to verify the competitiveness of each of them against the latter. Then, mutants were inoculated individually into macrophages and their infectiveness was measured in comparison with the wild-type strain. In summary, 26 mutants presented defects when in competition, whereas 14 mutants were shown defective when tested alone. Furthermore, 12 mutants exposed a deficiency during mixed and individual infection experiments, including mutants acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, STY1867-68, STY2346, and SPI-4. In particular, 35 new defective phenotypes of Salmonella entry or intracellular survival were revealed in this study. Data generated here provides significant novel insight for elucidating how S. Typhi manipulates its intracellular niche, leading to systemic infection. Genes described represent potential targets for attenuating the bacteria in the human host and could contribute to the development of better vaccine strains to immunize against typhoid fever.
104

Implication des gènes de Salmonella enterica sérovar Typhi dans les différentes étapes d'infection

Béland, Maxime January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
105

Implication des gènes de Salmonella enterica sérovar Typhi dans les différentes étapes d'infection

Béland, Maxime January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
106

Identification et caractérisation de gènes chez Salmonella enterica sérovar Typhi impliqués dans l’interaction avec les macrophages humains

Sabbagh, Sébastien 07 1900 (has links)
No description available.
107

Typhoidal And Non-Typhoidal Salmonella Serovars - A Comparartive Study

Arvindhan, G N 07 1900 (has links)
Chapter Introduction Salmonellae are gram negative bacteria that cause gastroenteritis and entericfever. S. enterica is divided into seven phylogenetic groups, subspecies 1, 2,3a, 3b, and 4, 6, 7. Subspecies1 includes 1,367 serovars, some of which are commonly isolated from infected birds and mammals. The other subspecies mainly colonize cold blooded animals. Salmonella typhimurium, Salmonella typhiandSalmonella enteritidis are some of the serovars, which belong to s.enterica species. S. typhimurium is one of the important causes for food poisoning in humans. It causes typhoid like fever in mice. In immuno compromised patients the infection is often fatal if it is not treated with antibiotics. Clinical features of food poisoning include abdominal pain, vomiting, nausea, abdominal cramps, dehydration etc. S. typhi causes typhoid fever in humans. No other host has been identified for this serovar. Main source of infection is contaminated food and water. No age is exempted but it is less common before2 years. Incubation period is 360 days. Clinical features include stepladder type fever, malaise, headache, hepato splenomegaly, coated tongue, Neutrogena etc. It may be fatal if untreated. Among the serovars of Salmonella infecting humans S. typhimurium and S. typhi are the most important. While S. typhimurium infects many host species including birds and mammals, S. typhi is single host adapted and infects only human. The single host adaptation of S. typhi presents it with the need for establishing are servoir of infection in the community which can serve as a source of fresh infection. Also the single host adaptation of S. typhi has made it a highly specialized pathogen which has evolved certain unique genes needed for human colonization at the same time has lost a set of genes which are needed for survival in other hosts and in the highly variable external environment. This has led to the accumulation of a vast number of pseudo genesin S. Typhi. A comparative study of the two serovars is useful in many ways. Due to varied host defense systems encountered by the two serovars owing to different niche of infection the bacterial counter defense mechanisms are also different. By focusing on the differences between genes involved in the bacterial defense of host immune response we can decipher the role played by various genes in combating the antibacterial host response. Chapter 2 The role of TolA and peptidoglycan modification in detergent resistance of pathogenic Salmonella The major Salmonella serovars that infect human are Salmonella enterica serovar Typhi (S.typhi) which cause systemic typhoid and Salmonella enterica serovar Typhimurium (S. typhimurium) which cause gastro enteritis. S. typhi resides in the gall bladder during chronic infection and S .typhimurium infects intestine .Thus both pathogens encounter high concentrations of bile and have developed mechanisms to counter it. The Tol Pal complex spanning the outermembrane and the inner cytoplasmic membrane plays an important role in maintaining the stability of the outer membrane and providing detergent resistance. The tolA gene of S. Typhi Is shorter by 27 aminoacid than S. typhimurium. The tolA gene knockout of S. typhimurium and S. typhi differed in their tritonX resistance behavoiur, morphology and low osmolality tolerance. S. typhi tolA was unable to complement the tolA defect in S. typhimurium which could probably due to the difference in the peptidoglycan layer. An analys is of the peptidoglycan modifying genes of both the serovars revealed that dacD, pbgP, ynhG are different. dacD, pbgP genes are pseudogenes in S. typhi and ynhG has a major deletion in S. typhi. Further studies reveal that a double knockout of dacD and pbpG in S. typhimurium makes it sensitive to low osmolality similar to S. typhi. Based on these results we propose a mechanism, where shortening of TolA increases detergent resistance by bringing the outer membrane into closer contact with the peptidoglycan layer, but this is achieved at the cost of reduced Lpp (Bruan’slipoprotein) peptidoglycan linkage which plays a major role in low osmolality tolerance. The pathogen S. typhi is highly adapted to the human host and cannot infect any other host. The single host adaptation and the need to survive in high concentrations of bile have made S. typhi to acquire higher bile resistance at the cost of lowered osmotic tolerance through shortening TolA and reduced Lpp and peptidoglycan binding. Chapter 3 Development of a DNA vaccine against Salmonella The immune response against Salmonella is multifaceted involving both the innate and the adaptive immune system. The characterization of specific Salmonella antigens inducing immune response could critically contribute to the development of epitope based vaccines for Salmonella. We have tried to identify aprotective Tcellepitope (s) of Salmonella, as cell mediated immunity conferred by CD8+T cells is the most crucial subset conferring protective immunity against Salmonella. It being a proven fact that secreted proteins are better in inducing cell mediated immunity than cell surface and cytosolic antigens, we have analyzed all the GenBank annotated Salmonella pathogenicity island 1 and 2 secreted proteins of S. typhimurium and S. typhi. They were subjected to BIMAS and SYFPEITHI analysis to map MHCI and MHC II binding epitopes. The huge profile of possible T cell epitopes obtained from the two classes of secreted proteins were tabulated and using a scoring system that considers the binding affinity and promiscuity of binding to more than one allele, SopB and SifB were chosen for experimental confirmation in murine immunization model. The entire Sop Band SifB genes were cloned into DNA vaccine vectors and were administered along with live attenuated Salmonella and it was found that SopB vaccination reduced the bacterial burden of organs by about 5fold on day4 and day8 after challenge with virulent Salmonella and proved to be a more efficient vaccination strategy than live attenuated bacteria alone. Chapter 4 PCR based diagnosis and Serovar Determination of Blood Borne Salmonella Typhoid fever is becoming an ever increasing threat in the developing countries. We have improved considerably upon the existing PCR based diagnosis method by designing primers against a region which is unique to S. typhiand S. paratyphiA, corresponding to the gene STY0312 in S. typhi and its homolog SPA2476 in S. paratyphiA. An additional set of primers amplify another region in S. typhi CT18 and S. typhiTy2 corresponding to the region between the genes STY0313 toSTY0316 but which is absent in S.paratyphi A. The threat of false negative result arising due to mutation in hypervariable genes has been reduced by targeting a gene unique to typhoidal Salmonella as a diagnostic marker. The amplified region has been tested for genomic stability by amplifying them from clinical is olates of patients from various geographical locations in India, there by showing that this region is potentially stable. These set of primers can also differentiate between S. typhiCT18, S. typhiTy2 and S. paratyphi A which have stable deletions in this specific locus. The PCR assay designed in this study has a sensitivityof95%ascompared to the Widal test which had only 63%. As observed, in certain cases the PCR assay was more sensitive than the blood culture test as the PCR based detection could also detect dead bacteria.
108

Small Heat Shock Proteins from Oryza Sativa and Salmonella Enterica

Mani, Nandini January 2014 (has links) (PDF)
Small heat shock proteins (sHSPs) are a ubiquitous family of molecular chaperones that play a vital role in maintaining protein homeostasis in cells. They are the first line of defence against the detrimental effects of cellular stress conditions like fluctuations in temperature, pH, oxidative and osmotic potentials, heavy metal toxicity, drought and anoxia. Many sHSPs are also constitutively expressed during developmental stages of different plant tissues. Members of this family are ATP-independent chaperones, with monomeric masses varying from 12-40 kDa. A characteristic feature of sHSPs is their ability to assemble into large oligomers, ranging from dimers to 48-mers. Under stress conditions, these oligomers dissociate and/or undergo drastic conformational changes to facilitate their binding to misfolded substrate proteins in the cell. This interaction prevents the substrate from aggregating during stress. When physiological conditions are restored, the substrates are transferred to other ATP-dependent heat shock proteins for refolding. Thus sHSPs do not refold their substrates, but instead prevent them from aggregating and maintain them in a „folding-competent‟ state. The clientele of sHSPs includes proteins with a wide range of molecular masses, secondary structures and pIs. This promiscuity has led to sHSPs occupying key positions in the protein quality control network. As molecular chaperones that protect proteins, sHSPs prevent disease. Concomitantly, mutations in sHSPs have also been linked to various human diseases. Till date, high resolution crystal structures are available only for 3 sHSP oligomers. This insufficiency of structural information has hindered our understanding of the mechanism of chaperone function, the link between the oligomeric status and chaperone activity, identification of substrate binding sites and the role of the flexible terminal segments in mediating both the oligomerization and chaperone function. We undertook structural and functional characterization of plant and bacterial sHSPs in order to address some of these questions. Chapter 1 of this thesis gives an overview of the sHSP family, with special emphasis on the oligomeric assemblies of sHSPs of known structures. We highlight what we know about this family through mutational studies, what is as yet unknown, and why it is important to study this family. Chapter 2 describes our efforts at structural and functional characterization of 5 sHSPS in rice, each targeted to a different organelle. We probed the role played by the N-terminal region in mediating oligomer assembly and in the chaperone activity of the protein. Rice sHSPs displayed a wide range of hydrodynamic radii, from 4 nm to 14 nm, suggesting that their oligomeric assemblies are likely to be diverse. In chapter 3, we discuss our attempts at the structural characterization of a bacterial sHSP, Aggregation suppressing protein A, or AgsA from Salmonella enterica. We obtained a high resolution crystal structure of the dimer of the core sHSP domain. We compared this dimer with other known sHSP dimers, reported the deviations that we observed and analysed the structure to account for these differences. We used this dimer structure to successfully obtain solutions for low resolution X-ray diffraction data for oligomers of different truncated constructs of AgsA. We observed that a C-terminal truncated construct formed an octahedral 24¬mer (4.5 Å resolution), whereas a construct truncated at both termini formed a triangular bipyramidal 18-mer (7.7 Å resolution), an assembly hitherto unobserved for any sHSP. A similar 18-mer was obtained when the C-terminal truncated construct was incubated with a dipeptide prior to crystallisation (6.7 Å resolution). The cryo-EM map of the wild type protein (12 Å resolution) could be fitted with a different 18-mer. The low resolution of the data pre-empted an atomic-level description of the interfaces of the assemblies. However, our work highlights the structural plasticity of this protein and probes the sensitivity of the oligomeric assembly to minor differences in construct length.
109

The Epithelial Transmembrane Protein PERP Is Required for Inflammatory Responses to S. typhimurium Infection: A Dissertation

Hallstrom, Kelly N. 28 October 2015 (has links)
Salmonella enterica subtype Typhimurium (S. Typhimurium) is one of many non-typhoidal Salmonella enterica strains responsible for over one million cases of salmonellosis in the United States each year. These Salmonella strains are also a leading cause of diarrheal disease in developing countries. Nontyphoidal salmonellosis induces gastrointestinal distress that is characterized histopathologically by an influx of polymorphonuclear leukocytes (PMNs), the non-specific effects of which lead to tissue damage and contribute to diarrhea. Prior studies from our lab have demonstrated that the type III secreted bacterial effector SipA is a key regulator of PMN influx during S. Typhimurium infection and that its activity requires processing by caspase-3. Although we established caspase-3 activity is required for the activation of inflammatory pathways during S. Typhimurium infection, the mechanisms by which caspase-3 is activated remain incompletely understood. Most challenging is the fact that SipA is responsible for activating caspase-3, which begs the question of how SipA can activate an enzyme it requires for its own activity. In the present study, we describe our findings that the eukaryotic tetraspanning membrane protein PERP is required for the S. Typhimuriuminduced influx of PMNs. We further show that S. Typhimurium infection induces PERP accumulation at the apical surface of polarized colonic epithelial cells, and that this accumulation requires SipA. Strikingly, PERP accumulation occurs in the absence of caspase-3 processing of SipA, which is the first time we have shown SipA mediates a cellular event without first requiring caspase-3 processing. Previous work demonstrates that PERP mediates the activation of caspase-3, and we find that PERP is required for Salmonella-induced caspase-3 activation. Our combined data support a model in which SipA triggers caspase-3 activation via its cellular modulation of PERP. Since SipA can set this pathway in motion without being cleaved by caspase-3, we propose that PERP-mediated caspase-3 activation is required for the activation of SipA, and thus is a key step in the inflammatory response to S. Typhimurium infection. Our findings further our understanding of how SipA induces inflammation during S. Typhimurium infection, and also provide additional insight into how type III secreted effectors manipulate host cells.
110

Understanding of Salmonella-phytopathogen-environment-plant interactions and development of novel antimicrobial to reduce the Salmonella burden in fresh tomato production

Deblais, Loic January 2018 (has links)
No description available.

Page generated in 0.0676 seconds