51 |
Reliability Investigations of MOSFETs using RF Small Signal CharacterizationChohan, Talha 18 September 2023 (has links)
Modern technology needs and advancements have introduced various new concepts such as Internet-of-Things, electric automotive, and Artificial intelligence. This implies an increased activity in the electronics domain of analog and high frequency. Silicon devices have emerged as a cost-effective solution for such diverse applications. As these silicon devices are pushed towards higher performance, there is a continuous need to improve fabrication, power efficiency, variability, and reliability. Often, a direct trade-off of higher performance is observed in the reliability of semiconductor devices. The acceleration-based methodologies used for reliability assessment are the adequate time-saving solution for the lifetime's extrapolation but come with uncertainty in accuracy. Thus, the efforts to improve the accuracy of reliability characterization methodologies run in parallel. This study highlights two goals that can be achieved by incorporating high-frequency characterization into the reliability characteristics. The first one is assessing high-frequency performance throughout the device's lifetime to facilitate an accurate description of device/circuit functionality for high-frequency applications. Secondly, to explore the potential of high-frequency characterization as the means of scanning reliability effects within devices. S-parameters served as the high-frequency device's response and mapped onto a small-signal model to analyze different components of a fully depleted silicon-on-insulator MOSFET. The studied devices are subjected to two important DC stress patterns, i.e., Bias temperature instability stress and hot carrier stress. The hot carrier stress, which inherently suffers from the self-heating effect, resulted in the transistor's geometry-dependent magnitudes of hot carrier degradation. It is shown that the incorporation of the thermal resistance model is mandatory for the investigation of hot carrier degradation. The property of direct translation of small-signal parameter degradation to DC parameter degradation is used to develop a new S-parameter based bias temperature instability characterization methodology. The changes in gate-related small-signal capacitances after hot carrier stress reveals a distinct signature due to local change of flat-band voltage. The measured effects of gate-related small-signal capacitances post-stress are validated through transient physics-based simulations in Sentaurus TCAD.:Abstract
Symbols
Acronyms
1 Introduction
2 Fundamentals
2.1 MOSFETs Scaling Trends and Challenges
2.1.1 Silicon on Insulator Technology
2.1.2 FDSOI Technology
2.2 Reliability of Semiconductor Devices
2.3 RF Reliability
2.4 MOSFET Degradation Mechanisms
2.4.1 Hot Carrier Degradation
2.4.2 Bias Temperature Instability
2.5 Self-heating
3 RF Characterization of fully-depleted Silicon on Insulator devices
3.1 Scattering Parameters
3.2 S-parameters Measurement Flow
3.2.1 Calibration
3.2.2 De-embedding
3.3 Small-Signal Model
3.3.1 Model Parameters Extraction
3.3.2 Transistor Figures of Merit
3.4 Characterization Results
4 Self-heating assessment in Multi-finger Devices
4.1 Self-heating Characterization Methodology
4.1.1 Output Conductance Frequency dependence
4.1.2 Temperature dependence of Drain Current
4.2 Thermal Resistance Behavior
4.2.1 Thermal Resistance Scaling with number of fingers
4.2.2 Thermal Resistance Scaling with finger spacing
4.2.3 Thermal Resistance Scaling with GateWidth
4.2.4 Thermal Resistance Scaling with Gate length
4.3 Thermal Resistance Model
4.4 Design for Thermal Resistance Optimization
5 Bias Temperature Instability Investigation
5.1 Impact of Bias Temperature Instability stress on Device Metrics
5.1.1 Experimental Details
5.1.2 DC Parameters Drift
5.1.3 RF Small-Signal Parameters Drift
5.2 S-parameter based on-the-fly Bias Temperature Instability Characterization Method
5.2.1 Measurement Methodology
5.2.2 Results and Discussion
6 Investigation of Hot-carrier Degradation
6.1 Impact of Hot-carrier stress on Device performance
6.1.1 DC Metrics Degradation
6.1.2 Impact on small-signal Parameters
6.2 Implications of Self-heating on Hot-carrier Degradation in n-MOSFETs
6.2.1 Inclusion of Thermal resistance in Hot-carrier Degradation modeling
6.2.2 Convolution of Bias Temperature Instability component in Hot-carrier Degradation
6.2.3 Effect of Source and Drain Placement in Multi-finger Layout
6.3 Vth turn-around effect in p-MOSFET
7 Deconvolution of Hot-carrier Degradation and Bias Temperature Instability using Scattering parameters
7.1 Small-Signal Parameter Signatures for Hot-carrier Degradation and Bias Temperature Instability
7.2 TCAD Dynamic Simulation of Defects
7.2.1 Fixed Charges
7.2.2 Interface Traps near Gate
7.2.3 Interface Traps near Spacer Region
7.2.4 Combination of Traps
7.2.5 Drain Series Resistance effect
7.2.6 DVth Correction
7.3 Empirical Modeling based deconvolution of Hot-carrier Degradation
8 Conclusion and Recommendations
8.1 General Conclusions
8.2 Recommendations for Future Work
A Directly measured S-parameters and extracted Y-parameters
B Device Dimensions for Thermal Resistance Modeling
C Frequency response of hot-carrier degradation (HCD)
D Localization Effect of Interface Traps
Bibliography
|
52 |
Recovery of Cycling Endurance Failure in Ferroelectric FETs by Self-HeatingMulaosmanovic, Halid, Breyer, Evelyn T., Mikolajick, Thomas, Slesazeck, Stefan 26 November 2021 (has links)
This letter investigates the impact of self-heating on the post-cycling functionality of a scaled hafnium oxide-based ferroelectric field-effect transistor (FeFET). The full recovery of FeFET switching properties and data retention after the cycling endurance failure is reported. This is achieved by damage annealing through localized heating, which is intentionally induced by a large current flow through the drain (source)-body p-n junctions. The results highlight that the local thermal treatments could be exploited to extend the cycling endurance of FeFETs.
|
53 |
Mathematical Analysis of Charge and Heat Flow in Organic Semiconductor DevicesLiero, Matthias 05 January 2023 (has links)
Organische Halbleiterbauelemente sind eine vielversprechende Technologie, die das Spektrum der optoelektronischen Halbleiterbauelemente erweitert und etablierte Technologien basierend auf anorganischen Halbleitermaterialien ersetzen kann. Für Display- und Beleuchtungsanwendungen werden sie z. B. als organische Leuchtdioden oder Transistoren verwendet. Eine entscheidende Eigenschaft organischer Halbleitermaterialien ist, dass die Ladungstransporteigenschaften stark von der Temperatur im Bauelement beeinflusst werden. Insbesondere nimmt die elektrische Leitfähigkeit mit der Temperatur zu, so dass Selbsterhitzungseffekte, einen großen Einfluss auf die Leistung der Bauelemente haben. Mit steigender Temperatur nimmt die elektrische Leitfähigkeit zu, was wiederum zu größeren Strömen führt. Dies führt jedoch zu noch höheren Temperaturen aufgrund von Joulescher Wärme oder Rekombinationswärme. Eine positive Rückkopplung liegt vor. Im schlimmsten Fall führt dieses Verhalten zum thermischen Durchgehen und zur Zerstörung des Bauteils. Aber auch ohne thermisches Durchgehen führen Selbsterhitzungseffekte zu interessanten nichtlinearen Phänomenen in organischen Bauelementen, wie z. B. die S-förmige Beziehung zwischen Strom und Spannung. In Regionen mit negativem differentiellen Widerstand führt eine Verringerung der Spannung über dem Bauelement zu einem Anstieg des Stroms durch das Bauelement. Diese Arbeit soll einen Beitrag zur mathematischen Modellierung, Analysis und numerischen Simulation von organischen Bauteilen leisten. Insbesondere wird das komplizierte Zusammenspiel zwischen dem Fluss von Ladungsträgern (Elektronen und Löchern) und Wärme diskutiert. Die zugrundeliegenden Modellgleichungen sind Thermistor- und Energie-Drift-Diffusion-Systeme. Die numerische Diskretisierung mit robusten hybriden Finite-Elemente-/Finite-Volumen-Methoden und Pfadverfolgungstechniken zur Erfassung der in Experimenten beobachteten S-förmigen Strom-Spannungs-Charakteristiken wird vorgestellt. / Organic semiconductor devices are a promising technology to extend the range of optoelectronic semiconductor devices and to some extent replace established technologies based on inorganic semiconductor materials. For display and lighting applications, they are used as organic light-emitting diodes (OLEDs) or transistors. One crucial property of organic semiconductor materials is that charge-transport properties are heavily influenced by the temperature in the device. In particular, the electrical conductivity increases with temperature, such that self-heating effects caused by the high electric fields and strong recombination have a potent impact on the performance of devices. With increasing temperature, the electrical conductivity rises, which in turn leads to larger currents. This, however, results in even higher temperatures due to Joule or recombination heat, leading to a feedback loop. In the worst case, this loop leads to thermal runaway and the complete destruction of the device. However, even without thermal runaway, self-heating effects give rise to interesting nonlinear phenomena in organic devices, like the S-shaped relation between current and voltage resulting in regions where a decrease in voltage across the device results in an increase in current through it, commonly denoted as regions of negative differential resistance. This thesis aims to contribute to the mathematical modeling, analysis, and numerical simulation of organic semiconductor devices. In particular, the complicated interplay between the flow of charge carriers (electrons and holes) and heat is discussed. The underlying model equations are of thermistor and energy-drift-diffusion type. Moreover, the numerical approximation using robust hybrid finite-element/finite-volume methods and path-following techniques for capturing the S-shaped current-voltage characteristics observed in experiments are discussed.
|
54 |
A Vertical C60 Transistor with a Permeable Base Electrode / Ein vertikaler C60-Transistor mit einer permeablen BasiselektrodeFischer, Axel 26 October 2015 (has links) (PDF)
A high performance vertical organic transistor based on the organic semiconductor C60 is developed in this work. The sandwich geometry of this transistor, well known from organic light-emitting diodes or organic solar cells, allows for a short transfer length of charge carriers in vertical direction. In comparison to conventional organic field-effect transistors with lateral current flow, much smaller channel lengths are reached, even if low resolution and low-cost shadow masks are used. As a result, the transistor operates at low voltages (1 V), drives current densities in the range of 10 A/cm², and enables a switching speed in the MHz range.
The operation mechanism is studied in detail. It is demonstrated that the transistor can be described by a nano-porous permeable base electrode insulated by a thin native aluminum oxide film on its surface. Thus, the transistor has to be understood as two metal-oxide-semiconductor diodes, sharing a common electrode, the base. Upon applying a bias to the base, charges accumulate in front of the oxide, similar to the channel formation in a field-effect transistor. Due to the increased conductivity in this region, charges are efficiently transported toward and through the pinholes of the base electrode, realizing a high charge carrier transmission. Thus, even a low concentration of openings in the base electrode is sufficient to ensure large transmission currents.
The device concept turns out to be ideal for applications where high transconductance and high operation frequency are needed, e.g. in analog amplifier circuits. The full potential of the transistor is obtained if the active area is structured by an insulating layer in order to perfectly align the three electrodes. Besides that, molecular doping near the charge injecting contact is essential to minimize the contact resistance.
Due to the high power density in the vertical C60 transistor, Joule self-heating occurs, which is discussed in this work in the context of organic semiconductors. The large activation energies of the electrical conductivity observed cause the presence of S-shaped current-voltage characteristics and result in thermal switching as well as negative differential resistances, as demonstrated for several two-terminal devices. A detailed understanding of these processes is important to determine restrictions and proceed with further optimizations. / In dieser Arbeit wird ein vertikaler organischer Transistor mit hoher Leistungsfähigkeit vorgestellt, der auf dem organischen Halbleiter C60 basiert. Die von organischen Leuchtdioden und organischen Solarzellen bekannte \'Sandwich’-Geometrie wird verwendet, so dass es möglich ist, für die vertikale Stromrichtung kurze Transferlängen der Ladungsträger zu erreichen. Im Vergleich zum konventionellen organischen Feldeffekttransistor mit lateralem Stromfluss werden dadurch viel kleinere Kanallängen erreicht, selbst wenn preisgünstige Schattenmasken mit geringer Auflösung für die thermische Verdampfung im Vakuum genutzt werden. Daher kann der Transistor bei einer Betriebsspannung von 1 V Stromdichten im Bereich von 10 A/cm² und Schaltgeschwindigkeiten im MHz-Bereich erreichen. Obwohl diese Technologie vielversprechend ist, fehlt bislang ein umfassendes Verständnis des Funktionsmechanismus.
Hier wird gezeigt, dass der Transistor eine nanoporöse Basiselektrode hat, die durch ein natives Oxid auf ihrer Oberfläche elektrisch isoliert ist. Daher kann das Bauelement als zwei Metall-Oxid-Halbleiter-Dioden verstanden werden, die sich eine gemeinsame Elektrode, die Basis, teilen. Unter Spannung akkumulieren Ladungsträger vor dem Oxid, ähnlich zur Ausbildung eines Ladungsträgerkanals im Feldeffekttransistor. Aufgrund der erhöhten Leitfähigkeit in dieser Region werden Ladungsträger effizient zu und durch die Öffnungen der Basis transportiert, was zu hohen Ladungsträgertransmissionen führt. Selbst bei einer geringen Konzentration von Löchern in der Basiselektrode werden so hohe Transmissionsströme erzielt.
Das Bauelementkonzept ist ideal für Anwendungen, in denen eine hohe Transkonduktanz und eine hohe Schaltgeschwindigkeit erreicht werden soll, z.B. in analogen Schaltkreisen, die kleine Signale verarbeiten. Das volle Potential des Transistors offenbart sich jedoch, wenn die aktive Fläche durch eine Isolatorschicht strukturiert wird, um den Überlapp der drei Elektroden zu optimieren, so dass Leckströme minimiert werden. Daneben ist die Dotierung der Molekülschichten am Emitter essentiell, um Kontaktwiderstände zu vermeiden.
Aufgrund der hohen Leistungsdichten in den vertikalen C60-Transistoren kommt es zur Selbsterwärmung, die in dieser Arbeit im Kontext organischen Halbleiter diskutiert wird. Die große Aktivierungsenergie der Leitfähigkeit führt zu S-förmigen Strom-Spannungs-Kennlinien und hat thermisches Umschalten sowie negative differentielle Widerstände zur Folge, was für verschiedene Bauelemente demonstriert wird. Ein detailliertes Verständnis dieser Prozesse ist wichtig, um Beschränkungen für Anwendungen zu erkennen und um entsprechende Verbesserungen einzuführen.
|
55 |
Device design and process integration for SiGeC and Si/SOI bipolar transistorsHaralson, Erik January 2004 (has links)
SiGe is a significant enabling technology for therealization of integrated circuits used in high performanceoptical networks and radio frequency applications. In order tocontinue to fulfill the demands for these applications, newmaterials and device structures are needed. This thesis focuseson new materials and their integration into heterojunctionbipolar transistor (HBT) structures as well as using devicesimulations to optimize and better understand the deviceoperation. Specifically, a SiGeC HBT platform was designed,fabricated, and electrically characterized. The platformfeatures a non-selectively grown epitaxial SiGeC base,in situdoped polysilicon emitter, nickel silicide,LOCOS isolation, and a minimum emitter width of 0.4 μm.Alternately, a selective epitaxy growth in an oxide window wasused to form the collector and isolation regions. Thetransistors exhibited cutoff frequency (fT) and maximum frequency of oscillation (fMAX) of 40-80 GHz and 15-45 GHz, respectively.Lateral design rules allowed the investigation of behavior suchas transient enhanced diffusion, leakage current, and theinfluence of parasitics such as base resistance and CBC. The formation of nickel silicide on polysiliconSiGe and SiGeC films was also investigated. The formation ofthe low resistivity monosilicide phase was shown to occur athigher temperatures on SiGeC than on SiGe. The stability of themonosilicide was also shown to improve for SiGeC. Nickelsilicide was then integrated into a SiGeC HBT featuring aselectively grown collector. A novel, fully silicided extrinsicbase contact was demonstrated along with the simultaneousformation of NiSi on thein situdoped polysilicon emitter. High-resolution x-ray diffraction (HRXRD) was used toinvestigate the growth and stability of SiGeC base layers forHBT integration. HRXRD proved to be an effective, fast,non-destructive tool for monitoring carbon out-diffusion due tothe dopant activation anneal for different temperatures as wellas for inline process monitoring of epitaxial growth of SiGeClayers. The stability of the SiGe layer with 0.2-0.4 at% carbonwhen subjected to dopant activation anneals ranging from1020-1100&#176C was analyzed by reciprocal lattice mapping.It was found that as the substitutional carbon increases theformation of boron clusters due to diffusion is suppressed, buta higher density of carbon clusters is formed. Device simulations were performed to optimize the DC and HFperformance of an advanced SiGeC HBT structure with low baseresistance and small dimension emitter widths. The selectivelyimplanted collector (SIC) was studied using a design ofexperiments (DOE) method. For small dimensions the lateralimplantation straggle has a significant influence on the SICprofile (width). A significant influence of the SIC width onthe DC gain was observed. The optimized structure showedbalanced fT/fMAXvalues of 200+ GHz. Finally, SOI BJT transistorswith deep trench isolation were fabricated in a 0.25μmBiCMOS process and self-heating effects were characterized andcompared to transistors on bulk silicon featuring deep trenchand shallow trench isolation. Device simulations based on SEMcross-sections and SIMS data were performed and the resultscompared to the fabricated transistors. Key words:Silicon-Germanium(SiGe), SiGeC,heterojunction bipolar transistor(HBT), nickel silicide,selectively implanted collector(SIC), device simulation, SiGeClayer stability, high resolution x-ray diffraction(HRXRD),silicon-on-insulator(SOI), self-heating.
|
56 |
Device design and process integration for SiGeC and Si/SOI bipolar transistorsHaralson, Erik January 2004 (has links)
<p>SiGe is a significant enabling technology for therealization of integrated circuits used in high performanceoptical networks and radio frequency applications. In order tocontinue to fulfill the demands for these applications, newmaterials and device structures are needed. This thesis focuseson new materials and their integration into heterojunctionbipolar transistor (HBT) structures as well as using devicesimulations to optimize and better understand the deviceoperation. Specifically, a SiGeC HBT platform was designed,fabricated, and electrically characterized. The platformfeatures a non-selectively grown epitaxial SiGeC base,<i>in situ</i>doped polysilicon emitter, nickel silicide,LOCOS isolation, and a minimum emitter width of 0.4 μm.Alternately, a selective epitaxy growth in an oxide window wasused to form the collector and isolation regions. Thetransistors exhibited cutoff frequency (f<sub>T</sub>) and maximum frequency of oscillation (f<sub>MAX</sub>) of 40-80 GHz and 15-45 GHz, respectively.Lateral design rules allowed the investigation of behavior suchas transient enhanced diffusion, leakage current, and theinfluence of parasitics such as base resistance and C<sub>BC</sub>. The formation of nickel silicide on polysiliconSiGe and SiGeC films was also investigated. The formation ofthe low resistivity monosilicide phase was shown to occur athigher temperatures on SiGeC than on SiGe. The stability of themonosilicide was also shown to improve for SiGeC. Nickelsilicide was then integrated into a SiGeC HBT featuring aselectively grown collector. A novel, fully silicided extrinsicbase contact was demonstrated along with the simultaneousformation of NiSi on the<i>in situ</i>doped polysilicon emitter.</p><p>High-resolution x-ray diffraction (HRXRD) was used toinvestigate the growth and stability of SiGeC base layers forHBT integration. HRXRD proved to be an effective, fast,non-destructive tool for monitoring carbon out-diffusion due tothe dopant activation anneal for different temperatures as wellas for inline process monitoring of epitaxial growth of SiGeClayers. The stability of the SiGe layer with 0.2-0.4 at% carbonwhen subjected to dopant activation anneals ranging from1020-1100°C was analyzed by reciprocal lattice mapping.It was found that as the substitutional carbon increases theformation of boron clusters due to diffusion is suppressed, buta higher density of carbon clusters is formed.</p><p>Device simulations were performed to optimize the DC and HFperformance of an advanced SiGeC HBT structure with low baseresistance and small dimension emitter widths. The selectivelyimplanted collector (SIC) was studied using a design ofexperiments (DOE) method. For small dimensions the lateralimplantation straggle has a significant influence on the SICprofile (width). A significant influence of the SIC width onthe DC gain was observed. The optimized structure showedbalanced f<sub>T</sub>/f<sub>MAX</sub>values of 200+ GHz. Finally, SOI BJT transistorswith deep trench isolation were fabricated in a 0.25μmBiCMOS process and self-heating effects were characterized andcompared to transistors on bulk silicon featuring deep trenchand shallow trench isolation. Device simulations based on SEMcross-sections and SIMS data were performed and the resultscompared to the fabricated transistors.</p><p><b>Key words:</b>Silicon-Germanium(SiGe), SiGeC,heterojunction bipolar transistor(HBT), nickel silicide,selectively implanted collector(SIC), device simulation, SiGeClayer stability, high resolution x-ray diffraction(HRXRD),silicon-on-insulator(SOI), self-heating.</p>
|
57 |
Investigation of self-heating and macroscopic built-in polarization effects on the performance of III-V nitride devicesVenkatachalam, Anusha 06 July 2009 (has links)
The effect of hot phonons and the influence of macroscopic polarization-induced built-in fields on the performance of III-V nitride devices are investigated. Self-heating due to hot phonons is analyzed in AlGaN/GaN high electron mobility transistors (HEMTs). Thermal transport by acoustic phonons in the diffusive limit is modeled using a two-dimensional lattice heat equation. The effect of macroscopic polarization charges on the operation of blue and green InGaN-based quantum well structures is presented. To characterize these structures, the electronic part of the two-dimensional quantum well laser simulator MINILASE is extended to include nitride bandstructure and material models. A six-band k.p theory for strained wurtzite materials is used to compute the valence subbands. Spontaneous and piezoelectric polarization charges at the interfaces are included in the calculations, and their effects on the device performance are described. Additionally, k.p Hamiltonian for crystal growth directions that minimize the polarization-induced built-in fields are modeled, and valence band dispersion for the non-polar and semi-polar planes are also calculated. Finally, a design parameter subspace is explored to suggest epitaxial layer structures which maximize gain spectral density at a target wavelength for green InxGa1-xN-based single quantum well active regions. The dependence of the fundamental optical transition energy on the thickness and composition of barriers and wells is discussed, and the sensitivity of gain spectral density to design parameters, including the choice of buffer layer material, is investigated.
|
58 |
Characterization and modeling of phase-change memories / Characterization and modeling of Phase-Change MemoriesBetti Beneventi, Giovanni 14 October 2011 (has links)
La thèse de Giovanni BETTI BENEVENTI portes sur la caractérisation électrique et la modélisationphysique de dispositifs de mémoire non-volatile à changement de phase. Cette thèse a été effectuée dans le cadre d’une cotutelle avec l’Università degli Studi di Modena e Reggio Emilia (Italie).Le manuscrit en anglais comporte quatre chapitres précédés d’une introduction et terminés par uneconclusion générale.Le premier chapitre présent un résumé concernant l’état de l’art des mémoires a changement de phase. Le deuxième chapitre est consacré aux résultats de caractérisation matériau et électrique obtenus sur déposition blanket et dispositifs de mémoire à changement de phase (PCM) basées sur le nouveau matériau GeTe dopé carbone (GeTeC).Le chapitre trois s’intéresse à l’implémentation et à la caractérisation expérimentale d’un setup demesure de bruit a basse fréquence sur dispositifs électroniques a deux terminaux développé auxlaboratoires de l’Università degli Studi di Modena e Reggio Emilia en Italie.Enfin, dans le dernier chapitre est présentée une analyse rigoureuse de l’effet d’auto-chauffage Joulesur la caractéristique I-V des mémoires a changement de phase intégrant le matériau dans la phase polycristalline. / Within this Ph.D. thesis work new topics in the field of Non-Volatile Memories technologies have been investigated, with special emphasis on the study of novel materials to be integrated in Phase-Change Memory (PCM) devices, namely:(a) Investigation of new phase-change materialsWe have fabricated PCM devices integrating a novel chalcogenide material: Carbon-doped GeTe (or simply, GeTeC). We have shown that C doping leads to very good data retention performances: PCM cells integrating GeTeC10% can guarantee a 10 years fail temperature of about 127°C, compared to the 85°C of GST. Furthermore, C doping reduces also fail time dispersion. Then our analysis has pointed out the reduction of both RESET current and power for increasing carbon content. In particular, GeTeC10% PCM devices yield about a 30% of RESET current reduction in comparison to GST and GeTe ones, corresponding to about 50% of RESET energy decrease.Then, resistance window and programming time of GeTeC devices are comparable to those of GST.(b) Advanced electrical characterization techniquesWe have implemented, characterized and modeled a measurement setup for low-frequency noise characterization on two-terminal semiconductor devices.(c) Modeling for comprehension of physical phenomenaWe have studied the impact of Self-induced Joule-Heating (SJH) effect on the I-V characteristics of fcc polycrystalline-GST-based PCM cells in the memory readout region. The investigation has been carried out by means of electrical characterization and electro-thermal simulations.
|
59 |
Phenomena occurring during cyclic loading and fatigue tests on bituminous materials : Identification and quantification / Phénomènes apparaissant dans les matériaux bitumineux lors de chargements cycliques et d’essais de fatigue : Identification et quantificationBabadopulos, Lucas 15 September 2017 (has links)
La fatigue est un des principaux mécanismes de dégradation des chaussées. En laboratoire, la fatigue est simulée en utilisant des essais de chargement cyclique, généralement sans période de repos. L’évolution du module complexe (une propriété du matériau utilisée dans la caractérisation de la rigidité des matériaux viscoélastiques) est suivie de manière à caractériser l’endommagement. Son changement est généralement interprété comme étant dû au dommage, alors que d’autres phénomènes (se distinguant du dommage par leur réversibilité) apparaissent. Des effets transitoires, propres aux matériaux viscoélastiques, apparaissent lors des tout premiers cycles (2 ou 3) et produisent une erreur dans la détermination du module complexe. La non-linéarité (dépendance du module complexe avec le niveau de déformation) est caractérisée par une diminution réversible instantanée du module et une augmentation de l’angle de phase qui est observée avec l’augmentation de l’amplitude de déformation. De plus, pendant le chargement, de l’énergie mécanique est dissipée en raison du caractère visqueux du comportement du matériau. Cette énergie se transforme principalement en chaleur ce qui induit une augmentation de température. Cela produit une diminution de module liée à cet auto-échauffement. Quand le matériau revient à la température initiale, le module initial est alors retrouvé. La partie restante du changement de module peut être expliquée, d’une part par un autre phénomène réversible, appelé dans la littérature « thixotropie », et d’autre part par le dommage « réel », qui est irréversible. Cette thèse explore ces phénomènes dans les bitumes, mastics (bitume mélangé avec des particules fines, dont le diamètre est inférieur à 80μm) et enrobés bitumineux. Un chapitre (sur la nonlinearité) présente des essais de « balayage d’amplitude de déformation » avec augmentation ou/et diminution des amplitudes sont présentés. Un autre se concentre sur l’auto-échauffement. Il comprend une proposition de procédures de modélisation dont les résultats sont comparés avec des résultats des cycles initiaux d’essais de fatigue. Finalement, un chapitre est dédié à l’analyse du module complexe mesuré pendant le chargement et les phases de repos. Des essais de chargement et repos ont été réalisés sur bitume (où le phénomène de thixotropie est supposé avoir lieu) et mastic, de manière à déterminer l’effet de chacun des phénomènes identifiés sur l’évolution du module complexe des matériaux testés. Les résultats de l’étude sur la nonlinearité suggèrent que son effet vient principalement du comportement non linéaire du bitume, qui est déformé de manière très non-homogène dans les enrobés bitumineux. Il est démontré qu’un modèle de calcul thermomécanique simplifié de l’échauffement local, ne considérant aucune diffusion de chaleur, peut expliquer le changement initial de module complexe observé au cours des essais cycliques sur enrobés. Néanmoins, la modélisation de la diffusion de chaleur a démontré que cette diffusion est excessivement rapide. Cela indique que la distribution de l’augmentation de température nécessaire pour expliquer complètement le module complexe observé ne peut pas être atteinte. Un autre phénomène réversible, qui a des effets sur le module complexe similaires à ceux d’un changement de température, doit donc avoir lieu. Ce phénomène est considéré être de la thixotropie. Finalement, à partir des essais de chargement et repos, il est démontré qu’une partie majeure du changement de module complexe au cours des essais cycliques vient des processus réversibles. Le dommage se cumule de manière approximativement linéaire par rapport au nombre de cycles. Le phénomène de thixotropie semble partager la même direction sur l’espace complexe que la nonlinéarité. Cela indique que les deux phénomènes sont possiblement liés par la même origine microstructurelle. Des travaux supplémentaires sur le phénomène de thixotropie sont nécessaires. / Fatigue is a main pavement distress. In laboratory, fatigue is simulated using cyclic loading tests, usually without rest periods. Complex modulus (a material stiffness property used in viscoelastic materials characterisation) evolution is monitored, in order to characterise damage evolution. Its change is generally interpreted as damage, whereas other phenomena (distinguishable from damage by their reversibility) occur. Transient effects, proper to viscoelastic materials, occur during the very initial cycles (2 or 3) and induce an error in the measurement of complex modulus. Nonlinearity (strain-dependence of the material’s mechanical behaviour) is characterised by an instantaneous reversible modulus decrease and phase angle increase observed when strain amplitude increases. Moreover, during loading, mechanical energy is dissipated due to the viscous aspect of material behaviour. This energy turns mainly into heat and produces a temperature increase. This produces a modulus decrease due to self-heating. When the material is allowed to cool back to its initial temperature, initial modulus is recovered. The remaining stiffness change can be explained partly by another reversible phenomenon, called in the literature “thixotropy”, and, then, by the “real” damage, which is irreversible. This thesis investigates these phenomena in bitumen, mastic (bitumen mixed with fine particles, whose diameter is smaller than 80μm) and bituminous mixtures. One chapter (on nonlinearity) presents increasing and/or decreasing strain amplitude sweep tests. Another one focuses on selfheating. It includes a proposition of modelling procedures whose results are compared with the initial cycles from fatigue tests. Finally, a chapter is dedicated to the analysis of the measured complex modulus during both loading and rest periods. Loading and rest periods tests were performed on bitumen (where the phenomenon of thixotropy is supposed to happen) and mastic in order to determine the effect of each of the identified phenomena on the complex modulus evolution of the tested materials. Results from the nonlinearity investigation suggest that its effect comes primarily from the nonlinear behaviour of the bitumen, which is very non-homogeneously strained in the bituminous mixtures. It was demonstrated that a simplified thermomechanical model for the calculation of local selfheating (non-uniform temperature increase distribution), considering no heat diffusion, could explain the initial complex modulus change observed during cyclic tests on bituminous mixtures. However, heat diffusion modelling demonstrated that this diffusion is excessively fast. This indicates that the temperature increase distribution necessary to completely explain the observed complex modulus decrease cannot be reached. Another reversible phenomenon, which has effects on complex modulus similar to the ones of a temperature change, needs to occur. That phenomenon is hypothesised as thixotropy. Finally, from the loading and rest periods tests, it was demonstrated that a major part of the complex modulus change during cyclic loading comes from the reversible processes. Damage was xivfound to cumulate in an approximately linear rate with respect to the number of cycles. The thixotropy phenomenon seems to share the same direction in complex space as the one of nonlinearity. This indicates that both phenomena are possibly linked by the same microstructural origin. Further research on the thixotropy phenomenon is needed.
|
60 |
Caractérisation et modélisation des propriétés à la fatigue à grand nombre de cycles des aciers cémentés à partir d'essais d'auto-échauffement sous sollicitations cycliques / Characterization and model of high cycle fatigue of carburizing steel with self-heating measurement under cyclic loadGraux, Nicolas 24 November 2017 (has links)
Le dimensionnement en fatigue à grand nombre de cycles d'un contact roulant entre des éléments ayant subi un traitement thermochimique de cémentation s'avère rapidement complexe.D'une part le traitement de cémentation apporte une hétérogénéité de propriété dans les couches supérieures de la pièce qui dépend du protocole utilisé. D'autre part le chargement de contact roulant est un chargement complexe dont le mode de défaillance en fatigue s'initie en sous-couche.Afin de limiter le temps de la caractérisation des champs de propriétés en fatigue, l'utilisation des mesures d'auto-échauffement sous sollicitation cyclique ainsi que leur interprétation par un modèle probabiliste à deux échelles est proposé. Néanmoins de par l'hétérogénéité du matériau et de par la particularité du chargement il peut s'avérer délicat d'appliquer une telle méthode d'évaluation. ll est alors proposé d'explorer ces deux difficultés de manière séparé.Pour prendre en compte l'hétérogénéité matériaux, un protocole d'analyse de courbe d'auto-échauffement basé sur une variante d'un modèle probabiliste à deux échelles et sur les mesures de taux de carbone a été proposé. Les paramètres du modèle ont été identifiés sur une classe d'acier via des mesures d'auto-échauffement réalisées sur des éprouvettes représentatives de l'hétérogénéité du au traitement de cémentation. Enfin le modèle a été validé par comparaison avec des points de fatigue expérimentaux.En ce qui concerne le chargement de contact roulant, les difficultés pour réaliser une mesure d'auto-échauffement ont mené à effectuer une première campagne de mesure sur le cas intermédiaire du contact répété. A l'aide d'un modèle analytique simple, l'évolution du champ de température a pu être reliée à un terme source de chaleur moyen dont le lien avec les mécanismes de fatigue reste à démontrer. Finalement, des prototypes de machine de contact roulant dédiés aux mesures d'auto-échauffement ont été proposés. Les mesures réalisées sur ces dernières et leur interprétation laissent à penser qu'il sera possible d'identifier des propriétés de fatigue à partir de mesure d'auto-échauffement. / The rolling contact fatigue prediction between two carburizing part quickly becomes complex.On one hand, the carburizing treatment give heterogeneous properties in surface layer depending on the treatment protocol. On the other hand, the rolling contact load is a complex load with a fatigue initiation in the sub-layer. To limit the duration of the field fatigue properties characterization, self-heating measurements under cycle load are used and their interpretation by a probabilistic two scales model is proposed. Nevertheless applying this fatigue evaluation method on heterogeneous material and for rolling contact load can be difficult. ln first approach those difficulties are split.To take into account the material heterogeneity, an analysis based on a variation of one probabilistic two scales model and on carbon rate measurement is proposed. Model parameters are identified on one steel class with self-heating measurement made on specimens representative of carburizing material heterogeneity. Finally the model is validated by comparison with experimental fatigue point.Making self-heating measurement for rolling contact load is complex. Consequently a first self-heating measurement campaign is made on the intermediary case of repeated contact. With a simple analytic model, the temperature field evolution can be linked to a mean heat source whose link with fatigue mechanism must be proven. Finally, rolling contact machine prototypes are proposed. Self-heating measurement made on those prototypes and their interpretation suggest that it will be possible to identify fatigue properties with self-heating measurement.
|
Page generated in 0.0411 seconds