• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 29
  • 13
  • 9
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 111
  • 111
  • 20
  • 16
  • 12
  • 12
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Mass Spectrometry-Based Metabolomics and Protein Native Structure Characterization to Improve Intervention in Salmonellosis and Proteomics-based Biomarker Characterization in Invasive Aspergillosis

Wu, Jikang, Dr. January 2018 (has links)
No description available.
92

Influence of Physiological State, Prolonged Dry Storage, and Passage through Simulated Digestion on the Survival and Gene Expression of Salmonella enterica sv. Tennessee

Aviles, Bryan 04 June 2012 (has links)
Salmonella enterica serotypes have been linked to outbreaks associated with low water activity foods. The ability of biofilm forming pathogens, such as Salmonella, to survive thermal and chemical processes is improved; it is unclear if biofilms will also improve survival to desiccation and gastric stresses. The purpose of this study was to quantify the effect of physiological state (planktonic versus biofilm) and prior exposure to desiccation on Salmonella survival and gene expression after passage through an in-vitro digestion model. Cells of Salmonella enterica serotype Tennessee were deposited onto membranes for planktonic cells or on glass beads to create biofilms. The cells were subsequently dried at room temperature and stored in dried milk powder (aw = 0.3) for up to 30 days. Salmonella survival was quantified by serial dilution onto brilliant green agar before desiccation, after desiccation, after 1-day storage and after 30-day storage. At each sampling both physiological states were tested for survival through a simulated gastrointestinal system. RNA was extracted at the identical time points and relative gene expression determined for genes associated with stress response (rpoS, otsB), virulence (hilA, hilD, invA, sipC) and a housekeeping gene 16S rRNA using quantitative real-time PCR. The physiological state and length of storage effected the survival and gene expression of Salmonella within the desiccated milk powder environment and after passage through an in-vitro digestion system (p<0.05). Larger numbers of S. Tennessee were recovered by plate counts for biofilm cells, compared to planktonic cells. However, the numbers of 16S rRNA gene copies were not significantly different suggesting entry of S. Tennessee into a viable but non-culturable state. Prolonged storage in dry milk powder was not associated with increased cross-protection to gastric stress. Increased expression of stress response genes rpoS and otsB correlated with survival, indicating cross protection of low water activity and acid stress. Increased expression of virulence-associated genes was seen in cells exposed to short periods of dry storage, suggesting an increased virulence potential. / Master of Science in Life Sciences
93

Interaction of cyclotides and bacteria : A study of the cyclotide action and the bacterial reaction

Malik, Sohaib Zafar January 2017 (has links)
The growing problem of antibiotic resistance and the lack of promising prospective antibiotics have forced us to search for new classes of antibiotics. Among the candidates to develop into future antibacterials are antimicrobial peptides (AMPs). These potent, broad spectrum compounds are important components of innate immunity of organism from all kingdoms of life. One such family of mini-proteins from plants is called cyclotides, whose members are defines by cyclic backbone and a cystine knot (CCK), which confers to them extreme stability in the face of biological, chemical and physical insults.     Some cyclotides possess Gram-negative specific antibacterial activity; the purpose of this thesis was to characterize how these molecules kill bacteria, and how bacteria would respond to treatment with cyclotides. For this purpose, Salmonella enterica and Escherichia coli mutants resistant to the cyclotides cycloviolacin O2 and cycloviolacin O19, respectively, were selected. These mutants were characterized by whole genome sequencing, genetic reconstitution, fitness measurements, and cross-resistance studies. These studies identified a number of genetic pathways for resistance development to cyclotides. These mutants displayed variable fitness profiles in laboratory growth media and in mice competition experiments, with some mutants possessing a fitness advantage in mice. Cross-resistance studies resulted in the identification of several cases of cross-resistance and collateral sensitivity between cyclotides and other AMPs/antibiotics.      Antimicrobial effects of cyclotides were assayed in different conditions and in bacterial organisms with different surface characteristics. In addition, immunolocalization experiments were performed to explore the biological distribution of cyclotides in plants and to determine the mechanism of action of cyclotides in bacteria, respectively. Antibodies raised against cyO2 were used for this purpose. Immunohistochemical techniques applied to plant cells, tissues and organs provided the information that cyclotides were distributed in all plant organs, and were found in tissues vulnerable to pathogen attack, and that cyclotides were stored in the vacuoles of plant cells. Immunogold staining of cyclotide treated cells of S. typhimurium, showed effects of cyclotide treatment on the cell envelope components as well as cytoplasm. A higher number of cyclotide molecules was associated with the cell envelope, but a considerable fraction of them penetrated into the cytoplasm.
94

Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity.

Haskins, KA, Russell, JF, Gaddis, N, Dressman, HK, Aballay, A 07 1900 (has links)
The endoplasmic reticulum stress response, also known as the unfolded protein response (UPR), has been implicated in the normal physiology of immune defense and in several disorders, including diabetes, cancer, and neurodegenerative disease. Here, we show that the apoptotic receptor CED-1 and a network of PQN/ABU proteins involved in a noncanonical UPR response are required for proper defense to pathogen infection in Caenorhabditis elegans. A full-genome microarray analysis indicates that CED-1 functions to activate the expression of pqn/abu genes. We also show that ced-1 and pqn/abu genes are required for the survival of C. elegans exposed to live Salmonella enterica, and that overexpression of pqn/abu genes confers protection against pathogen-mediated killing. The results indicate that unfolded protein response genes, regulated in a CED-1-dependent manner, are involved in the C. elegans immune response to live bacteria. / Dissertation
95

Caractérisation et surexpression des fimbriae de type chaperon-placier de Salmonella enterica sérovar Typhi

Houde, Yoan 08 1900 (has links)
Salmonella enterica sérovar Typhi (S. Typhi) est l’agent responsable de la fièvre typhoïde et cause environ 200 000 morts et 27 millions de cas annuellement. C’est un pathogène entérique dont le réservoir est restreint à l’Homme. Les raisons de cette restriction d’hôte sont méconnues et pourraient dépendre de l’expression de facteurs d’adhésion à des étapes importantes au cours de la pathogenèse. L’annotation bioinformatique du génome de S. Typhi identifie 12 fimbriae de type chaperon-placier (FCP), un curli ainsi qu’un pilus de type IV. L’objectif de ce projet de recherche est d’étudier ces systèmes d’adhésion peu caractérisés. D’abord, le niveau d’expression de ces gènes a été évalué dans différentes conditions de culture in vitro en utilisant une approche de gènes rapporteurs. L’expression des 14 systèmes d’adhésion a été détectée. Nos résultats indiquent qu’une carence en fer favorise l’expression des opérons bcf et csg. Indépendamment du fer, l’expression de bcf, csg, pil, sef, sta, stc, stg et sth est influencée par la richesse nutritive du milieu. L’incubation en milieu LB liquide favorise l’expression de la plupart des systèmes d’adhésion par rapport à un milieu LB liquide sans agitation ou un milieu LB solide. En somme, l’expression des systèmes d’adhésion de S. Typhi a été observée et est influencée par des conditions environnementales. Dans un second volet, nous avons tent de surexprimer les différents systèmes d’adhésion chez une souche d’E. coli ou de S. Typhi afimbriaire. Avec cette approche, nous avons été en mesure de démontrer que l’opéron tcf encode pour un fimbria fonctionnel que l’on a pu observer en microscopie électronique. L’expression de tcf chez une souche afimbriaire d’E. coli et S. Typhi a également diminué leur capacité d’adhésion à des cellules épithéliales intestinales humaines lors d’essais in vitro. Nos observations démontrent que l’expression des systèmes d’adhésion retrouvés chez S. Typhi est influencée par les conditions enviroi9onnementales. Au moins un de ces systèmes est fonctionnel. Ceci suggère une contribution des systèmes d’adhésion retrouvés chez S. Typhi lors de l’interaction de ce pathogène avec l’humain. / Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of typhoid fever which causes more than 200 000 deaths and 27 million cases worldwide, mostly in south Asia. This pathogen can only cause significant symptoms in humans, which are the only recognized animal reservoir. This host restriction is not clearly understood and could depend on the expression of adhesion systems during critical pathogenesis steps. Bioinformatic studies on S. Typhi predict 12 chaperone-usher fimbriae, one curli and one type IV secretion system. The aim of the project was to study those poorly described adhesion systems using two different methodologies. First, transcription levels were evaluated in different in vitro growth conditions using both gfp and β-galactosidase reporter genes. The expression of the 14 adhesion systems was detected, even if some of them were poorly expressed. The expression of bcf and csg was higher during iron-deficiency. Also, the availability of nutrients had an impact on bcf, csg, pil, sef, sta, stc, stg and sth expression, independently of the presence of iron. Most of the adhesion systems showed higher expression levels in liquid LB media with aeration compared to the same media without aeration or supplemented with agar. Secondly, several S. Typhi adhesion systems were cloned into an inducible expression plasmid introduced in both an afimbriated E. coli K-12 strain (ORN172) and an afimbriated S. Typhi strain (ISP1820). This approach enabled us to directly observe the presence of tcf by electron microscopy. Furthermore, the expression of tcf was correlated with a reduction of the capacity of bacteria to adhere to INT-407 human intestinal epithelial cells in an in vitro assay. In summary, this work demonstrates that the putative adhesion systems found in S. Typhi can indeed be expressed and this expression can be regulated by environmental signals. Furthermore, tcf encodes for a functional fimbria which has never before been observed. Taken together, our results suggest a significant contribution of the putative adhesion systems during normal pathogenesis.
96

Identification et caractérisation de gènes impliqués dans la virulence de Salmonella typhi suite à une analyse globale par biopuces de l'infection de macrophages humains en culture

Faucher, Sébastien January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
97

INTERACTIONS OF HIGH VOLTAGE ATMOSPHERIC COLD PLASMA WITH MICROORGANISM AND PROTEIN IN FOOD SYSTEMS

Lei Xu (5930420) 12 February 2019 (has links)
<p>Multiple studies have demonstrated atmospheric cold plasma (ACP) as an effective non-thermal technology for microbial decontamination, surface modification, and functionality alteration in food processing and packaging. ACP constitutes charged particles, such as positive and negative ions, electrons, quanta of electromagnetic radiation, and excited and non-excited molecules, which corresponds to its predominant reactive properties. However, in many of these applications, the interactions between plasma and the components in food matrix are not well-understood. The <b>overall goals</b> of this dissertation were to 1) evaluate the interactions between high voltage atmospheric cold plasma (HVACP) and microbes in liquid and semi-solid food; 2) investigate plasma transfer into semi-solid foods and determine the relationship between microbial inactivation and plasma transfer; 3) explore the interactions between plasma and proteins. </p> <p>The first study explored the microbial (<i>Salmonella</i> <i>enterica</i> serovar Typhimurium, <i>S</i>. <i>enterica</i>) inactivation efficacy of HVACP. The physicochemical interactions between HVACP and biomolecules, including an enzyme (pectin methylesterase, PME), vitamin C and other components in orange juice (OJ) under different conditions was also evaluated. Both direct and indirect HVACP treatment of 25 mL OJ induced greater than a 5 log reduction in <i>S</i>. <i>enterica</i> following 30 s of treatment with air and MA65 gas with no storage. For 50 mL OJ, 120 s of direct HVACP treatment followed by 24 h storage achieved <i>S</i>. <i>enterica</i> reductions of 2.9 log in air and 4.7 log in MA65 gas. An indirect HVACP treatment of 120 s followed by 24 hours storage resulted in a 2.2 log reduction in air and a 3.8 log reduction in MA65. No significant (<i>P </i>< 0.05) Brix or pH change occurred following 120 s HVACP treatment. HVACP direct treatment reduced vitamin C content by 56% in air and PME activity by 74% in air and 82% in MA65. These results demonstrated that HVACP can significantly reduce <i>Salmonella</i> in OJ with minimal quality degradation.</p> <p>The second study in this dissertation examined the penetration process of plasma into semi-solid food and the resulting microbial inactivation efficacy. Agar gels of various densities (0.25, 0.5, 1.0, and 2%) with a pH indicator were inoculated with <i>S</i>. <i>enterica</i> (10<sup>7</sup>>CFU) and exposed directly (between the electrode) or indirectly (adjacent to the plasma field created between the two electrodes) to 90 kV at 60 Hz for up to 1.5 h. A long treatment time (1.5 h) caused sample temperature to increase 5~10 °C. The microbial analysis indicated a greater than 6 log<sub>10</sub> (CFU) reduction (both with air and MA65) in the zone with a pH change. Inactivation of bioluminescence cells in the plasma penetrated zone confirmed that the plasma, and its generated reactive species, inactivate microbial as it penetrates into the gel. A two-minute HVACP direct treatment with air at 90 kV induced greater than 5 log<sub>10</sub> (CFU)<i> S</i>. <i>enterica </i>reduction in applesauce. <em></em></p> <p>The third study investigated the interactions between HVACP and protein, using bovine serum albumin (BSA) as a model protein. The physicochemical and structural alteration of BSA and its reaction mechanism, when subjected to HVACP, were investigated. After treating 10 mL of BSA solution (50 mg/mL) at 90 kV for 20, 40, or 60 min, we characterized structural alteration and side-group modification. FTIR spectroscopy, Raman spectroscopy, and circular dichroism analysis indicated protein unfolding and decreased secondary structure (25 % loss of α-helix, 12% loss of β-sheet) in HVACP treated BSA. Average particle size in the protein solutions increased from 10 nm to 113 µm, with a broader distribution after 60 min HVACP treatment indicating protein aggregation. SDS-PAGE and mass spectrometer analysis observed a formation of new peptides of 1 to 10 kDa, indicating that the plasma triggered peptide bond cleavage. Chemical analysis and mass spectrometer results confirmed the plasma modifications on the side chains of amino acids. This study reveals that HVACP treatment may effectively introduce structural alteration, protein aggregation, peptide cleavage, and side-group modification to proteins in aqueous conditions, through several physicochemical interactions between plasma reactive species (reactive oxygen species and reactive nitrogen species) and the proteins. This finding can be readily applied to other plasma-protein studies or applications in the food system, such as enzyme inactivation or protein-based film modifications.</p>
98

Studies On The Mechanisms Involved In Thymic Atrophy During Salmonella Enterica Serovar Typhimurium Infection

Deobagkar-Lele, Mukta 07 1900 (has links) (PDF)
T lymphocytes are an essential component of the adaptive immune response and are highly versatile in function. Each T cell has a unique T cell receptor that can recognize an antigenic peptide in the context of the major his to compatibility complex (MHC) encoded molecules, thus offering a high degree of specificity to the immune response. T cells play a central role in the development of an effective host immune response and the quantitative and qualitative regulation of the T cell response is critical. T cells develop in the thymus, an important primary immune organ, where immature thymocytes undergo differentiation and maturation. Through the process of thymic differentiation, immature cluster of differentiation (CD)4-CD8- thymocytes progress to a CD4+CD8+ stage and are subjected to positive and negative selection to give rise to MHC restricted, single positive CD4+ or CD8+ naive T cells that emigrate from the thymus and populate the peripheral lymphocyte pool. Thymic atrophy is well known to occur naturally during the process of aging with thymocyte depletion and reduced thymic output. Along with age associated changes leading to atrophy, the thymus is exquisitely sensitive to starvation and several stresses. In addition, thymic atrophy is a characteristic feature during several viral, bacterial and parasitic infections. Egress of immature thymocytes, loss of thymic populations due to sensitivity to glucocorticoids and cytokine modulation, etc. have been variously proposed to be involved in this process. However there is limited understanding on the numerous mechanisms involved and the crosstalk between these diverse pathways. In this study, a model for thymic atrophy during acute Salmonella enterica serovar Typhimurium (S. typhimurium) infection was developed. S. typhimurium is a Gram negative bacterium that resides and grows in intracellular compartments within host cells. It causes gastroenteritis in humans but leads to typhoid like disease in mice, similar to that caused by S. typhi in humans. Initially, it was established that acute infection of C57BL/6 mice with 108 CFU S. typhimurium, via the oral, i.e. the physiological, route of infection leads to extensive depletion (8-10 fold) of thymocytes in an infection-dependent manner. Infected mice had higher CFU burden in the Peyer’s patches, spleen, liver, and mesenteric lymph node (MLN) as compared to the thymus. The thymic atrophy was dependent upon the infection caused by live S. typhimurium since oral feeding of mice even with higher doses (1010 CFU) of heat-killed bacteria did not lead to thymic atrophy. The susceptible populations in the thymus were identified by staining for expression of CD4 and CD8 on cell surface using specific monoclonal antibodies tagged to fluorophores, e.g. Fluorescein isothiocyanate (FITC) and phycoerythrin (PE), respectively. The double labelled samples were analyzed by flow cytometry. Interestingly, significant death of CD4+CD8+, the major population of thymocytes, but not single positive thymocytes or peripheral lymphocytes (MLN and spleen cells), was observed at later stages during infection. To gain greater understanding of the processes involved, the mechanisms leading to thymic atrophy were investigated. To this purpose, small molecule inhibitors and mice lacking key molecules important for the immune response were utilized. Also, various assays to assess death of thymocytes, including analysis of death markers such as Annexin V based detection of membrane flipping and caspase activation were performed. I. The extrinsic death pathway involving Fas/FasL interactions is a major death pathway. Therefore, the expression and functional role of the components of the pathway in this model of thymocyte death was investigated. It was observed that thymocytes from infected mice expressed more Fas and Fas ligand (FasL) on their surface than cells from uninfected mice. To address the role of the death receptor, Fas, infection studies were performed with lpr mice that lack functional Fas expression. The depletion of CD4+CD8+ thymocytes in lpr mice was comparable to that in C57BL/6 mice indicating that it was independent of the Fas pathway. However, extensive loss of mitochondrial membrane potential was observed upon analysis with mitochondrial potential specific dyes MitoTracker Red and DiOC6. Most likely, the intrinsic death pathway involving mitochondrial depolarization is involved in this model of thymic atrophy. II. Since thymocytes are known to be sensitive to glucocorticoids both in vitro and in vivo, the involvement of the same in this model of thymic atrophy was assessed. The amounts of cortisol, a glucocorticoid, as detected by ELISA, were elevated during infection. To investigate the functional implication of the increase in cortisol, studies were performed using RU486, a glucocorticoid receptor antagonist. RU486 did not modulate cortisol amounts and treatment of mice with RU486 did not affect CFU burden or survival of mice. However there was a moderate rescue in the number of viable CD4+CD8+ thymocytes, with only a 3-4 fold drop as compared to the 8-10 fold drop in vehicle treated infected mice. III. As glucocorticoids appeared to play a partial role in this model, it was reasonable to assume that other pathways were also involved in the thymic atrophy. The quantitative and qualitative modulation of the cytokine milieu has a profound effect upon the thymus. In fact, inflammatory cytokines, Tnfα and Ifnγ, increased upon infection. In order to study the role of Ifnγ mediated inflammatory responses in this model, infection studies with Ifnγ-/- mice were performed. Ifnγ-/- mice had higher CFU and lower survival; however the drop in thymocyte numbers was 3-4 fold as compared to the 8-10 fold drop in the infected C57BL/6 mice, again indicating a partial involvement of the Ifnγ mediated pathways. In order to study the interactions, if any, between the two pathways mentioned above, corticosteroid signaling was blocked in the Ifnγ-/- mice with RU486. Upon infection, the number of CD4+CD8+ thymocytes was significantly higher in Ifnγ-/- mice treated with RU486 (~1.5 fold drop in viable thymocyte numbers) along with lower caspase 3 activity and mitochondrial damage. Importantly, cortisol amounts in infected Ifnγ-/- mice were comparable to those in infected C57BL/6 mice and the administration of RU486 did not modulate Tnfα and Ifnγ cytokine amounts in sera. Thus, the glucocorticoid and Ifnγ mediated pathways are parallel but synergize in an additive manner to induce death of CD4+CD8+ thymocytes during S. typhimurium nfection. IV. Although thymic atrophy is known to occur, a detailed characterization of cell surface changes in thymocyte populations has not been performed. To investigate this aspect, thymocytes and MLN cells from uninfected and infected animals were stained for cell surface expression of CD3, CD4, CD5, CD8, CD24, CD25, CD44, CD69, MHC I and MHC II. This analysis was initially performed by studying the changes in expression of these molecules within the total thymocyte and MLN populations. Although there was no change in the expression of CD25 and MHC II in the total thymocyte population upon infection, CD24 expression reduced, whereas, the expression of CD3, CD5, CD44, CD69 and MHC I increased. Notably, changes in the frequency of expression of CD3, CD69 and MHC I were observed before the development of extensive thymic atrophy. The depletion of majority of the CD4+CD8+ thymocytes enriches the mature CD4+ or CD8+ thymocyte population This was corroborated with the observation that, upon in vitro stimulation with PMA and Ionomycin (pharmacological agents used to activate T cells) the residual thymocytes from infected mice produced more IL2 compared to thymocytes from uninfected mice. Subsequently, cells were stained with anti-CD4-FITC, anti-CD8-PE and a third biotinylated antibody, which was detected by a streptavidin-APC conjugate, against one of the remaining six markers. This three colour analysis made it possible to determine the changes in the expression of the third marker in each of the CD4-CD8-, CD4+CD8+, CD4+ and CD8+ populations upon infection. Distinct differences were observed in the phenotypes of uninfected and infected CD4+CD8+ thymocytes and the latter were CD3high, CD5high, CD24low, CD69high and MHC Ihigh indicating that the surviving population had a possibly more mature phenotype. Also, the changes in the phenotypes of the thymocyte populations were dependent upon the extent of thymic atrophy as indicated by time course and CFU studies with C57BL/6 and BALB/c mice respectively. Finally, the roles of glucocorticoids, Ifnγ and Nos2 in modulation of expression of these markers during infection were addressed. Interestingly, the expression of CD3, CD24 and MHC class I significantly correlated with increase in the number of surviving thymocytes upon inhibition of glucocorticoids signaling and in Ifnγ-/- mice. The implications of these changes in the thymocyte surface phenotype during thymic atrophy are discussed. V. Finally, the roles of downstream signalling molecules in S. typhimurium induced thymic atrophy were studied. Although the MAP kinase family members, Erk, Jnk and p38 have been implicated to play a role in the positive and/or negative selection of thymocytes during development, their role in infection induced thymocyte depletion has not been studied. Interestingly, the amounts of Jnk and pJnk, but not p38, increased in thymocytes upon infection. Importantly, pJnk amounts increased predominantly in CD3-/low thymocytes during infection. Furthermore, inhibition of Jnk signalling, using a specific inhibitor SP600125, lead to an increase in survival of CD4+CD8+ thymocytes during infection due to multiple reasons: lowering of cortisol, Tnfα and Ifnγ amounts, and better maintenance of thymic architecture. Thus, inhibition of Jnk mediated signaling protected CD4+CD8+ and CD3-/low thymocytes from death during S. typhimurium infection. Overall, the main conclusions of this study are as follows: First, extensive analysis of the surface phenotype of cells during thymic atrophy throws light on the sensitive and resistant thymocyte populations, thus offering a potential predictive marker profile. Second, glucocorticoids, Ifnγ and, importantly, Jnk mediated signaling play functional roles in the death of immature CD4+CD8+ thymocytes during S. typhimurium infection. The mechanistic details uncovered in this study may be important in designing effective strategies for reducing thymic atrophy during other infections. In fact, enhancement of thymic output may lead to greater numbers and diversity of thymic T cell emigrants in the periphery which is likely to enhance host responses during infections.
99

Characterisation of a secreted immunogenic protein, phase-1 flagellin (FliC) of Salmonella enterica subspecies enterica Brandenburg : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Veterinary Microbiology at Massey University, Palmerston North, New Zealand

Perera, Kalyani January 2007 (has links)
Cell-envelope associated and secreted proteins of Salmonella are integral for host-pathogen interactions, and for the induction of protective immune responses. An array of exported proteins of S. Brandenburg was identified through constructing an expression library using alkaline phosphatase gene technology. A partial digest of S. Brandenburg strain S59 was cloned into the vector pJEM11, and expressed in E. coli. The DNA inserts from randomly selected alkaline phosphatase positive clones were sequenced, and the sequences were analysed using public databases to find the ones that may play a role in host immune cell activation. The phase-1 flagellin (fliC) gene identified from an alkaline phosphatase positive phenotype was chosen for further studies. The complete nucleic acid sequence of the fliC gene was obtained by PCR amplification. The complete ORF, part of the variable region (V456) and region IV (V4) of the fliC gene were cloned into the pET14b vector for the expression of N-terminal histidine-tagged fusion proteins. The proteins were purified through metal affinity chromatography, and were evaluated for their humoral immunogenic properties by Western blotting with sera collected from 81 sheep naturally infected with S. Brandenburg. All 81 naturally infected sheep had IgG antibodies against recombinant FliC, V456, and V4 proteins. Furthermore, Western blotting of sera from 6 salvexinTM+B-vaccinated sheep (Trial 2004) had IgG antibodies against the 3 recombinant proteins. Whole blood cells of vaccinated sheep did not show interferon-gamma production upon stimulation with recombinant FliC and V456 proteins. Western blotting of sera from sheep vaccinated with salvexinTM and salvexinTM+B (Trial 1999), and those from rabbits vaccinated with S. Brandenburg, S. Hindmarsh and S. Typhimurium suggested that recombinant V4 contains epitopes specific for S. Brandenburg. Therefore, V4 was used to develop a novel indirect enzyme-linked immunosorbent assay (ELISA) for the detection of serum IgG antibodies in S. Brandenburg infected sheep. The ELISA showed a specificity of 100%, and a sensitivity of 93.8%. Furthermore, a new PCR assay was developed targeting rfbJ(B) gene in a single reaction, and genes invA, fliC and fljB in a multiplex reaction for the identification of S. Brandenburg from pure cultures. The sensitivity and specificity of the PCR assay was calculated to be 100%.
100

Dynamics of the bacterial genome rates and mechanisms of mutation /

Koskiniemi, Sanna, January 2010 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2010.

Page generated in 0.0731 seconds