Spelling suggestions: "subject:"bingle every effects"" "subject:"bringle every effects""
11 |
Silicon-germanium BiCMOS device and circuit design for extreme environment applicationsDiestelhorst, Ryan M. 08 April 2009 (has links)
Silicon-germanium (SiGe) BiCMOS technology platforms have proven invaluable for implementing a wide variety of digital, RF, and mixed-signal applications in extreme environments such as space, where maintaining high levels of performance in the presence of low temperatures and background radiation is paramount. This work will focus on the investigation of the total-dose radiation tolerance of a third generation complementary SiGe:C BiCMOS technology platform. Tolerance will be quantified under proton and X-ray radiation sources for both the npn and pnp HBT, as well as for an operational amplifier built with these devices. Furthermore, a technique known as junction isolation radiation hardening will be proposed and tested with the goal of improving the SEE sensitivity of the npn in this platform by reducing the charge collected by the subcollector in the event of a direct ion strike. To the author's knowledge, this work presents the first design and measurement results for this form of RHBD.
|
12 |
Developing radiation hardening by design methodologies for single event mitigation in silicon-germanium bicmos technologiesPhillips, Stanley D. 08 July 2009 (has links)
Extreme environment applications impose stringent demands on technology platforms that are incorporated in electronic systems. Space is a classic extreme environment, encompassing both large temperature fluctuations as well as intense radiation fields. Silicon-germanium technology has emerged as a competitive platform for space-based applications, owing to its excellent low-temperature performance and total ionizing dose tolerance. This technology has however been repeatedly shown to be vulnerable to single event phenomena induced by galactic cosmic rays as well as trapped particles within the earth's geomagnetic field. To improve the radiation tolerance of systems incorporating SiGe components, modifications to fabrications steps (Radiation Hardening by Process, RHBP) and/or device/circuit topologies (Radiation Hardening by Design, RHBD) may be employed. For this thesis, two methodologies are analyzed, both RHBD techniques which come at no additional power/area penalty for implementation.
|
13 |
Selective software-implemented hardware fault tolerance tecnhiques to detect soft errors in processors with reduced overhead / Técnicas seletivas de tolerência a falhas em software com custo reduzido para detectar erros causados por falhas transientes em processadoresChielle, Eduardo January 2016 (has links)
A utilização de técnicas de tolerância a falhas em software é uma forma de baixo custo para proteger processadores contra soft errors. Contudo, elas causam aumento no tempo de execução e utilização de memória. Em consequência disso, o consumo de energia também aumenta. Sistemas que operam com restrição de tempo ou energia podem ficar impossibilitados de utilizar tais técnicas. Por esse motivo, este trabalho propoe técnicas de tolerância a falhas em software com custos no desempenho e memória reduzidos e cobertura de falhas similar a técnicas presentes na literatura. Como detecção é menos custoso que correção, este trabalho foca em técnicas de detecção. Primeiramente, um conjunto de técnicas de dados baseadas em regras de generalização, chamada VAR, é apresentada. As técnicas são baseadas nesse conjunto generalizado de regras para permitir uma investigação exaustiva, em termos de confiabilidade e custos, de diferentes variações de técnicas. As regras definem como a técnica duplica o código e insere verificadores. Cada técnica usa um diferente conjunto de regras. Então, uma técnica de controle, chamada SETA, é introduzida. Comparando SETA com uma técnica estado-da-arte, SETA é 11.0% mais rápida e ocupa 10.3% menos posições de memória. As técnicas de dados mais promissoras são combinadas com a técnica de controle com o objetivo de proteger tanto os dados quanto o fluxo de controle da aplicação alvo. Para reduzir ainda mais os custos, métodos para aplicar seletivamente as técnicas propostas foram desenvolvidos. Para técnica de dados, em vez de proteger todos os registradores, somente um conjunto de registradores selecionados é protegido. O conjunto é selecionado com base em uma métrica que analisa o código e classifica os registradores por sua criticalidade. Para técnicas de controle, há duas abordagens: (1) remover verificadores de blocos básicos, e (2) seletivamente proteger blocos básicos. As técnicas e suas versões seletivas são avaliadas em termos de tempo de execução, tamanho do código, cobertura de falhas, e o Mean Work to Failure (MWTF), o qual é uma métrica que mede o compromisso entre cobertura de falhas e tempo de execução. Resultados mostram redução dos custos sem diminuição da cobertura de falhas, e para uma pequena redução na cobertura de falhas foi possível significativamente reduzir os custos. Por fim, uma vez que a avaliação de todas as possíveis combinações utilizando métodos seletivos toma muito tempo, este trabalho utiliza um método para extrapolar os resultados obtidos por simulação com o objetivo de encontrar os melhores parâmetros para a proteção seletiva e combinada de técnicas de dados e de controle que melhorem o compromisso entre confiabilidade e custos. / Software-based fault tolerance techniques are a low-cost way to protect processors against soft errors. However, they introduce significant overheads to the execution time and code size, which consequently increases the energy consumption. System operation with time or energy restrictions may not be able to make use of these techniques. For this reason, this work proposes software-based fault tolerance techniques with lower overheads and similar fault coverage to state-of-the-art software techniques. Once detection is less costly than correction, the work focuses on software-based detection techniques. Firstly, a set of data-flow techniques called VAR is proposed. The techniques are based on general building rules to allow an exhaustive assessment, in terms of reliability and overheads, of different technique variations. The rules define how the technique duplicates the code and insert checkers. Each technique uses a different set of rules. Then, a control-flow technique called SETA (Software-only Error-detection Technique using Assertions) is introduced. Comparing SETA with a state-of-the-art technique, SETA is 11.0% faster and occupies 10.3% fewer memory positions. The most promising data-flow techniques are combined with the control-flow technique in order to protect both dataflow and control-flow of the target application. To go even further with the reduction of the overheads, methods to selective apply the proposed software techniques have been developed. For the data-flow techniques, instead of protecting all registers, only a set of selected registers is protected. The set is selected based on a metric that analyzes the code and rank the registers by their criticality. For the control-flow technique, two approaches are taken: (1) removing checkers from basic blocks: all the basic blocks are protected by SETA, but only selected basic blocks have checkers inserted, and (2) selectively protecting basic blocks: only a set of basic blocks is protected. The techniques and their selective versions are evaluated in terms of execution time, code size, fault coverage, and Mean Work To Failure (MWTF), which is a metric to measure the trade-off between fault coverage and execution time. Results show that was possible to reduce the overheads without affecting the fault coverage, and for a small reduction in the fault coverage it was possible to significantly reduce the overheads. Lastly, since the evaluation of all the possible combinations for selective hardening of every application takes too much time, this work uses a method to extrapolate the results obtained by simulation in order to find the parameters for the selective combination of data and control-flow techniques that are probably the best candidates to improve the trade-off between reliability and overheads.
|
14 |
Modelamento do single-Event effiects em circuitos de memória FDSOI / Single event effects modeling in FDSOI memory circuitsBartra, Walter Enrique Calienes January 2016 (has links)
Este trabalho mostra a comparação dos efeitos das falhas provocadas pelos Single-Event Effects em dispositivos 28nm FDSOI, 28nm FDSOI High-K e 32nm Bulk CMOS e células de memória 6T SRAM feitas com estes dispositivos. Para conseguir isso, foram usadas ferramentas TCAD para simular falhas transientes devido a impacto de íons pesados a nível dispositivo e nível circuito. As simulações neste ambiente tem como vantagem a simulação dos fatos e mecanismos que produz as falhas transientes e seus efeitos nos dispositivos, além de também servir para projetar virtualmente estes dispositivos e caraterizar eles para estas simulações. Neste caso, foram projetados três dispositivos para simulação: um transistor NMOS de 32nm Bulk, um transistor NMOS de 28nm FDSOI e um transistor NMOS de 28nm FDSOI High-K para fazer comparações entre eles. Estes dispositivos foram projetados, caraterizados e testados contra o impacto de íons pesados a níveis dispositivo e circuito. Como resultado obtido, transistor Bulk de 32nm teve, no pior caso, uma carga coletada de 7.57 e 7.19 vezes maior que a carga coletada pelo dispositivo FDSOI de 28nm e FDSOI High-K de 28nm respectivamente atingido pelo mesmo íon pesado de 100MeV-cm2/mg. Com estes dados foi possível modelar o comportamento da carga coletada de ambos dispositivos usando este íon pesado, atingindo os terminais de Fonte e Dreno em distintos lugares e ângulos. Usando a mesma ferramenta e os dados obtidos de carga coletada pelos testes anteriores, foram projetadas células de memória SRAM de 6 transistores. Isso foi para testar elas contra os efeitos do impacto de íons pesados nos transistores NMOS de armazenagem da dados. Neste caso, a Transferência Linear de Energia (LET) do íon necessária para fazer que o dado armazenado na SRAM Bulk mude é 12.8 vezes maior que no caso da SRAM FDSOI e 10 maior no caso da SRAM FDSOI High-K, embora a quantidade de carga coletada necessária para que o dado mude em ambas células seja quase a mesma. Com estes dados foi possível modelar os efeitos dos íons pesados em ambos circuitos, descobrir a Carga Crítica destes e qual é o mínimo LET necessário para que o dado armazenado nestas SRAMs mude. / This work shows a comparison of faults due to Single-Event Effects in 28nm Fully Depleted SOI (FDSOI), 28nm FDSOI High-K and 32nm Bulk CMOS devices, and in 6T SRAM memory cells made with these devices. To provide this, was used TCAD tools to simulate transient faults due to heavy ion impacts on device and circuit levels. The simulations in that environment have the advantage to simulate the facts and mechanisms which produce the transient faults and this effects on the electronic devices, it also allow to simulate the virtual device fabrication and to characterize them. In this case, two devices were created for the simulations: a 32nm Bulk NMOS transistor and a 28nm FDSOI NMOS transistor for compare them. These devices were created, characterized and tested against heavy ion impacts at device and circuit levels. The results show that 32nm Bulk transistor has, in the worst case, a collected charge 7.57 and 7.19 times greater than the 28nm FDSOI and 28nm FDSOI High-K respectively collected charge with the same 100MeV-cm2/mg heavy ion. With these data it was possible to model the behavior of the collected charge in both devices with the same heavy-ion, reach the Source and Drain Terminal in different places and angles. Using the same tools and the obtained collected charge data of previous simulations, it was designed 6 transistors SRAM Memory Cells. That is done to test these circuits against the heavy ion effects on the data-storage NMOS transistor. In this case, the necessary Ion Linear Energy Transfer (LET) to flip the Bulk SRAM is 12.8 greater than the FDSOI SRAM and 10 times greater than the FDSOI High- K SRAM case, although the amount of charge to flip the cells is almost the same in both cases. With these data it was possible to model the heavy-ion effects in both circuits, discover the Critical Charge of them and the minimum LET to flips these SRAMs.
|
15 |
Análise do uso de redundância em circuitos gerados por síntese de alto nível para FPGA programado por SRAM sob falhas transientesSantos, André Flores dos January 2017 (has links)
Este trabalho consiste no estudo e análise da suscetibilidade a efeitos da radiação em projetos de circuitos gerados por ferramenta de Síntese de Alto Nível para FPGAs (Field Programmable Gate Array), ou seja, circuitos programáveis e sistemas em chip, do inglês System-on-Chip (SOC). Através de um injetor de falhas por emulação usando o ICAP (Internal Configuration Access Port) localizado dentro do FPGA é possível injetar falhas simples ou acumuladas do tipo SEU (Single Event Upset), definidas como perturbações que podem afetar o funcionamento correto do dispositivo através da inversão de um bit por uma partícula carregada. SEU está dentro da classificação de SEEs (Single Event Effects), efeitos transitórios em tradução livre, podem ocorrer devido a penetração de partículas de alta energia do espaço e do sol (raios cósmicos e solares) na atmosfera da Terra que colidem com átomos de nitrogênio e oxigênio resultando na produção de partículas carregadas, na grande maioria nêutrons. Dentro deste contexto além de analisar a suscetibilidade de projetos gerados por ferramenta de Síntese de Alto Nível, torna-se relevante o estudo de técnicas de redundância como TMR (Triple Modular Redundance) para detecção, correção de erros e comparação com projetos desprotegidos verificando a confiabilidade. Os resultados mostram que no modo de injeção de falhas simples os projetos com redundância TMR demonstram ser efetivos. Na injeção de falhas acumuladas o projeto com múltiplos canais apresentou melhor confiabilidade do que o projeto desprotegido e com redundância de canal simples, tolerando um maior número de falhas antes de ter seu funcionamento comprometido. / This work consists of the study and analysis of the susceptibility to effects of radiation in circuits projects generated by High Level Synthesis tool for FPGAs Field Programmable Gate Array (FPGAs), that is, system-on-chip (SOC). Through an emulation fault injector using ICAP (Internal Configuration Access Port), located inside the FPGA, it is possible to inject single or accumulated failures of the type SEU (Single Event Upset), defined as disturbances that can affect the correct functioning of the device through the inversion of a bit by a charged particle. SEU is within the classification of SEEs (Single Event Effects), can occur due to the penetration of high energy particles from space and from the sun (cosmic and solar rays) in the Earth's atmosphere that collide with atoms of nitrogen and oxygen resulting in the production of charged particles, most of them neutrons. In this context, in addition to analyzing the susceptibility of projects generated by a High Level Synthesis tool, it becomes relevant to study redundancy techniques such as TMR (Triple Modular Redundancy) for detection, correction of errors and comparison with unprotected projects verifying the reliability. The results show that in the simple fault injection mode TMR redundant projects prove to be effective. In the case of accumulated fault injection, the multichannel design presented better reliability than the unprotected design and with single channel redundancy, tolerating a greater number of failures before its operation was compromised.
|
16 |
Avaliação de conversores AD sob efeitos de radiação e mitigação utilizando redundância com diversidade / AD Converters under radiation effects evaluation and mitigation using design diversity redundancyAguilera, Carlos Julio González January 2018 (has links)
Este trabalho aborda um sistema de aquisição de dados (SAD) analógico-digital, baseado em um esquema redundante com diversidade de projeto, que é testado em dois ambientes diferentes de radiação. O primeiro experimento considera um teste de dose total ionizante (Total Ioninzig Dose - TID) sob irradiação gama, e o segundo experimento considera os efeitos de eventos singulares (Single Event Effects - SEE) sob irradiação por íons pesados. O SAD é composto, principalmente, por três conversores analógicos-digitais (ADCs) e dois votadores. A técnica usada é a Redundância Modular Tripla (Triple Modular Redundancy - TMR), com implementação em diferentes níveis de diversidade (temporal e arquitetural). O sistema é construído em um System-on-Chip programável (PSoC 5LP) da Cypress Semiconductor, fabricado em tecnologia CMOS de 130nm. Para a irradiação com TID, se utiliza o PSoC de part number CY8CKIT-050 sob uma fonte de radiação gama de 60Co (cobalto-60), com uma taxa de dose efetiva de 1 krad(Si)/h por 10 dias, atingindo uma dose total de 242 krad(Si) Para SEE se utiliza o protótipo PSoC de part number CY8CKIT-059 (sem encapsulamento) em um acelerador de partículas 8UD Pelletron usando 16O (oxigeno-16) ao vácuo, com energia de 36 MeV em um LET aproximado de 5.5 MeV/mg/cm2 e uma penetração no silício de 25 mm, resultando em um fluxo de 354 p/cm2.s, e uma fluência de 5077915 p/cm2 depois de 14755 segundos (4h 09min). Observou-se com o resultado do primeiro estudo que um (1) dos módulos do sistema apresentou uma degradação significativa na sua linearidade durante a irradiação, enquanto os outros tiveram uma degradação menos grave, mantendo assim a funcionalidade e confiabilidade do sistema. Durante o tempo de irradiação do segundo estudo, foram observadas 139 falhas: 53 SEFIs (Single Events Funtional Interrupt), 29 falhas críticas e 57 falhas SDC (Silent Data Corruption), atingindo as diferentes copias do sistema e um dos votadores do mesmo, mas sempre mantendo a saída esperada. Nos dois experimentos se evidencia a vantagem de usar a diversidade de projeto, além do TMR, para melhorar a resiliência e confiabilidade em sistemas críticos redundantes que trabalham com sinais mistos. / This work presents an analog-to-digital data acquisition system (DAS) based on a redundant scheme with design diversity, being tested in two different radiation environments. The first experiment is a Total Ionizing Dose (TID) essay and the second one considers Single Event Effects (SEE) under heavy ion irradiation. The DAS is mainly composed of three analog-todigital converters (ADCs) and two voters. The used technique was the Triple Modular Redundancy (TMR) implementing different levels of diversity (temporal and architectural). The circuit was built in a programmable System-on-Chip (PSoC 5LP) from Cypress Semiconductor, fabricated in a 130nm CMOS technology process. For the irradiation with TID the part number CY8CKIT-050 PSoC was used under a 60Co (cobalt-60) gamma radiation source, with an effective dose rate of 1 krad(Si)/h during 10 days, reaching a total dose of 242 krad(Si). For SEE experiments the part number CY8CKIT-059 (without encapsulation) PSoC prototype under a 8UD Pelletron particle accelerator using 16O (oxigen-16) under vacuum, with an energy of 36 MeV, resulting in a flux of 354p/cm2.s and a fluence of 5077915p/cm2 after 14755 seconds (4h 09min). As result of the first study it was observed that one of the system’s modules presented a significant degradation in its linearity during the irradiation, while degradations in the other modules were not as deep, maintaining the system’s functionality and reliability. During the period of the radiation of the second study, 139 faults were observed, 82 of them were critical and 57 were SDC (Silent Data Corruption), reaching the different system copies and one of the voters, while always maintaining the correct output. The advantage of using diversity, besides TMR, to improve resilience and reliability in redundant systems working with mixed signals was demonstrated in both experiments.
|
17 |
Estudo de falhas transientes e técnicas de tolerância a falhas em conversores de dados do tipo SAR baseados em redistribuição de cargaLanot, Alisson Jamie Cruz January 2014 (has links)
Conversores A/D do tipo aproximações sucessivas (SAR) baseados em redistribuição de carga são frequentemente utilizados em aplicações envolvendo a aquisição de sinais, principalmente as que exigem um baixo consumo de área e energia e boa velocidade de conversão. Esta topologia está presente em diversos dispositivos programáveis comerciais, como também em circuitos integrados de propósito geral. Tais dispositivos, quando expostos a ambientes suscetíveis a radiação, como é o caso de aplicações espaciais, estão sujeitos à colisão com partículas capazes de ionizar o silício. Estes podem causar falhas temporárias, como um efeito transiente, uma inversão de bit em um elemento de memória, ou até mesmo danos permanentes no circuito. Este trabalho visa descrever o comportamento do conversor SAR baseado em redistribuição de carga após a ocorrência de efeitos transientes causados por radiação, por meio de simulação SPICE. Tais efeitos podem causar falhas nos componentes da topologia: chaves, lógica de controle e comparador. Estes são propagados por todo o estágio de conversão, devido à sua característica sequencial de conversão. Por fim, uma discussão sobre as possíveis técnicas de mitigação de falhas para esta topologia é apresentada. / Successive Approximation Register (SAR) Analog to Digital Converters (ADCs) based on charge redistribution are frequently used in data acquisition systems, especially those requiring low power and low area, and good conversion speed. This topology is present on several mixed-signal programmable devices. These devices, when exposed to harsh environments, such as radiation, which is the case for space applications, are prone to Single Event Effects (SEEs). These effects may cause temporary failures, such as transient effects or memory upsets or even permanent failures on the circuit. This work presents the behavior of this type of converter after the occurrence of a transient fault on the circuit, by means of SPICE simulations. These transient faults may cause an inversion on the conversion due to a transient on the control logic of the switches, or a charge or discharge of the capacitors when a transient occur on the switches, as well as a failure on the comparator, which may propagate to the remainder stages of conversion, due to the sequential nature of the converter. A discussion about the possible fault mitigation techniques is also presented.
|
18 |
Techniques d'abstraction pour l'analyse et la mitigation des effets dus à la radiation / Abstraction techniques for scalable soft error analysis and mitigationEvans, Adrian 19 June 2014 (has links)
Les effets dus à la radiation peuvent provoquer des pannes dans des circuits intégrés. Lorsqu'une particule subatomique, fait se déposer une charge dans les régions sensibles d'un transistor cela provoque une impulsion de courant. Cette impulsion peut alors engendrer l'inversion d'un bit ou se propager dans un réseau de logique combinatoire avant d'être échantillonnée par une bascule en aval.Selon l'état du circuit au moment de la frappe de la particule et selon l'application, cela provoquera une panne observable ou non. Parmi les événements induits par la radiation, seule une petite portion génère des pannes. Il est donc essentiel de déterminer cette fraction afin de prédire la fiabilité du système. En effet, les raisons pour lesquelles une perturbation pourrait être masquée sont multiples, et il est de plus parfois difficile de préciser ce qui constitue une erreur. A cela s'ajoute le fait que les circuits intégrés comportent des milliards de transistors. Comme souvent dans le contexte de la conception assisté par ordinateur, les approches hiérarchiques et les techniques d'abstraction permettent de trouver des solutions.Cette thèse propose donc plusieurs nouvelles techniques pour analyser les effets dus à la radiation. La première technique permet d'accélérer des simulations d'injections de fautes en détectant lorsqu'une faute a été supprimée du système, permettant ainsi d'arrêter la simulation. La deuxième technique permet de regrouper en ensembles les éléments d'un circuit ayant une fonction similaire. Ensuite, une analyse au niveau des ensemble peut être faite, identifiant ainsi ceux qui sont les plus critiques et qui nécessitent donc d'être durcis. Le temps de calcul est ainsi grandement réduit.La troisième technique permet d'analyser les effets des fautes transitoires dans les circuits combinatoires. Il est en effet possible de calculer à l'avance la sensibilité à des fautes transitoires de cellules ainsi que les effets de masquage dans des blocs fréquemment utilisés. Ces modèles peuvent alors être combinés afin d'analyser la sensibilité de grands circuits. La contribution finale de cette thèse consiste en la définition d'un nouveau langage de modélisation appelé RIIF (Reliability Information Ineterchange Format). Ce langage permet de décrire le taux des fautes dans des composants simples en fonction de leur environnement de fonctionnement. Ces composants simples peuvent ensuite être combinés permettant ainsi de modéliser la propagation de leur fautes vers des pannes au niveau système. En outre, l'utilisation d'un langage standard facilite l'échange de données de fiabilité entre les partenaires industriels.Au-delà des contributions principales, cette thèse aborde aussi des techniques permettant de protéger des mémoires associatives ternaires (TCAMs). Les approches classiques de protection (codes correcteurs) ne s'appliquent pas directement. Une des nouvelles techniques proposées consiste à utiliser une structure de données qui peut détecter, d'une manière statistique, quand le résultat n'est pas correct. La probabilité de détection peut être contrôlée par le nombre de bits alloués à cette structure. Une autre technique consiste à utiliser un détecteur de courant embarqué (BICS) afin de diriger un processus de fond directement vers le région touchée par une erreur. La contribution finale consiste en un algorithme qui permet de synthétiser de la logique combinatoire afin de protéger des circuits combinatoires contre les fautes transitoires.Dans leur ensemble, ces techniques facilitent l'analyse des erreurs provoquées par les effets dus à la radiation dans les circuits intégrés, en particulier pour les très grands circuits composés de blocs provenant de divers fournisseurs. Des techniques pour mieux sélectionner les bascules/flip-flops à durcir et des approches pour protéger des TCAMs ont étés étudiées. / The main objective of this thesis is to develop techniques that can beused to analyze and mitigate the effects of radiation-induced soft errors in industrialscale integrated circuits. To achieve this goal, several methods have been developedbased on analyzing the design at higher levels of abstraction. These techniquesaddress both sequential and combinatorial SER.Fault-injection simulations remain the primary method for analyzing the effectsof soft errors. In this thesis, techniques which significantly speed-up fault-injectionsimulations are presented. Soft errors in flip-flops are typically mitigated by selectivelyreplacing the most critical flip-flops with hardened implementations. Selectingan optimal set to harden is a compute intensive problem and the second contributionconsists of a clustering technique which significantly reduces the number offault-injections required to perform selective mitigation.In terrestrial applications, the effect of soft errors in combinatorial logic hasbeen fairly small. It is known that this effect is growing, yet there exist few techniqueswhich can quickly estimate the extent of combinatorial SER for an entireintegrated circuit. The third contribution of this thesis is a hierarchical approachto combinatorial soft error analysis.Systems-on-chip are often developed by re-using design-blocks that come frommultiple sources. In this context, there is a need to develop and exchange reliabilitymodels. The final contribution of this thesis consists of an application specificmodeling language called RIIF (Reliability Information Interchange Format). Thislanguage is able to model how faults at the gate-level propagate up to the block andchip-level. Work is underway to standardize the RIIF modeling language as well asto extend it beyond modeling of radiation-induced failures.In addition to the main axis of research, some tangential topics were studied incollaboration with other teams. One of these consisted in the development of a novelapproach for protecting ternary content addressable memories (TCAMs), a specialtype of memory important in networking applications. The second supplementalproject resulted in an algorithm for quickly generating approximate redundant logicwhich can protect combinatorial networks against permanent faults. Finally anapproach for reducing the detection time for errors in the configuration RAM forField-Programmable Gate-Arrays (FPGAs) was outlined.
|
19 |
Modelamento do single-Event effiects em circuitos de memória FDSOI / Single event effects modeling in FDSOI memory circuitsBartra, Walter Enrique Calienes January 2016 (has links)
Este trabalho mostra a comparação dos efeitos das falhas provocadas pelos Single-Event Effects em dispositivos 28nm FDSOI, 28nm FDSOI High-K e 32nm Bulk CMOS e células de memória 6T SRAM feitas com estes dispositivos. Para conseguir isso, foram usadas ferramentas TCAD para simular falhas transientes devido a impacto de íons pesados a nível dispositivo e nível circuito. As simulações neste ambiente tem como vantagem a simulação dos fatos e mecanismos que produz as falhas transientes e seus efeitos nos dispositivos, além de também servir para projetar virtualmente estes dispositivos e caraterizar eles para estas simulações. Neste caso, foram projetados três dispositivos para simulação: um transistor NMOS de 32nm Bulk, um transistor NMOS de 28nm FDSOI e um transistor NMOS de 28nm FDSOI High-K para fazer comparações entre eles. Estes dispositivos foram projetados, caraterizados e testados contra o impacto de íons pesados a níveis dispositivo e circuito. Como resultado obtido, transistor Bulk de 32nm teve, no pior caso, uma carga coletada de 7.57 e 7.19 vezes maior que a carga coletada pelo dispositivo FDSOI de 28nm e FDSOI High-K de 28nm respectivamente atingido pelo mesmo íon pesado de 100MeV-cm2/mg. Com estes dados foi possível modelar o comportamento da carga coletada de ambos dispositivos usando este íon pesado, atingindo os terminais de Fonte e Dreno em distintos lugares e ângulos. Usando a mesma ferramenta e os dados obtidos de carga coletada pelos testes anteriores, foram projetadas células de memória SRAM de 6 transistores. Isso foi para testar elas contra os efeitos do impacto de íons pesados nos transistores NMOS de armazenagem da dados. Neste caso, a Transferência Linear de Energia (LET) do íon necessária para fazer que o dado armazenado na SRAM Bulk mude é 12.8 vezes maior que no caso da SRAM FDSOI e 10 maior no caso da SRAM FDSOI High-K, embora a quantidade de carga coletada necessária para que o dado mude em ambas células seja quase a mesma. Com estes dados foi possível modelar os efeitos dos íons pesados em ambos circuitos, descobrir a Carga Crítica destes e qual é o mínimo LET necessário para que o dado armazenado nestas SRAMs mude. / This work shows a comparison of faults due to Single-Event Effects in 28nm Fully Depleted SOI (FDSOI), 28nm FDSOI High-K and 32nm Bulk CMOS devices, and in 6T SRAM memory cells made with these devices. To provide this, was used TCAD tools to simulate transient faults due to heavy ion impacts on device and circuit levels. The simulations in that environment have the advantage to simulate the facts and mechanisms which produce the transient faults and this effects on the electronic devices, it also allow to simulate the virtual device fabrication and to characterize them. In this case, two devices were created for the simulations: a 32nm Bulk NMOS transistor and a 28nm FDSOI NMOS transistor for compare them. These devices were created, characterized and tested against heavy ion impacts at device and circuit levels. The results show that 32nm Bulk transistor has, in the worst case, a collected charge 7.57 and 7.19 times greater than the 28nm FDSOI and 28nm FDSOI High-K respectively collected charge with the same 100MeV-cm2/mg heavy ion. With these data it was possible to model the behavior of the collected charge in both devices with the same heavy-ion, reach the Source and Drain Terminal in different places and angles. Using the same tools and the obtained collected charge data of previous simulations, it was designed 6 transistors SRAM Memory Cells. That is done to test these circuits against the heavy ion effects on the data-storage NMOS transistor. In this case, the necessary Ion Linear Energy Transfer (LET) to flip the Bulk SRAM is 12.8 greater than the FDSOI SRAM and 10 times greater than the FDSOI High- K SRAM case, although the amount of charge to flip the cells is almost the same in both cases. With these data it was possible to model the heavy-ion effects in both circuits, discover the Critical Charge of them and the minimum LET to flips these SRAMs.
|
20 |
Análise do uso de redundância em circuitos gerados por síntese de alto nível para FPGA programado por SRAM sob falhas transientesSantos, André Flores dos January 2017 (has links)
Este trabalho consiste no estudo e análise da suscetibilidade a efeitos da radiação em projetos de circuitos gerados por ferramenta de Síntese de Alto Nível para FPGAs (Field Programmable Gate Array), ou seja, circuitos programáveis e sistemas em chip, do inglês System-on-Chip (SOC). Através de um injetor de falhas por emulação usando o ICAP (Internal Configuration Access Port) localizado dentro do FPGA é possível injetar falhas simples ou acumuladas do tipo SEU (Single Event Upset), definidas como perturbações que podem afetar o funcionamento correto do dispositivo através da inversão de um bit por uma partícula carregada. SEU está dentro da classificação de SEEs (Single Event Effects), efeitos transitórios em tradução livre, podem ocorrer devido a penetração de partículas de alta energia do espaço e do sol (raios cósmicos e solares) na atmosfera da Terra que colidem com átomos de nitrogênio e oxigênio resultando na produção de partículas carregadas, na grande maioria nêutrons. Dentro deste contexto além de analisar a suscetibilidade de projetos gerados por ferramenta de Síntese de Alto Nível, torna-se relevante o estudo de técnicas de redundância como TMR (Triple Modular Redundance) para detecção, correção de erros e comparação com projetos desprotegidos verificando a confiabilidade. Os resultados mostram que no modo de injeção de falhas simples os projetos com redundância TMR demonstram ser efetivos. Na injeção de falhas acumuladas o projeto com múltiplos canais apresentou melhor confiabilidade do que o projeto desprotegido e com redundância de canal simples, tolerando um maior número de falhas antes de ter seu funcionamento comprometido. / This work consists of the study and analysis of the susceptibility to effects of radiation in circuits projects generated by High Level Synthesis tool for FPGAs Field Programmable Gate Array (FPGAs), that is, system-on-chip (SOC). Through an emulation fault injector using ICAP (Internal Configuration Access Port), located inside the FPGA, it is possible to inject single or accumulated failures of the type SEU (Single Event Upset), defined as disturbances that can affect the correct functioning of the device through the inversion of a bit by a charged particle. SEU is within the classification of SEEs (Single Event Effects), can occur due to the penetration of high energy particles from space and from the sun (cosmic and solar rays) in the Earth's atmosphere that collide with atoms of nitrogen and oxygen resulting in the production of charged particles, most of them neutrons. In this context, in addition to analyzing the susceptibility of projects generated by a High Level Synthesis tool, it becomes relevant to study redundancy techniques such as TMR (Triple Modular Redundancy) for detection, correction of errors and comparison with unprotected projects verifying the reliability. The results show that in the simple fault injection mode TMR redundant projects prove to be effective. In the case of accumulated fault injection, the multichannel design presented better reliability than the unprotected design and with single channel redundancy, tolerating a greater number of failures before its operation was compromised.
|
Page generated in 0.0796 seconds