• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 29
  • 8
  • Tagged with
  • 74
  • 49
  • 44
  • 32
  • 19
  • 19
  • 19
  • 18
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

METAL COMPLEXES OF SCORPIONATE-LIKE POLYIMIDO SULPHUR PHOSPHANYL LIGANDS / Metallkomplexe Skorpionat-ähnlicher Polyimido-Schwefel-Phosphanyl Liganden

Meinholz, Margret 11 May 2011 (has links)
No description available.
62

A lithium–sulfur full cell with ultralong cycle life: influence of cathode structure and polysulfide additive

Thieme, Sören, Brückner, Jan, Meier, Andreas, Bauer, Ingolf, Gruber, Katharina, Kaspar, Jörg, Helmer, Alexandra, Althues, Holger, Schmuck, Martin, Kaskel, Stefan 19 December 2019 (has links)
Lithium–sulfur batteries are highly attractive energy storage systems, but suffer from structural anode and cathode degradation, capacity fade and fast cell failure (dry out). To address these issues, a carbide-derived carbon (DUT-107) featuring a high surface area (2088 m² g⁻¹), high total pore volume (3.17 cm³ g⁻¹) and hierarchical micro-, meso- and macropore structure is applied as a rigid scaffold for sulfur infiltration. The DUT-107/S cathodes combine excellent mechanical stability and high initial capacities (1098–1208 mA h gs ⁻¹) with high sulfur content (69.7 wt% per total electrode) and loading (2.3–2.9 mgs cm⁻²). Derived from the effect of the electrolyte-to-sulfur ratio on capacity retention and cyclability, conducting salt is substituted by polysulfide additive for reduced polysulfide leakage and capacity stabilization. Moreover, in a full cell model system using a prelithiated hard carbon anode, the performance of DUT-107/S cathodes is demonstrated over 4100 cycles (final capacity of 422 mA h gs ⁻¹), with a very low capacity decay of 0.0118% per cycle. Application of PS additive further boosts the performance (final capacity of 554 mA h gs ⁻¹), although a slightly higher decay of 0.0125% per cycle is observed.
63

Zur Degradation und Optimierung von nanostrukturierten Siliciumanoden in Lithium-Ionen- und Lithium-Schwefel-Batterien: Zur Degradation und Optimierung von nanostrukturierten Siliciumanoden in Lithium-Ionen- und Lithium-Schwefel-Batterien

Jaumann, Tony 28 November 2016 (has links)
Die vorliegende Arbeit liefert einen Beitrag für ein besseres Verständnis über die zyklische Alterung von Siliciumnanopartikel (Si-NP) als Anodenmaterial in Lithium-Ionen- und Lithium-Schwefel-Batterien. Im Fokus der Studie stand der Einfluss der Partikelgröße, des Elektrodendesigns und der Elektrolytzusammensetzung auf die elektrochemische Reversibilität des Siliciums zur Lithiumspeicherung. Über umfangreiche strukturelle Charakterisierungstechniken mittels Röntgenbeugung, Elektronenmikroskopie und der Röntgenphotoelektronenspektroskopie in Verbindung mit elektrochemischen Untersuchungsmethoden, konnten wesentliche Mechanismen zur Degradation aufgeklärt und die Funktion diverser Oberflächenverbindungen auf der Siliciumanode identifiziert werden. Als Hauptursache der Degradation von Si-NP mit einer Partikelgröße unter 20 nm konnte das Wachstum der Solid-Electrolyte-Interface (SEI) identifiziert werden. Pulverisierung und die Bildung neuer kristalliner Phasen kann ausgeschlossen werden. Es wurde ein kostengünstiges und flexibles Verfahren zur Herstellung eines nanostrukturierten Silicium-Kohlenstoff-Komposites entwickelt, welches unter optimierten Bedingungen eine spezifische Kapazität von 1280 mAh/g(Elektrode) und einen Kapazitätserhalt von 81 % über 500 Tiefentladungszyklen liefert. Es konnten erfolgreich hoch reversible Flächenkapazitäten von 5 mAh/cm^2 bei nur 4,4 mg/cm^2 Elektrodengewicht nachgewiesen werden. Für die Arbeit wurde zunächst ein Verfahren zur Herstellung von monodispersen Si-NP mit einer Größe von 5 nm – 20 nm angewendet. Die galvanostatische Zyklierung gegen Lithiummetall hat ergeben, dass mit abnehmender Partikelgröße die Reversibilität des Siliciums zunimmt. Über in situ Synchrotron XRD und post mortem XPS konnte eine stabilere Solid-Electrolyte-Interface (SEI) mit abnehmender Partikelgröße als Hauptursache identifiziert werden. Im weiteren Verlauf der Arbeit wurden Si-NP im porösen Kohlenstoffgerüst durch ein leicht modifiziertes Herstellungsverfahren abgeschieden und untersucht. Durch das veränderte Elektrodendesign konnte die Reversibilität bei gleichem Kohlenstoffgehalt deutlich verbessert werden, da der Kontaktverlust des Siliciums zum leitfähigen Gerüst durch SEI Wachstum verzögert wird. Die Elektrolytadditive Fluoroethylencarbonat und Vinylencarbonat führen zu einer weiteren Verbesserung der Reversibilität, wobei Vinylencarbonat die höchste Reversibilität zur Folge hat, jedoch einen hohen Filmwiderstand verursacht. Weiterhin wurden etherbasierte Elektrolyte, welche typischerweise in Lithium-Schwefel-Batterien zum Einsatz kommen, untersucht. Hierbei wurde eine positive Wirkung von Lithiumnitrat auf die Reversibilität von Silicium festgestellt. Es konnten erfolgreich Si-Li-S (SLS) Vollzellen getestet werden, welche eine höhere Lebensdauer als vergleichbare Zellen mit Lithiummetall als Anode aufweisen. Aus den elektrochemischen und post mortem Untersuchungen konnte ein positiver Einfluss von Polysulfiden auf die SEI von Silicium nachgewiesen werden. Durch die umfangreichen post mortem Analysen konnte die Funktion diverser, in der SEI des Siliciums auftretender Verbindungen in Abhängigkeit der Elektrolytzusammensetzung aufgeklärt werden. Es wurde ein anschaulicher Mechanismus des SEI Wachstums in Abhängigkeit des Elektrolyts erstellt. / The results of this work provide a better understanding about the cyclic aging of silicon nanoparticles (Si-NP) as anode material in Lithium-ion- and Lithium-sulfur batteries. Subject of investigation was the influence of particle size, electrode design and electrolyte composition on the electrochemical reversibility of Si-NP for lithium storage. The main characterization techniques used in this study were XRD, SEM, TEM and XPS combined with electrochemical analysis and in situ synchrotron XRD. Bare silicon nanoparticles ranging from 5 – 20 nm and silicon nanoparticles embedded within a porous carbon scaffold were prepared through a cost-effective and novel synthesis technique including the hydrolysis of trichlorosilane as feedstock. The dominant degradation mechanism of these silicon nanoparticles was identified to be the continuous growth the solid-electrolyte-interphase (SEI). Other phenomena such as pulverisation or new evolving crystalline phases are excluded. It was found that a reduction of the particle size from 20 nm to 5 nm increases the reversibility due to a thicker and therewith more stable SEI. The deposition of the silicon nanoparticles into a porous carbon scaffold caused a significant improvement of the reversibility at constant carbon content. The effect of the electrolyte additives Fluoroethylene carbonate and Vinylene carbonate was analysed in detail. Furthermore, typical electrolyte compositions used for lithium-sulfur-batteries were tested and studied. Si-Li-S (SLS) full cells were demonstrated which outperform conventional lithium-sulfur batteries in terms of life time. The systematic analysis and the rational optimization process of the particle size, electrode design and electrolyte composition allowed to provide a nanostructured silicon electrode with a specific capacity of up to 1280 mAh/g(Electrode) and 81 % capacity retention after 500 deep discharge cycles. Reversible areal capacities of 5 mAh/cm^2 at 4.4 mg/cm^2 electrode weight were demonstrated.
64

The atomic structure of the clean and adsorbate covered Ir(110) surface / Die atomare Struktur der reinen und adsorbatbedeckten Ir(110) Oberfläche

Kuntze, Jens 26 September 2000 (has links)
The adsorption and coadsorption of sulfur and oxygen on the Ir(110) surface was investigated by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES). The clean Ir(110) surface forms alternating (331) and (33-1) minifacets, resulting in a mesoscopically rippled surface. Upon chemisorption of sulfur or oxygen and subsequent annealing, the surface structure is changed. In the following, the results concerning sulfur and oxygen adsorption will be summarized before addressing the coadsorption system. Sulfur adsorption: At sulfur coverages of 0.1-0.2 ML, the Ir(110) surface adopts a (1x2) missing-row configuration similar to clean Au(110) and Pt(110). The sulfur-stabilized Ir(110)-(1x2) does not show any evidence for the preference of (111) faceted steps, and consequently does not form a mesoscopic fish-scale pattern. The latter was observed on the (110) surfaces of Au and Pt, and was found to be driven by the preference for (111) step facets. On Ir(110), no such preference seems to exist, since (331) step facets are frequently observed. With respect to the adsorbed sulfur, no extended islands are observed, indicating repulsive adsorbate-adsorbate interactions. At sulfur coverages near 0.5 ML, a p(2x2) structure with p2mg (glide-plane) symmetry is observed. The adsorption site and structural model derived by STM are compatible with an earlier LEED analysis of that structure: S adsorbs in threefold coordinated fcc hollow sites above the (111) facets formed by the non-missing substrate rows. At coverages higher than 0.5 ML, a c(2x4) LEED pattern with additional faint streaks in the [-110] azimuth is observed. STM reveals that the streaks are due to pairs of sulfur atoms (dimers, for brevity) in a second adsorbate layer, that can be desorbed by heating to 1100 K. A structural model is derived on the basis of the STM results, showing the dimer atoms in on-top positions over sulfur atoms of the first adsorbate layer. When the surface is completely covered by the dimers, the surface is saturated at 0.75 ML. Oxygen adsorption: In agreement with earlier reports, oxygen adsorption and subsequent annealing to 700-900 K results in an unreconstructed (1x1) surface, covered by a c(2x2)-O overlayer at 0.5 ML coverage. Coadsorption of oxygen on an S-precovered surface (S-coverage below 0.5 ML) leads to a phase separation of the adsorbates (competitive adsorption). At low coverages, oxygen forms a p(2x2)-O phase, whereas at higher O-coverages a compression into a (1x2)-O phase is observed. Postannealing the (1x2)-O phase at 900 K in vacuum leads to a reduction of the sulfur concentration, indicating sulfur oxidation. Interestingly, the p(2x2)-O phase does not seem to be reactive, according to the AES results. A possible explanation may be that the more densely packed (1x2)-O phase can be regarded as an activated structure. This is also supported by the STM results. At S-coverages above 0.5 ML, the surface is completely poisoned with respect to oxygen adsorption. Nevertheless, heating the sulfur saturated Ir(110)-c(2x4)-S structure in an oxygen atmosphere, the sulfur concentration gradually drops to zero. At intermediate stages of this oxidation process, island formation is observed by STM, but the underlying formation processes remain to be resolved.
65

Verwendung eines reaktiven Platin(0)-Biscarbenkomplexes in S-F-Bindungsaktivierungsreaktionen: Isolierung von Platin-Komplexen mit Schwefelfluorid- und Schwefeloxofluorid-Liganden

Dirican, Dilcan 17 April 2023 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Stabilisierung von SFx- (x = 2-3) und SOyFz-Liganden (y, z = 1-2) in der Koordinationssphäre von Platinkomplexen, die den N-heterozyklischen Carben- (NHC)-Liganden 1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolinyliden (IMes) besitzen. Die Synthese des SF3-Komplexes trans-[Pt(F)(SF3)(IMes)2] gelang durch Umsetzung von [Pt(IMes)2] mit SF4 oder SF6. Bei der SF6-Aktivierungsreaktion kam es zur Bildung von zusätzlichen fluorierten Nebenprodukten, welche durch den Vergleich mit den jeweiligen unabhängig synthetisierten Verbindungen charakterisiert wurden. Die starke Neigung zur Hydrolyse der SF3-Einheit bei Kontakt mit H2O führte zur Bildung von trans-[Pt(F)(SOF)(IMes)2]. Eine alternative Darstellung des S(=O)F-Komplexes konnte durch Umsatz von [Pt(IMes)2] mit SOF2 erreicht werden. Die S(=O)2F-Komplexe trans-[Pt(X)(SO2F)(IMes)2] (X = F, Cl) mit dem Schwefel in der formalen Oxidationsstufe IV wurden durch die Behandlung von [Pt(IMes)2] mit SO2F2 oder SO2ClF erhalten. Die Oxidation des S(=O)F- zum S(=O)2F-Liganden konnte durch Behandlung mit dem Oxygenierungsreagenz 3-Phenyl-2-(phenylsulfonyl)-oxaziridin (Oxaz) bewerkstelligt werden. Eine Oxidation und zugleich Fluorierung der S(=O)F-Einheit in trans-[Pt(F)(SOF)(IMes)2] wurde durch Behandlung mit XeF2 durchgeführt, wobei ein S(=O)F2-Ligand in trans-[Pt(F)(SOF2)(IMes)2]F(HF)n erhalten wurde. Reaktionen von trans-[Pt(F)(SF3)(IMes)2] mit der Lewis-Säure AsF5 oder einer HF-Quelle lässt die Generierung des SF2-Liganden als Teil der kationischen Komplexe trans-[Pt(F)(SF2)(IMes)2]X (X = F(HF)n-, As2F11-) zu. Eine vergleichbare Reaktivität wurde für trans-[Pt(F)(SO2F)(IMes)2] gefunden, wenn NaBArF4 (BArF4- = Tetrakis-[(3,5-trifluoromethyl)phenyl]borat) oder eine HF-Quelle eingesetzt wurden und infolge einer Fluoridabstraktion die Bildung eines SO2-Liganden in trans-[Pt(F)(SO2)(IMes)2]X (X = F(HF)n-, BArF4-) beobachtet wurde. / This work deals with the stabilisation of SFx- (x = 2-3) and SOyFz entities (y, z = 1-2) in the coordination sphere of platinum complexes bearing the N-heterocyclic carbene (NHC) ligand 1,3-bis(2,4,6-trimethylphenyl) 2-imidazolinylidine (IMes). The synthesis of the SF3 complex trans-[Pt(F)(SF3)(IMes)2] was achieved by converting [Pt(IMes)2] with SF4 or SF6. During the SF6 activation additional fluorinated by-products were formed that were characterised by the comparison with independently synthesised compounds. The strong tendency of the SF3 entity to hydrolyse in contact with H2O led to the formation of trans-[Pt(F)(SOF)(IMes)2]. An alternative synthesis of the S(=O)F complex was done by reaction of [Pt(IMes)2] with SOF2. The S(=O)2F complexes trans-[Pt(X)(SO2F)(IMes)2] (X = F, Cl) bearing sulfur ligands in the formal oxidation state IV were accessed by treatment of [Pt(IMes)2] with SO2F2 or SO2ClF. The oxidation of the S(=O)F to the S(=O)2F ligand was achieved by treatment with the oxygenating reagent 3-phenyl 2-(phenylsulfonyl) oxaziridine (Oxaz). An oxidation and fluorination of the S(=O)F group at the same time was done by treatment of trans-[Pt(F)(SOF)(IMes)2] with XeF2 to yield a S(=O)F2 ligand in trans-[Pt(F)(SOF2)(IMes)2]F(HF)n. Reactions of trans-[Pt(F)(SF3)(IMes)2] with the Lewis acid AsF5 or an HF source led to the generation of a SF2 ligand in trans-[Pt(F)(SF2)(IMes)2]X (X = F(HF)n-, As2F11-). A comparable reactivity was found for trans-[Pt(F)(SO2F)(IMes)2], when treated with NaBArF4 (BArF4- = tetrakis-[(3,5-trifluoromethyl)phenyl]borat) or an HF source to yield a SO2 ligand in trans-[Pt(F)(SO2)(IMes)2]X (X = F(HF)n-, BArF4-) by fluoride abstraction.
66

Nanostrukturierter Kohlenstoff durch Zwillingspolymerisation an Hart-Templaten

Böttger-Hiller, Falko 13 September 2012 (has links)
Gegenstand der vorliegenden Arbeit ist die Herstellung von nanostrukturierten Kohlenstoffen. Die Synthese erfolgt dabei durch die Zwillingspolymerisation der siliziumhaltigen Zwillingsmonomere 2,2’Spirobi[4H-1,3,2-benzodioxasilin] sowie Tetrafurfuryloxysilan. Die entstehenden Nanokomposite werden anschließend carbonisiert und das SiO2-Netzwerk herausgelöst. Die Zwillingsmonomere wurden dabei zunächst templatfrei umgesetzt, um Einflüsse verschiedener Reaktionsparameter auf die Eigenschaften der erhaltenen Kohlenstoffe zu evaluieren. Des Weiteren wurde studiert, wie sich die Zugabe von Hart-Templaten auf das Polymerisationsverhalten der Zwillingsmonomere, sowie die Porosität und Morphologie der daraus resultierenden Kohlenstoffe auswirkt. Für die Charakterisierung der nanostrukturierten Kohlenstoffe wurde vorwiegend auf Elektronenmikroskopie und Stickstoffsorptions-Experimente zurückgegriffen. Mit Hilfe der Zwillingspolymerisation an Hart-Templaten, wie SiO2-Partikeln, Glasfasern und ORMOCER®en konnte die Morphologie, Geometrie, Größe und Porentextur der Kohlenstoffe eingestellt und ein modulares Synthesekonzept für poröse, nanostrukturierte Kohlenstoffe entwickelt werden. Ferner wurden ausgewählte Kohlenstoffe auf Anwendung als Wasserstoffspeicher und Elektrodenmaterial in Lithium-Schwefel-Zellen getestet. In diesem Zusammenhang wurden die Thermogravimetrie, die Differenzkalorimetrie und Stickstoff-Sorptionsmessungen eingesetzt, um die Batterieeigenschaften in Zukunft ohne das Durchführen aufwendiger Zelltests zu prognostizieren.
67

Mehrlingspolymerisation in Substanz und an Oberflächen zur Synthese nanostrukturierter und poröser Materialien

Ebert, Thomas 12 December 2016 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von unterschiedlichen nanostrukturierten Hybridmaterialien ausgehend von nur einem Monomer. Dabei wird ein neuartiges Monomer vorgestellt, welches in einem Prozessschritt ein Hybridmaterial bestehend aus drei Polymeren bilden kann. Dies erweitert das Konzept der Zwillingspolymerisation, bei der zwei Polymere aus einem Monomer erhalten werden. Aus diesem Grund wurde der Überbegriff „Mehrlingspolymerisation“ für die Synthese von zwei oder mehr Polymeren aus nur einem Monomer eingeführt. Ein weiterer Schwerpunkt lag auf der gezielten Beschichtung verschiedener Partikeloberflächen mit nanostrukturierten Hybridmaterialien mittels Zwillingspolymerisation. Dabei wird der Einfluss der Oberfläche auf die Polymerisation verschiedener Zwillingsmonomere untersucht. Durch Nachbehandlung sind daraus poröse Kompositmaterialien zugänglich. Je nach Beständigkeit der Substrate sind diese in den Nachbehandlungsschritten stabil oder werden entfernt und dienen nur als Template zur Strukturierung der porösen Materialien. Es wurden unterschiedliche poröse Kohlenstoffe und Kohlenstoffkompositmaterialien hergestellt und charakterisiert. Ausgewählte Materialien wurden mit Schwefel verschmolzen und in Lithium-Schwefel-Zellen untersucht (Kooperation Dr. S. Choudhury, Leibniz-Institut für neue Materialien Saarbrücken). Die Charakterisierung der Proben erfolgte unter anderem mithilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, dynamischen Differenzkalorimetrie, Röntgenpulver-diffraktometrie, Infrarotspektroskopie, Raman-Spektroskopie, Thermogravimetrie und Stickstoffsorption.
68

Insights into the ATP-dependent reductive activation of the Corrinoid/Iron-Sulfur Protein of Carboxydothermus hydrogenoformans

Hennig, Sandra Elisabeth 19 June 2014 (has links)
Die Verknüpfung einer exergonischen mit einer endergonischen Reaktion zur Ermöglichung der letzteren ist eine in biologischen Systemen weit verbreitete Strategie. Energetisch benachteiligte Elektronenübertragungsreaktionen im Rahmen der reduktiven Aktivierung von Nitrogenasen, Radikal-abhängigen β,α-Dehydratasen, der zu diesen verwandten Benzoyl-CoA-Reduktasen und diversen Cobalamin-abhängigen Methyltransferasen sind gekoppelt an die Hydrolyse von ATP. Der Methylgruppentransfer des reduktiven Acetyl-CoA-Weges von Carboxydothermus hydrogenoformans erfordert den Co(I)-Zustand des Corrinoid/Eisen-Schwefel Proteins (CoFeSP). Um diese superreduzierte Form nach einer oxidativen Inaktivierung zu regenerieren ist ein „Reparaturmechanismus“ erforderlich. Ein offenes Leseraster (orf7), welches möglicherweise für eine reduktive Aktivase von Corrinoid Enzymen (RACE) kodiert, wurde in dem Gencluster der am reduktiven Acetyl-CoA-Weg beteiligten Proteine entdeckt. Im Rahmen dieser Arbeit wurde dieses potenzielle RACE Protein biochemisch und strukturell charakterisiert und die ATP-abhängige reduktive Aktivierung von CoFeSP untersucht. Auf Grundlage der in dieser Arbeit gewonnenen Ergebnisse wurde ein Mechanismus für die ATP-abhängige Aktivierung entworfen. Dieser gibt Einblicke wie die durch ATP-Hydrolyse bereitgestellte Energie einen energetisch ungünstigen Elektronentransfer ermöglichen kann. Hierzu kombiniert RACo das Ausgleichen von Bindungsenergien mit Modulationen am Elektronenakzeptor. Eine vergleichbare Strategie wurde bisher in keinem anderen ATP-abhängigen Elektronenübertragungssystem wie dem von Nitrogenasen, Radikal-abhängigen β,α-Dehydratasen oder Benzoyl-CoA-Reduktasen beobachtet und könnte ein für RACE Proteine allgemein gültige Eigenschaft darstellen. / The principle of coupling an exergonic to an endergonic reaction to enable the latter is a widespread strategy in biological systems. Unfavoured electron transfer reactions in the reductive activation of nitrogenases, radical-dependent β,α-dehydratases and the related benzoyl- CoA reductases, as well as different cobalamin-dependent methyltransferases are coupled to the hydrolysis of ATP. The reductive acetyl-CoA pathway of Carboxydothermus hydrogenoformans relies on the superreduced Co(I)-state of the corrinoid/iron-sulfur protein (CoFeSP) that requires a “repair mechanism” in case of incidental oxidation. An open reading frame (orf7) coding for a putative reductive activase of corrinoid enzymes (RACE) was discovered in the gene cluster of proteins involved in the reductive acetyl-CoA pathway. In this work, this putative RACE protein was biochemically and structurally characterised and the ATP-dependent reductive activation of CoFeSP was investigated. Based on the results of this study, a mechanism for the ATP-dependent reactivation of CoFeSP was deduced providing insights into how the energy provided by ATP could trigger this unfavourable electron transfer. The reductive activator of CoFeSP combines balance of binding energies and modulations of the electron acceptor to promote the uphill electron transfer to CoFeSP. A comparable strategy has not been observed in other ATP-dependent electron transfer systems like nitrogenases, radical-dependent β,α-dehydratases and benzoyl- CoA reductases and could be a universal feature of RACE proteins.
69

Die Analyse der Sauerstofftoleranz und biotechnologische Anwendung der NAD+-reduzierenden Hydrogenase aus Ralstonia eutropha H16

Lauterbach, Lars 30 May 2014 (has links)
Die NAD+-reduzierende Hydrogenase aus Ralstonia eutropha (SH) katalysiert die reversible H2-Oxidation in Verbindung mit der Reduktion von NAD+ in Gegenwart von Sauerstoff. Die bemerkenswerte O2-Toleranz des Enzyms wurde zuvor auf eine für [NiFe]-Hydrogenasen ungewöhnliche Struktur des Wasserstoff-spaltenden Zentrums zurückgeführt. Diese Hypothese wurde in dieser Arbeit mittels in situ-Spektroskopie an SH-haltigen Zellen widerlegt. Um die folgende Untersuchung der aus sechs Untereinheiten und mindestens acht Kofaktoren bestehenden SH zu erleichtern, wurde das Enzym mittels genetischer Methoden in seine beiden Module aufgeteilt. Das die H2-Oxidation katalysierende Hydrogenase-Modul beinhaltete ein FMN-Molekül, welches für die reduktive Reaktivierung des oxidativ modifizierten Zentrums benötigt wird. Das Diaphorase-Modul besaß ebenfalls ein FMN, und die Reduktion von NAD+ wurde von der Anwesenheit von O2 nicht beeinträchtigt. Neben Wasserstoff reagierte das [NiFe]-Zentrum der SH auch mit Sauerstoff. Dabei wurde sowohl Wasserstoffperoxid- als auch Wasser im Hydrogenase-Modul freigesetzt. Die Sauerstofftoleranz der SH basiert auf einer kontinuierlichen Reaktivierung des durch Sauerstoff oxidierten [NiFe]-Zentrums. Aufgrund der außergewöhnlichen Sauerstofftoleranz stellt die SH ein vielversprechendes System für die wasserstoffgetriebene Regeneration von NADH in gekoppelten enzymatischen Reaktionen dar. In dieser Arbeit wurde ein SH-Derivat durch rationale Mutagenese konstruiert, das in der Lage war, ebenso den Kofaktor NADP+ wasserstoffabhängig zu reduzieren. Durch Ganzzellansätze kann die zeitaufwändige und kostenintensive Proteinreinigung vermieden werden. Um die wasserstoffabhängige in-vivo-Kofaktorregeneration zu ermöglichen, wurde die SH in Pseudomonas putida heterolog produziert. Die in dieser Arbeit erzielten Ergebnisse sind sowohl für das molekulare Verständnis der H2-abhängigen Katalyse als auch für die biotechnologische Anwendung der O2-toleranten SH relevant. / The NAD+ reducing hydrogenase from Ralstonia eutropha (SH) catalyzes the reversible oxidation of hydrogen in connection with the reduction of NAD+ in the presence of oxygen. The remarkable oxygen tolerance was previously related to an unusual [NiFe] active site with four instead of two cyanide ligands. This hypothesis was rejected in this study by using in situ spectroscopy on SH containing cells. To simplify the investigation of the six-subunit and at least eight cofactors containing SH, the enzyme was separated into its two modules by genetic methods. The hydrogen oxidizing hydrogenase module contained one FMN molecule, which was required for the reductive reactivation of the oxidatively modified active site. The diaphorase module carried a second FMN. The reduction of NAD+ was not affected by the presence of oxygen. In addition to hydrogen, the [NiFe] center of the SH reacted with oxygen. Both hydrogen peroxide and water were released by the hydrogenase module. The oxygen tolerance of the SH is based on a continuous reactivation of the oxidized [NiFe] center. Due to the oxygen tolerance, the SH is a promising system for hydrogen based NADH regeneration in coupled enzymatic reactions. In this study a SH derivative was constructed by means of rational mutagenesis. The SH derivative was able to reduce the cofactor NADP+ by hydrogen oxidation. The time consuming and costly protein purification can be avoided by using whole cell approaches. In order to allow the hydrogen dependent in vivo cofactor regeneration, SH was heterologously produced in Pseudomonas putida. The results obtained in this study are relevant for the molecular understanding of hydrogen dependent catalysis and for the biotechnological application of the oxygen tolerant SH.
70

On Ternary Phases of the Systems RE–B–Q (RE = La – Nd, Sm, Gd – Lu, Y; Q = S, Se)

Borna, Marija 15 October 2012 (has links) (PDF)
It is known that boron containing compounds exhibit interesting chemical and physical properties. In the past 50 years modern preparative methods have led to an overwhelming number of different structures of novel and often unexpected boron–sulfur and boron–selenium compounds. Among all these new compounds, there was only one which comprises rare earth metal (RE), boron and heavier chalcogen, namely sulfur, the europium thioborate Eu[B2S4] [1]. Selenoborates of rare earth metals are hitherto unknown. On the other hand, rare earth oxoborates represent a well-known class of compounds [2] with a wide range of applications, especially in the field of optical materials. In addition, well-defined boron compounds containing the heavier group 16 elements are fairly difficult to prepare due to the high reactivity of in situ formed boron chalcogenides towards most container materials at elevated temperatures. The chalcogenoborates of the heavier chalcogens are sensitive against oxidation and hydrolysis and therefore have to be handled in an inert environment. Therefore, developing and optimization of preparative routes for the syntheses of pure and crystalline RE thio- and selenoborates was needed. In the course of this study, the application of different preparation routes, such as optimized high-temperature routes (HT), metathesis reactions and high-pressure high-temperature routes (Hp – HT), led to sixteen new rare earth thioborates. Their crystal structures were solved and/or refined from powder and single crystal X-ray diffraction data, while the local structure around rare earth metal was confirmed from the results of the EXAFS analyses. Quantum mechanical calculations were used within this work in order to investigate the arrangement of intrinsic vacancies on the boron sites in the crystal structures of rare earth thioborates. Thermal, magnetic and optical properties of these compounds are also discussed. The rare earth thioborates discovered during this work are the first examples of ternary thioborates containing trivalent cations. These compounds can be divided into two groups of isotypic compounds: the rare earth orthothioborates with general formula REIII[BS3] (RE = La – Nd, Sm, Gd and Tb) [3] and the rare earth thioborate sulfides with general formula REIII¦9B5S21, (RE = Gd – Lu, and Y) [4]. In the crystal structure of RE[BS3] (orthorhombic, space group Pna21, Z = 4), the sulfur atoms form the vertices of corrugated kagome nets, within which every second triangle is occupied by boron and the large hexagons are centered by RE cations. The structural features of the isotypic RE[BS3] phases show great similarities to those of rare earth oxoborates RE[BO3] and orthothioborates of alkali and alkaline earth metals as well as to thallium orthothioborate, yet pronounced differences are also observed: the [BS3]3– groups in the crystal structures of RE[BS3] are more distorted, where the distortion decreases with the decreasing size of the RE element, and the coordination environments of the [BS3]3– groups in the crystal structures of RE[BS3] are different in comparison with the coordination environments of the [BO3]3– groups in the crystal structures of λ-Nd[BO3] [5] and of o-Ce[BO3] [6]. The results of the IR and Raman investigations are in agreement with the presence of [BS3]3– anions in the crystal structure of RE[BS3]. Thermal analyses revealed the thermal stability of these compounds under inert conditions up to ~ 1200 K. Analyses of the magnetic properties of the Sm, Gd and Tb thioborates showed that both Gd and Tb phases order antiferromagnetically. The magnetic susceptibility for Sm orthothioborate approximately follows the Van-Vleck theory for Sm3+. Between 50 K and 62 K a transition appears which is independent of the magnetic field: the magnetic susceptibility becomes lower. This effect might indicate a discontinuous valence transition of Sm which was further investigated by means of XANES and X-ray diffraction using synchrotron radiation, both at low temperatures. The series of isotypic RE thioborate sulfides with composition RE9B5S21, was obtained by the application of Hp – HT conditions to starting mixtures with the initial chemical composition “REB3S6“, after careful optimization of the pressure, temperature and treatment time, as well as the composition of the starting mixtures. Their crystal structures adopt the Ce6Al3.33S14 [7] structure type (hexagonal, space group P63, Z = 2/3). The special features of the RE9B5S21 crystal structures, concerning boron site occupancies and different coordination environments of the two crystallographically independent boron sites, were investigated in more detail by means of quantum chemical calculations, electron diffraction methods, optical and X-ray absorption spectroscopy as well as by 11B NMR spectroscopy. The results obtained from these different experimental and computational methods are in good mutual agreement. The crystal structures of the RE9B5S21 compounds are characterized by two types of anions: tetrahedral [BS4]5– and trigonal planar [BS3]3– as well as [(S2–)3] units. Isolated [BS4]5– tetrahedra (all pointing with one of their apices along the polar [001] direction) represent a unique feature of the crystal structure which is observed for the first time in a thioborate compound. These tetrahedra are stacked along the three-fold rotation axes. Vacancies are located at the trigonal-planar coordinated boron site with preferred ordering –B–B––B–B–– along [001]. No superstructure is observed by means of electron diffraction methods as adjacent columns are shuffled along the c axis, giving rise to a randomly distributed vacancy pattern. Positions of the sulfur atoms within the [(S2–)3] substructure as well as planarity of the [BS3]3– units were investigated in more detail by means of quantum mechanical calculations. Results of the IR and Raman spectroscopy, as well as of the 11B NMR spectroscopy are in agreement with the presence of the boron atoms in two different coordination environments. Thermal analyses showed that compounds RE9B5S21 are stable under inert conditions up to ~ 1200 K. In accordance with the combined results of experimental and computational investigations, the chemical formula of the RE9B5S21 compounds is consistent with RE3[BS3]2[BS4]3S3. A short overview of investigations towards rare earth selenoborates, where in most of the cases only known binary rare earth selenides could be identified, is presented as well in this work. Investigations in the RE–B–Se systems were conducted by the application of different preparation routes by varying the experimental parameters and the initial compositions of the starting mixtures. Although no crystal structure of a ternary phase in these systems could be solved, there are indications that such phases exist, but further investigations are needed. [1] M. Döch, A. Hammerschmidt, B. Krebs, Z. Anorg. Allg. Chem., 2004, 630, 519. [2] H. Huppertz, Chem. Commun., 2011, 47, 131; and references therein. [3] J. Hunger, M. Borna, R. Kniep, J. Solid State Chem., 2010, 182, 702; J. Hunger, M. Borna, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 217; M. Borna, J. Hunger, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 223; M. Borna, J. Hunger, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 225. [4] M. Borna, J. Hunger, A. Ormeci, D. Zahn, U. Burkhardt, W. Carrillo-Cabrera, R. Cardoso-Gil, R. Kniep, J. Solid State Chem., 2011, 184, 296; [5] H. Müller-Bunz, T. Nikelski, Th. Schleid, Z. Naturforsch. B, 2003, 58, 375. [6] H. U. Bambauer, J. Weidelt, J.-St. Ysker, Z. Kristallogr., 1969, 130, 207. [7] D. de Saint-Giniez, P. Laruelle, J. Flahaut, C. R. Séances, Acad. Sci. Ser. C, 1968, 267, 1029.

Page generated in 0.0221 seconds