Spelling suggestions: "subject:"singleelectron"" "subject:"singleelectrode""
51 |
UNDERSTANDING THE REACTIVITY AND SUBSTITUTION EFFECTS OF NITRENES AND AZIDESHarshal A Jawale (11820995) 18 December 2021 (has links)
<div>The first chapter reports a study of aryl nitrene intermediates. Although extensively studied over the past 30 years, phenyl nitrenes have a propensity to undergo rearrangement reactions and form polymeric tars. This is in stark contrast to the phenyl carbenes which are known to undergo several important reactions to produce a library of useful organic compounds. One such reaction is the insertion of phenyl carbenes into a double bond to produce a cyclopropane moiety. If aryl nitrenes can be exploited to conjure a similar reactivity, they would be an excellent synthetic route to produce aziridine rings which are a crucial component of many natural products. This review chapter is a collection of all the efforts that have been made in this regard.</div><div><br></div><div>In the next chapter, the electronic effect of the azide functional group on an aromatic system has been investigated by using Hammett-Taft parameters obtained from the effect of azide-substitution on the gas-phase acidity of phenol. Gas-phase acidities of 3- and 4-azidophenol have been measured by using mass spectrometry and the kinetic method and found to be 340.8 ± 2.2 and 340.3 ± 2.0 kcal/mol respectively. The relative electronic effects of the azide substituent on an aromatic system have been measured by using Hammett-Taft parameters. The σF and σR values are determined to be 0.38 and 0.02 respectively, consistent with predictions based on electronic structure calculations. The values of σF and σR demonstrate that azide acts an inductively withdrawing group but has negligible resonance contribution on the phenol. In contrast, acidity values calculated for substituted benzoic acids gives values of σF = 0.69 and σR = -0.39, indicating that the azide is a strong donor, comparable to that of a hydroxyl group. The difference is explained as being the result of “chimeric” electronic behavior of the azide, similar to that observed previously for the n-oxide moiety, which can be more or less resonance donating depending on the electronic effects of other groups in the system.</div><div><br></div><div>Phenyl nitrenes undergo bimolecular chemistry under very specific circumstances. For example, having an oxide substituent at the para position of the phenyl ring enables the formation of an indophenol product from a photocatalyzed reaction of the nitrene. Although, this reaction has been reported before, the mechanism involved in this reaction has not been fully understood. A two-electron mechanism involving electrophilic aromatic substitution reaction has been proposed in the literature, however we found evidence that did not support this theory. Instead, we find this reaction analogous to the popular Gibbs’ reaction whose single electron transfer mechanism has been extensively studied. The following chapter encompasses a study of the mechanism of the photolysis reaction to look for evidence of a single electron transfer similar to the Gibbs’ reaction.</div><div><br></div><div>As mentioned earlier, phenyl nitrenes have a proclivity to undergo rearrangement reactions instead of exhibiting bimolecular reactivity that can lead to useful products. One of the strategies to overcome this challenge is to spatially separate the two electrons of an open-shell singlet nitrene so as to minimize electron-electron repulsion. This separation can be achieved by delocalizing the individual electrons over multiple aromatic rings and heteroatoms which can act as radical stabilizers. In this chapter, a short review of literature that sets precedence for developing a unique heteroatom containing aromatic backbone to achieve the necessary stabilization is presented. Our efforts in synthesizing the model azide precursor compound have also been discussed.</div>
|
52 |
Functionalized DNA origami nanostructures for electronicsBayrak Kelling, Türkan 04 November 2020 (has links)
Desoxyribonukleinsäure (DNS) ermöglicht die Selbstorganisation von nanoskopischen Elementen zu dreidimensionalen Einheiten mit vorgegebener Form, Zusammensetzung und Größe wie sie in der Nanoelektronik, Nanophotonik und Metamaterialien Verwendung finden. In dieser Arbeit werden DNS Origami Strukturen, in der Gestaltvon Nanoformen, Nanoblätchen und Nanoröhren, als Gerüste für den Aufbau von Nanodrähten und Metall/Halbleiter/Metall Heterostrukturen aus Goldnanoteilchen, Halbleiterquantenpunkten und Halbleiterstäbchen verwendet. Die so hergestellten Einheiten wurden mittels Elektronenstrahllithographie kontaktiert um ihre elektrische Leitwerte zwischen 4:2K und Raumtemperatur zu charakterisieren. Ein neues Konzept für die lösungsbasierte Herstellung von leitenden Goldnanodrähten mittels DNS-Templates wurde eingeführt: hierbei wurden DNS-Nanoformen eingesetzt in denen positionsspezifisch angedockte Goldkeime durch auÿenstromlose Goldabscheidung wachsen. Durch konfigurierbare Verbindungsstellen können sich die einzelnen Formen zu mikrometerlangen Strukturen verbinden. Während der folgendenden
Abscheidung von Gold schränken die Wände der Gussformen über das Wachstum so ein, dass sehr homogene Nanodrähte gewonnen werden können.
Goldnanodrähte wurden auch C-förmig hergestellt indem Goldnanoteilchen in der gewünschten Form auf DNS Origami-Nanoblättchen angeordnet und wiederum durch außenstromlose Goldabscheidung zu durchgängigen Drähten vergröbert wurden. Einige Abschnitte der DNS-Nanoform-geprägten Drähte zeigen metallische Leitfähigkeit, während andere durch Lücken zwischen den Goldkörnern deutlich höhere Widerstände aufweisen. Alle hergestellten C-förmigen Nanodrähte stellten sich als nicht-metallisch heraus, sie zeigten Eigenschaften von Hopping-, thermionischem und Tunneltransport in Abhängigkeit von der Temperatur. Die Anwesenheit dieser verschiedenen Transportmechanismen deutet darauf hin, dass die C-förmigen Nanodrähte aus metallischen Abschnitten bestehen welche aber nur schwach miteinander verbunden sind. Zwei verschiedene Metall/Halbleiter/Metall-Heterostrukturen wurden hergestellt: Metall/Halbleiternanstäbchen/Metall-Strukturen mittels DNS-Nanoformen und Metall/Quantenpunkt/Metall-Strukturen mittels DNS-Nanoröhren-Vorlagen Goldnanoteilchen konnten durch die DNA templates mit hoher Ausbeute neben den Halbleiterelementen platziert werden. Nach der erfolgter Anordnung wurden die Goldnanoteilchen gewachsen um durchgängige Heterostrukturen zu erhalten. Die Einflüsse des Inkubationsmediums und der -zeit, des Buffers, sowie der Quantenpunkt- und Goldnanopartikelkonzentrationen
auf die Abscheidungseffzienz von Goldnanotailchen auf DNS Nanoröhren wurden systematisch untersucht. Zusätzlich zur Bestimmung der Morphologie der durch Selbstorganisation hergestellten Heterostrukturen, wurden auch ihre elektrischen Eigenschaften im Hinblick auf ihre Anwendung in nanelektronischen Bauelementen, wie Einzelelektronentransitoren untersucht.:1. Introduction
2. Overview on DNA Nanotechnology
2.1. Basic Concepts of DNA
2.1.1. Nanoscale Dimensions
2.2. Self-Assembled Architectures from DNA
2.3. DNA Origami: Nanomolds, Nanosheets and Nanotubes
2.3.1. DNA Origami Method
2.3.2. Nanomolds
2.3.3. Nanosheets
2.3.4. Nanotubes
2.4. DNA/DNA Origami-Templated Metallic Nanowire Fabrication
2.4.1. DNA/DNA Origami Templates
2.4.2. Metal Nanoparticle Attachment Yield
2.4.3. Metal Growth
2.5. Electron Transport Mechanisms of DNA-Templated Metallic Nanowires
2.5.1. Lithographically Defined Contacts and I-V Measurements of the DNA-Templated Metal Wires
2.5.2. Lithographically Defined Contacts and I-V Measurements of the DNA Origami-Templated Metal Nanowires
2.6. Applications
2.6.1. Introduction to Metamaterials: DNA-Templated Metamaterial Fabrication
2.6.2. Introduction to Single Electron Tunneling: A DNA-Templated Self-Assembly Concept
3. Experimental Details
3.1. Preparation of Substrates
3.2. DNA Origami Preparation and Deposition
3.2.1. DNA Nanomolds and Formation of linear mold superstructures
3.2.2. DNA Nanotubes
3.2.3. DNA Nanosheets
3.3. Metallization of DNA Origami Structures
3.3.1. DNA Nanomolds
3.3.2. DNA Nanotubes
3.3.3. DNA Nanosheets
3.3.4. Gold Growth on the DNA Origami Nanotube and Nanosheet
3.4. Semiconductor Nanoparticle Preparation and Assembly
3.4.1. CdS Semiconductor Quantum Rods for DNA Nanomold.
3.4.2. CdSe/ZnS Core-shell quantum Dots for DNA Nanotube
3.5. Deposition of DNA origami structures on SiO2 /Si surface
3.5.1. Deposition of DNA Nanomolds
3.5.2. Deposition of DNA Nanosheets and Nanotubes
3.6. Structural Characterization
3.6.1. Atomic Force Microscopy
3.6.2. Scanning Electron Microscopy
3.7. Electrical Characterization
4. Results and Discussion
4.1. DNA Nanomold-Templated Assembly of Conductive Gold Nanowires
4.1.1. Introduction
4.1.2. Results and Discussion
4.1.3. Conclusion
4.2. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds
4.2.1. Introduction
4.2.2. Results and Discussion
4.2.3. Conclusion
4.3. C-shaped Gold Nanowires Templated by DNA Nanosheet
4.3.1. Introduction
4.3.2. Results and Discussion
4.3.3. Conclusion
4.4. Self-Assembled Gold/Semiconductor/Gold heterojunctions templated by DNA Nanotube
4.4.1. Introduction
4.4.2. Results and Discussion
4.4.3. Conclusion
5. Conclusion and Future Work
A. Supplement for DNA Nanomold-Templated Assembly of Conductive Gold Nanowires
B. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds
C. Supplement for C-shaped Gold Nanowires Templated by DNA Nanosheet
D. Supplement for heterojunctions templated by DNA Nanotube / DNA allows self-assembly of nanoscale units into three dimensional nanostructures
with definite shape and size in fields such as nanoelectronics, metamaterials and
nanophotonics. Different DNA origami templates, such as: nanomold, nanosheet and nanotube templates have been used to assemble gold nanoparticles, quantum dots and semiconductor rods into nanowires and metal/semiconductor/metal heterostructures. Structures have been contacted using electron-beam lithography for electrical conductance characterization at temperatures between 4:2K and room temperature has been performed. A new concept has been introduced for the solution-based fabrication of gold nanowires. To this end, DNA nanomolds have been employed, inside which electroless gold deposition is initiated by site-specifically attached seeds. Using configurable interfaces, individual mold elements self-assemble into micrometer-long mold structures. During subsequent internal gold deposition, the mold walls constrain the metal growth, such that highly homogeneous nanowires are obtained. Gold nanowires have also been manufactured in a C-shape using gold nanoparticles arranged in the desired
shape on a DNA origami nanosheet and enhanced to form a continuous wire
through electroless gold deposition. Some sections of the DNA nanomold-templated wires show metallic conductance, while other sections of the wires have a much higher resistance which is caused by boundaries between gold grains. All C-shaped wires have been found to be resistive showing hopping, thermionic and tunneling transport characteristics at different temperatures. The different transport mechanisms indicate that the C-shaped nanowires consist of metallic segments which are weakly coupled along the wire. Two types of metal/semiconductor/metal heterostructures have been fabricated: Metal/semiconductor-rod/metal using DNA nanomolds and metal/quantum-dot/metal structures using DNA nanotube. AuNPs were assembled with high yield adjacent to the semiconductor material using origami templates. After the assembly, the gold nanoparticles were grown to produce continuous heterostructures. The influence of the incubation medium, time, buffer, quantum dot and gold nanoparticle concentration on nanoparticle attachment yield was systematically investigated for the nanotube templates. In addition to the determination of the self-assembled heterostructures' morphology, electrical properties were investigated to evaluate their applicability nanoelectronic devices such as single electron transistors.:1. Introduction
2. Overview on DNA Nanotechnology
2.1. Basic Concepts of DNA
2.1.1. Nanoscale Dimensions
2.2. Self-Assembled Architectures from DNA
2.3. DNA Origami: Nanomolds, Nanosheets and Nanotubes
2.3.1. DNA Origami Method
2.3.2. Nanomolds
2.3.3. Nanosheets
2.3.4. Nanotubes
2.4. DNA/DNA Origami-Templated Metallic Nanowire Fabrication
2.4.1. DNA/DNA Origami Templates
2.4.2. Metal Nanoparticle Attachment Yield
2.4.3. Metal Growth
2.5. Electron Transport Mechanisms of DNA-Templated Metallic Nanowires
2.5.1. Lithographically Defined Contacts and I-V Measurements of the DNA-Templated Metal Wires
2.5.2. Lithographically Defined Contacts and I-V Measurements of the DNA Origami-Templated Metal Nanowires
2.6. Applications
2.6.1. Introduction to Metamaterials: DNA-Templated Metamaterial Fabrication
2.6.2. Introduction to Single Electron Tunneling: A DNA-Templated Self-Assembly Concept
3. Experimental Details
3.1. Preparation of Substrates
3.2. DNA Origami Preparation and Deposition
3.2.1. DNA Nanomolds and Formation of linear mold superstructures
3.2.2. DNA Nanotubes
3.2.3. DNA Nanosheets
3.3. Metallization of DNA Origami Structures
3.3.1. DNA Nanomolds
3.3.2. DNA Nanotubes
3.3.3. DNA Nanosheets
3.3.4. Gold Growth on the DNA Origami Nanotube and Nanosheet
3.4. Semiconductor Nanoparticle Preparation and Assembly
3.4.1. CdS Semiconductor Quantum Rods for DNA Nanomold.
3.4.2. CdSe/ZnS Core-shell quantum Dots for DNA Nanotube
3.5. Deposition of DNA origami structures on SiO2 /Si surface
3.5.1. Deposition of DNA Nanomolds
3.5.2. Deposition of DNA Nanosheets and Nanotubes
3.6. Structural Characterization
3.6.1. Atomic Force Microscopy
3.6.2. Scanning Electron Microscopy
3.7. Electrical Characterization
4. Results and Discussion
4.1. DNA Nanomold-Templated Assembly of Conductive Gold Nanowires
4.1.1. Introduction
4.1.2. Results and Discussion
4.1.3. Conclusion
4.2. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds
4.2.1. Introduction
4.2.2. Results and Discussion
4.2.3. Conclusion
4.3. C-shaped Gold Nanowires Templated by DNA Nanosheet
4.3.1. Introduction
4.3.2. Results and Discussion
4.3.3. Conclusion
4.4. Self-Assembled Gold/Semiconductor/Gold heterojunctions templated by DNA Nanotube
4.4.1. Introduction
4.4.2. Results and Discussion
4.4.3. Conclusion
5. Conclusion and Future Work
A. Supplement for DNA Nanomold-Templated Assembly of Conductive Gold Nanowires
B. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds
C. Supplement for C-shaped Gold Nanowires Templated by DNA Nanosheet
D. Supplement for heterojunctions templated by DNA Nanotube
|
53 |
Développement de comparateur cryogénique de courants très faible bruit pour la métrologie électrique quantique. / Development of very low noise cryogenic current comparator for quantum electrical metrology.Rengnez, Florentin 30 November 2015 (has links)
Dans un contexte de besoin grandissant en précision dans la mesure des faibles courants pour les instituts nationaux de métrologie, l’industrie, les fabricants d’instruments et la physique fondamentale, l’étude des dispositifs à un électron (SET) capables de générer un courant continu directement proportionnel à une fréquence et la charge élémentaire, couplés à un amplificateur de courant très performant, le comparateur cryogénique de courant (CCC), devient pertinente pour réaliser un étalon quantique de courant. Dans ce contexte, les travaux ont été poursuivis au LNE sur l’étude de nouveaux dispositifs SET et le développement de nouveaux CCC. Durant cette thèse, un montage expérimental a été mis en place afin d’évaluer les performances d’un nouveau CCC, constitué d’une conception originale et de 30 000 tours. Les résultats expérimentaux obtenus sont satisfaisant par rapport aux objectifs fixés, que ce soit en termes de résolution en courant, d’erreurs, de stabilité des mesures et de reproductibilité. Le CCC développé durant la thèse peut donc être utilisé pour quantifier de manière métrologique les dispositifs à un électron. De plus, une modélisation réalisée à partir d’un schéma électrique équivalent a été mis en place afin de simuler le comportement réel du CCC en prenant en compte les aspects magnétiques et électriques mis en jeu. Cette simulation a permis la quantification de l’erreur due aux fuites de courants au travers des capacités parasites entourant les enroulements. Les résultats de la simulation indiquent que cette erreur atteint 10 10 à la fréquence de travail, ce qui est inférieure de deux ordres de grandeurs à l’erreur maximale tolérable : 10-8. Les résultats expérimentaux et de modélisation fournissent de nouveaux éléments d’amélioration de la conception de CCCs de grand gain. Enfin, la modélisation développée, une fois insérée dans une routine d’optimisation, pourra aussi être un outil de conception des CCCs très utile. / In a context of growing need of precision in measuring low currents for national metrology institutes, industry, instrument manufacturers and fundamental physics, study of single-electron tunneling (SET) devices capable of generating a direct current directly proportional to the frequency and the elementary charge, coupled with a high performance current amplifier, the cryogenic current comparator (CCC), becomes relevant to realize a quantum current standard. In this framework, at LNE, study of new SET devices and the development of CCCs continues. In this thesis, an experimental setup was implemented to evaluate the performance of a new CCC, consisting of a new design and 30 000 turns. The experimental results fulfill our goals, whether in terms of current resolution, errors, measurement stability and reproducibility. The CCC developed during the thesis can thus be used to metrologically quantify SET devices. In addition, a model based on an equivalent circuit diagram has been developed to simulate the actual behavior of the CCC, taking into account the magnetic and electrical aspects involved. This simulation allows the quantification of the error due to currents leakage through parasitic capacitances surrounding the windings. Results of the simulation indicate that this error reaches 10 10, which is less, by two orders of magnitude, than the maximum tolerable error: 10 8. Results obtained experimentally and by simulation provide new improvement elements in the design of high ratio CCCs. The developed model, once inserted into an optimization routine, can also be a very useful design tool of CCCs.
|
54 |
Synthesis of Insecticidal Mono- and Diacylhydrazines for Disruption of K+ Voltage-Gated Channels, and Elucidation of Regiochemistry and Conformational Isomerism by NMR Spectroscopy and ComputationClements, Joseph Shelby II 05 June 2017 (has links)
Based on the success of diacyl-tert-butylhydrazines RH-5849 and RH-1266 in controlling agricultural crop pests, we endeavored to synthesize our own diacylbenzyl- and arylhydrazine derivatives for use against the malaria vector Anopheles gambiae. In the process of producing a library of compounds for assay against An. gambiae, it became clear that employing regioselective acylation techniques (in molecules that feature two nucleophilic, acyclic nitrogen atoms α to one another) would be imperative. Synthesis of the library derivatives proceeded rapidly and after topical assay, we found three compounds that were more toxic than the RH-series leads. One of the three displayed an LD50 value of half that of RH-1266, though patch clamp assay concluded that toxicity was not necessarily linked to inhibition of mosquito K+ channel Kv2.1.
The acylation of monoarylhydrazines appears simple, but its regioselectivity is poorly understood when assumed as a function of basicity correlating to nucleophilic strength. We determined the ratio of the rate constants for distal to proximal N-acylation using 19F NMR spectroscopic analysis of reactions of 4-fluorophenylhydrazine with limiting (0.2 equiv) acylating agent in the presence of various bases. Acid anhydrides gave consistent preference for distal acylation. The selectivity of acylation by acyl chlorides when using pyridine gives strong distal preference, whereas use of triethylamine or aqueous base in conjunction with aroyl chlorides showed a moderate preference for proximal acylation. This observation yielded a convenient one-step method to synthesize proximal aroylarylhydrazines in yields comparable or superior to that provided by the standard three-step literature approach. Combined with NMR evidence of the distal nitrogen as the unambigiously stronger base of the two nitrogens, we propose a single electron transfer mechanism that predicts the regiochemistry of arylhydrazines toward acylating agents better than the nucleophilicity model based on pKa values.
While synthesizing the acylhydrazine library for assay against An. gambiae, NMR spectroscopy revealed rotational isomerisms of two types: chiral helicity (M)/(P) and acyl (E)/(Z)-isomerism due to hindered rotation. Variable temperature NMR allowed the measurement of N-N bond rotational barriers, as well as estimate the barrier of (E)/(Z) interconversion. We obtained the X-ray crystal structures of four diacylhydrazines to test this hypothesis and revealed both the twist conformation around the N-N bond axis and (E)/(Z)-isomerism around the proximal acyl group. Computation (which agreed with the crystal structures) allowed us to estimate which (E)/(Z)-isomers were most likely being observed in solution at room temperature by NMR spectroscopy. In addition, we were able to calculate transition structures corresponding to N-N bond rotational barriers of (E,Z)- and (Z,Z)-isomers of model molecules and rationalize the difference in coalescence temperatures between (E,Z)- and (Z,Z)-isomers. / Ph. D. / Herein we present the work of both synthesizing and characterizing the mosquitocidal and chemical properties of acylhydrazines. Part of the challenge of working with hydrazines comes in part from deceptive comparisons to amines and ammonia; hydrazine is as different from ammonia as hydrogen peroxide is from water. We were successful in identifying effective synthetic techniques to obtain our desired acylhydrazines reliably and managed to discover compounds that were better at eliminating <i>Anopheles gambiae</i> (the african malaria mosquito vector) than lead compounds from previous researchers. In the process of making the library of compounds for mosquito testing, we explored hydrazine reactivity toward acylating agents in a direct and deeper way than previous work, as well as their dynamic structural features. We employed a battery of techniques, including NMR, X-ray crystallography, and computational molecular modeling to understand these molecules and possibly contribute insight into their biochemical efficacy.
|
55 |
Intégration hybride de transistors à un électron sur un noeud technologique CMOS / Hybrid integration of single electron transistor on a CMOS technology nodeJouvet, Nicolas 21 November 2012 (has links)
Cette étude porte sur l’intégration hybride de transistors à un électron (single-electron transistor, SET) dans un noeud technologique CMOS. Les SETs présentent de forts potentiels, en particulier en termes d’économies d’énergies, mais ne peuvent complètement remplacer le CMOS dans les circuits électriques. Cependant, la combinaison des composants SETs et MOS permet de pallier à ce problème, ouvrant la voie à des circuits à très faible puissance dissipée, et à haute densité d’intégration. Cette thèse se propose d’employer pour la réalisation de SETs dans le back-end-of-line (BEOL), c'est-à-dire dans l’oxyde encapsulant les CMOS, le procédé de fabrication nanodamascène, mis au point par C. Dubuc. / This study deals with the hybrid integration of Single Electron Transistors (SET) on a CMOS technology node. SET devices present high potentiels, particularly in terms of energy efficiency, but can't completely replace CMOS in electrical circuits. However, SETs and CMOS devices combination can solve this issue, opening the way toward very low operating power circuits, and high integration density. This thesis proposes itself to use for Back-End-Of-Line (BEOL) SETs realization, meaning in the oxide encapsulating CMOS, the nanodamascene fabrication process devised by C. Dubuc.
|
56 |
Transistors mono-electroniques double-grille : Modélisation, conception and évaluation d’architectures logiques / Double-gate single electron transistors : Modeling, design et évaluation of logic architecturesBounouar, Mohamed Amine 23 July 2013 (has links)
Dans les années à venir, l’industrie de la microélectronique doit développer de nouvelles filières technologiques qui pourront devenir des successeurs ou des compléments de la technologie CMOS ultime. Parmi ces technologies émergentes relevant du domaine ‘‘Beyond CMOS’’, ce travail de recherche porte sur les transistors mono-électroniques (SET) dont le fonctionnement est basé sur la quantification de la charge électrique, le transport quantique et la répulsion Coulombienne. Les SETs doivent être étudiés à trois niveaux : composants, circuits et système. Ces nouveaux composants, utilisent à leur profit le phénomène dit de blocage de Coulomb permettant le transit des électrons de manière séquentielle, afin de contrôler très précisément le courant véhiculé. Ainsi, le caractère granulaire de la charge électrique dans le transport des électrons par effet tunnel, permet d’envisager la réalisation de transistors et de cellules mémoires à haute densité d’intégration, basse consommation. L’objectif principal de ce travail de thèse est d’explorer et d’évaluer le potentiel des transistors mono-électroniques double-grille métalliques (DG-SETs) pour les circuits logiques numériques. De ce fait, les travaux de recherches proposés sont divisés en trois parties : i) le développement des outils de simulation et tout particulièrement un modèle analytique de DG-SET ; ii) la conception de circuits numériques à base de DGSETs dans une approche ‘‘cellules standards’’ ; et iii) l’exploration d’architectures logiques versatiles à base de DG-SETs en exploitant la double-grille du dispositif. Un modèle analytique pour les DG-SETs métalliques fonctionnant à température ambiante et au-delà est présenté. Ce modèle est basé sur des paramètres physiques et géométriques et implémenté en langage Verilog-A. Il est utilisable pour la conception de circuits analogiques ou numériques hybrides SET-CMOS. A l’aide de cet outil, nous avons conçu, simulé et évalué les performances de circuits logiques à base de DG-SETs afin de mettre en avant leur utilisation dans les futurs circuits ULSI. Une bibliothèque de cellules logiques, à base de DG-SETs, fonctionnant à haute température est présentée. Des résultats remarquables ont été atteints notamment en terme de consommation d’énergie. De plus, des architectures logiques telles que les blocs élémentaires pour le calcul (ALU, SRAM, etc.) ont été conçues entièrement à base de DG-SETs. La flexibilité offerte par la seconde grille du DG-SET a permis de concevoir une nouvelle famille de circuits logiques flexibles à base de portes de transmission. Une réduction du nombre de transistors par fonction et de consommation a été atteinte. Enfin, des analyses Monte-Carlo sont abordées afin de déterminer la robustesse des circuits logiques conçus à l'égard des dispersions technologiques. / In this work, we have presented a physics-based analytical SET model for hybrid SET-CMOS circuit simulations. A realistic SET modeling approach has been used to provide a compact SET model that takes several conduction mechanisms into account and closely matches experimental SET characteristics. The model is implemented in Verilog-A language, and can provide suitable environment to simulate hybrid SET-CMOS architectures. We have presented logic circuit design technique based on double gate metallic SET at room temperature. We have also shown the flexibility that the second gate can bring in order to configure the SET into P-type and N-type. Given that the same device is utilized, the circuit design approach exhibits regularity of the logic gate that simplifies the design process and leads to reduce the increasing process variations. Afterwards, we have addressed a new Boolean logic family based on DG-SET. An evaluation of the performance metrics have been carried out to quantify SET technology at the circuit level and compared to advanced CMOS technology nodes. SET-based static memory was achieved and performances metrics have been discussed. At the architectural level, we have investigated both full DG-SET based arithmetic logic blocks (FA and ALU) and programmable logic circuits to emphasize the low power aspect of the technology. The extra power reduction of SETs based logic gates compared to the CMOS makes this technology much attractive for ultra-low power embedded applications. In this way, architectures based on SETs may offer a new computational paradigm with low power consumption and low voltage operation. We have also addressed a flexible logic design methodology based on DG-SET transmission gates. Unlike conventional design approach, the XOR / XNOR behavior can be efficiently implemented with only 4 transistors. Moreover, this approach allows obtaining reconfigurable XOR / XNOR gates by swapping the cell biasing. Given that the same device is utilized, the structure can be physically implemented and established in a regular manner. Finally, complex logic gates based on DG-SET transmission gates offer an improvement in terms of transistor device count and power consumption compared to standard complementary SETs implementations.Process variations are introduced through our model enabling then a statistical study to better estimate the SET-based circuit performances and robustness. SET features low power but limited operating frequency, i.e. the parasitics linked to the interconnects reduce the circuit operating frequency as the SET Ion current is limited to the nA range. In term of perspectives: i) detailed studying the impact on SET-based logic cells of process variation and random back ground charge ii) considering multi-level computational model and their associate architectures iii) investigating new computation paradigms (neuro-inspired architectures, quantum cellular automata) should be considered for future works.
|
57 |
Controlling electron transport : quantum pumping and single-electron tunneling oscillations / Contrôle du transport électronique : pompage quantique et oscillations tunnel à un électronNegri, Carlotta 14 December 2012 (has links)
Exploiter des effets dépendants du temps pour induire et contrôler des courants à travers des conducteurs mésoscopiques et nanoscopiques est un enjeu majeur dans le domaine du transport quantique. Dans cette thèse, nous considérons deux systèmes de taille nanométrique pour lesquels un courant est induit grâce au couplage entre champs extérieurs dépendants du temps et le transport d'électrons. Nous étudions d'abord un problème de pompage quantique au sein d'un système à trois sites en configuration d'anneau, en considérant la possibilité d'induire un courant continu par modulation temporelle des paramètres de contrôle. Nous nous intéressons en particulier à la transition entre régime adiabatique et antiadiabatique en présence d'un mécanisme de dissipation modélisé par un couplage entre le système et un bain extérieur.Nous montrons que le modèle dissipatif admet une solution analytique complète valable pour la composante DC du courant à fréquence arbitraire. Ceci nous permet de bien comprendre comment le courant induit dépend de la fréquence de pompage. Nous nous concentrons ensuite sur un autre système de contrôle du courant exploitant le phénomène des oscillations tunnel à un électron (SETOs). Contrairement au cas précédent, ici la circulation d'un courant continu à travers un circuit comportant une jonction tunnel produit, pour le régime approprié, un courant quasi-périodique d'électrons. On étudie le spectre de bruit à température nulle d'une jonction tunnel dans différents environnements résistifs dans le but de déterminer les limites du régime des SETOs et de quantifier leur degré de périodicité. Nous généralisons par la suite les résultats à température finie et discutons des effets des fluctuations quantiques. / Exploiting time-dependent effects to induce and control currents through mesoscopic and nano\-scopic conductors is a major challenge in the field of quantum transport. In this dissertation we consider two nanoscale systems in which a current can be induced through intriguing mechanisms of coupling between excitations by external fields and electron transport.We first study a quantum pumping problem, analyzing the possibility to induce a DC response to an AC parametric driving through a three-site system in a ring configuration. We are interested in particular in the crossover between adiabatic and antiadiabatic driving regimes and in the presence of dissipation, which is accounted for by coupling with an external bath. We show that for a clever choice of this coupling the dissipative model admits a full analytical solution for the steady state current valid at arbitrary frequency, which allows us to fully understand the pumping-frequency dependence of the induced current. We then focus on a different current-controlling scheme exploiting the phenomenon of single-electron tunneling oscillations (SETOs). In this case, opposite to what happens for pumping, an AC effect, an almost periodic current of single electrons, arises through a tunnel junction circuit as a consequence of a DC bias. We study the zero-temperature noise spectrum of a tunnel junction in different resistive environments with the aim to determine the boundaries of the SETOs regime and quantify their quality in terms of periodicity. We then discuss the finite-temperature generalization and the possibility to account for the effects of quantum fluctuations.
|
58 |
Energétique dans les dispositifs à un seul électron basés sur des îlots métalliques et des points quantiques / Energetics in metallic-island and quantum-dot based single-electron devicesDutta, Bivas 19 November 2018 (has links)
Aujourd'hui, nos appareils électroniques sont de plus en plus densément composés de composants nanoélectroniques. En conséquence, la dissipation de chaleur produite dans ces circuits augmente également énormément, provoquant une déperdition d’énergie considérable, en pure perte. Les effets thermoélectriques entrent en jeu ici car ils permettent d'utiliser cette chaleur perdue pour produire un travail utile. Par conséquent, l’étude du transport thermique et de l’effet thermoélectrique dans les nanostructures revêt une importance significative du point de vue scientifique et technologique.Dans cette thèse, nous présentons nos études expérimentales du transport thermique et thermoélectrique dans différents types de dispositifs à un seul électron, où le flux électronique peut être contrôlé au niveau de l'électron unique.Tout d’abord, nous montrons la mesure du transport de chaleur contrôlé par la grille dans un transistor à un seul électron (SET), agissant comme un commutateur thermique entre deux réservoirs. Nous déterminons la conductance thermique à l’aide d’un bilan thermique en régime permanent prenant en compte les différents chemins du flux de chaleur. La comparaison de la conductance thermique du SET avec sa conductance électrique indique une forte violation de la loi de Wiedemann-Franz.Deuxièmement, nous étendons l’étude du transport thermique dans les dispositifs à un seul électron dans le régime de boîte quantique, où, outre les interactions de Coulomb, il faut également prendre en compte les différents niveaux électroniques discrets. Nous discutons du bilan thermique entre deux réservoirs de chaleur couplés par un seul niveau de point quantique, et de la dissipation des électrons tunnel dans les contacts. Cela produit des formes de diamant de Coulomb dans la carte de température électronique de la source, en fonction de la polarisation et de la tension de grille.Enfin, nous présentons la mesure du transport thermoélectrique dans une jonction à boîte quantique unique, du régime de couplage faible au régime de couplage fort Kondo. Nos expériences introduisent une nouvelle façon de mesurer le pouvoir thermoélectrique en réalisant une condition de circuit ouvert quasi-parfaite. Le pouvoir thermoélectrique dans une boîte faiblement couplée montre le comportement e-périodique avec la charge induite par la grille, alors qu’il montre une période distincte de 2e en présence de corrélation Kondo. L’étude de la dépendance thermique révèle que la résonance de Kondo n’est pas toujours au niveau de Fermi, mais qu’elle peut être légèrement décalée, en accord avec les prédictions théoriques.Cette étude ouvre la porte à l’étude de transistors à une boîte quantique unique dont les propriétés thermodynamiques sont régies par les lois de thermodynamique quantique. / At this age of technologically advanced world, the electronic devices are getting more and more densely packed with micro-electronic elements of nano-scale dimension. As a result the heat dissipation produced in these microelectronic-circuits is also increasing immensely, causing a huge amount of energy loss without any use. The textit{thermoelectric effects} come into play here as one can use this wasted heat to produce some useful work with the help of thermoelectric conversion. In order to achieve such a textit{heat engine} with a reasonably high efficiency, one needs to understand its thermal behavior at the basic level. Therefore, the study of thermal transport and thermoelectric effect in nano-structures has significant importance both from scientific and application point of view.In this thesis we present the experimental studies of thermal and thermoelectric transport in different kinds of single-electron devices, where the electronic flow can be controlled at the single electron level.First, we demonstrate the measurement of gate-controlled heat transport in a Single-Electron Transistor ($SET$), acting as a heat switch between two heat reservoirs. The measurement of temperature of the leads of the $SET$ allows us to determine its thermal conductance with the help of a steady state heat-balance among all possible paths of heat flow. The comparison of thermal conductance of the $SET$ with its electrical conductance indicates a strong violation of the Wiedemann-Franz (WF) law away from the charge degeneracy.Second, we extend the study of thermal transport in single-electron devices to the quantum limit, where in addition to the Coulomb interactions the quantum effects are also need to be taken into account, and therefore the individual discrete electronic levels take part in the transport process. We discuss the heat-balance between two heat reservoirs, coupled through a single Quantum-Dot ($QD$) level, and the dissipation of the tunneling electrons on the leads. This produces Coulomb-diamond shapes in the electronic-temperature map of the `source' lead, as a function of bias and gate voltage.Third, we present the measurement of thermoelectric transport in a single $QD$ junction, starting from the weak coupling regime to the strong coupling-Kondo regime. The experiments introduces a new way of measuring thermovoltage realizing a close to perfect open-circuit condition. The thermopower in a weakly coupled $QD$ shows an expected `$e$' periodic behavior with the gate-induced charge, while it shows a distinct `$2e$' periodic feature in the presence of Kondo spin-correlation. The temperature dependence study of the Kondo-correlated thermopower reveals the fact that the Kondo-resonance is not always pinned to the Fermi level of the leads but it can be slightly off, in agreement with the theoretical predictions.This study opens the door for accessing a single $QD$ junction to operate it as a $QD$-heat engine, where the thermodynamic properties of the device are governed by the laws of textit{quantum thermodynamics}.
|
59 |
Réalisation de transistors à un électron par encapsulation d’îlots nanométriques de platine dans une matrice diélectrique en utilisant un procédé ALD / Building single electron transistors from platinum nano-island matrices produced via atomic layer depositionThomas, Daniel 15 December 2017 (has links)
L'introduction du transistor à un électron (SET) a secoué l'industrie des semi-conducteurs, avec des promesses d'efficacité inégalée. Cependant, le coût et la complexité associés à la réalisation d'un fonctionnement stable ont fortement entravé leur adoption. Après être tombé en dehors des grâces de l'industrie, la recherche universitaire a continué à pousser, démontrant des techniques novatrices pour la création de SET. Au cœur de ce problème de stabilité, il y a le besoin de construire de manière contrôlable des nanoislands de moins de 10 nm. Parmi les méthodes disponibles pour cette formation nanoisland, le dépôt de couche atomique (ALD) se distingue comme un processus hautement contrôlable industriellement. La deuxième barrière à l'entrée est la création d'électrodes nanogap, utilisées pour injecter du courant à travers ces nanoislands, pour lesquelles les chercheurs se sont largement appuyés sur des techniques de fabrication non évolutives comme la lithographie par faisceau d'électrons et le faisceau ionique focalisé. La technique d'évaporation de bord d'ombre surmonte les problèmes de complexité et d'échelle de la fabrication de nanogap, ouvrant de nouvelles possibilités. Dans ce travail, ALD sera démontré comme une superbe technique pour la culture de vastes réseaux 3D de nanoparticules de platine sous 2nm encapsulées dans Al2O3. ALD a fourni un moyen de faire croître ces matrices de nanoparticules en un seul processus, sous vide et à basse température. Grâce à l'évaporation du bord d'ombre, la lithographie UV a ensuite été utilisée pour former des électrodes nanogap avec des largeurs latérales élevées (100μm), avec des écarts démontrés au-dessous de 7 nm. La combinaison de ces techniques aboutit à un procédé de fabrication à haut rendement et à faible besoin pour la construction de SET complets. A partir des transistors résultants, de fines lamelles ont été préparées à l'aide de FIB et des modèles 3D ont été reconstruits par tomographie TEM pour analyse. La caractérisation électrique a été effectuée jusqu'à 77K, avec une modélisation révélant le transport de Poole-Frenkel en parallèle à un éventuel cotunneling. Des blocus de Coulomb stables, la signature des SET, ont été observés avec une périodicité régulière et étaient identifiables jusqu'à 170K. L'optimisation de ce processus pourrait produire des SETs de surface élevée capables de fonctionner de manière stable à température ambiante. / The introduction of the single electron transistor (SET) shook the semiconductor industry, with promises of unrivaled efficiency. However, the cost and complexity associated with achieving stable operation have heavily hindered their adoption. Having fallen out of the graces of industry, academic research has continued to push, demonstrating novel techniques for SET creation. At the core of this stability issue is a need to controllably build nanoislands smaller than 10nm. Among the methods available for this nanoisland formation, atomic layer deposition (ALD) sets itself apart as an industrially scalable, highly controllable process. The second barrier to entry is the creation of nanogap electrodes, used to inject current through these nanoislands, for which researchers have leaned heavily on non-scalable fabrication techniques such as electron beam lithography and focused ion beam. The shadow edge evaporation technique overcomes the complexity and scaling issues of nanogap fabrication, opening new possibilities. In this work, ALD will be demonstrated as a superb technique for growing vast 3D arrays of sub 2nm platinum nanoparticles encapsulated in Al2O3. ALD provided a means of growing these nanoparticle matrices in a single process, under vacuum, and at low temperatures. Through shadow edge evaporation, UV lithography was then utilized to form nanogap electrodes with high lateral widths (100µm), with gaps demonstrated below 7nm. The combination of these techniques results in a high yield, low requirement fabrication process for building full SETs. From the resulting transistors, thin lamellas were prepared using FIB and 3D models were reconstructed via TEM tomography for analysis. Electrical characterization was performed down to 77K, with modeling revealing Poole-Frenkel transport alongside possible cotunneling. Stable Coulomb blockades, the signature of SETs, were observed with regular periodicity and were identifiable up to 170K. Optimization of this process could yield high surface area SETs capable of stable operation at room temperature.
|
60 |
Mesures résolues en temps dans un conducteur mésoscopique / Time resolved measurements in a mesoscopic conductorRoussely, Grégoire 07 July 2016 (has links)
Au cours de la dernière décennie, un important effort a été fait dans le domaine des conducteurs électroniques de basse dimensionnalité afin de réaliser une électronique à électrons uniques. Une idée particulièrement attractive étant de pouvoir contrôler complétement la phase d’un électron unique volant pour transporter et manipuler de l’information quantique dans le but de construire un qubit volant. L’injection contrôlée d’électrons uniques dans un système électronique bidimensionnel balistique peut être fait grâce à une source d’électrons uniques basée sur des pulses de tensions lorentziens sub-nanosecondes. Une telle source peut aussi être utilisée pour mettre en évidence de nouveaux phénomènes d’interférences électroniques. Lorsqu’un pulse de tension court est injecté dans un interféromètre électronique, de nouveaux effets d’interférences sont attendus du fait de l’interaction du pulse avec les électrons de la mer de Fermi. Pour la réalisation de cette expérience, il est important de connaître avec précision la vitesse de propagation du paquet d’onde électronique créé par le pulse.Dans cette thèse, nous présentons des mesures résolues en temps d’un pulse de tension court (<100 ps) injecté dans un fil quantique 1D formé dans gaz d’électron bidimensionnel qui nous ont permis de déterminer sa vitesse de propagation. Nous montrons que le pulse se propage bien plus vite que la vitesse de Fermi d’un système sans interaction. La vitesse de propagation est augmentée par les interactions électron-électron. Pour un fil quantique contenant un grand nombre de modes, la vitesse mesurée est en excellent accord avec la vitesse d’un plasmon dans un système 2D en présence de grilles métalliques. En modifiant le potentiel de confinement électrostatique et donc l’intensité des interactions, nous montrons qu’il est possible de contrôler la vitesse de propagation. Nous avons ensuite étudié un interféromètre électronique à deux chemins basé sur deux fils couplés par une barrière tunnel. Nos mesures préliminaires font ressortir une signature qui peut être attribuée à des oscillations tunnel cohérentes des électrons injectés dans ce système. Dans un future proche, cet interféromètre pourrait être utilisé pour mettre en évidence ces nouveaux effets spectaculaires dus à l’interaction du pulse avec les électrons de la mer de Fermi. / Over the past decade, an important effort has been made in the field of low dimensional electronic conductors towards single electron electronics with the goal to gain full control of the phase of a single electron in a solid-state system. A particular appealing idea is to use a single flying electron itself to carry and manipulate the quantum information, the so-called solid state flying qubit. On demand single electron injection into such a ballistic two-dimensional electron system can be realized by employing the recently developed single electron source based on sub-nanosecond lorentzian voltage pulses. Such a source could also be used to reveal interesting new physics. When a short voltage pulse is injected in an electronic interferometer, novel interference effects are expected due to the interference of the pulse with the surrounding Fermi sea. For the realization of such experiments it is important to know with high accuracy the propagation velocity of the electron wave packet created by the pulse.In this thesis, we present time resolved measurements of a short voltage pulse (<100 ps) injected into a 1D quantum wire formed in a two-dimensional electron gas and determine its propagation speed. We show that the voltage pulse propagates much faster than the Fermi velocity of a non-interacting system. The propagation speed is enhanced due to electron interactions within the quantum wire. For a quantum wire containing a large number of modes, the measured propagation velocity agrees very well with the 2D plasmon velocity for a gated two-dimensional electron gas. Increasing the confinement potential allows to control the strength of the electron interactions and hence the propagation speed. We then have studied an electronic two-path interferometer based on two tunnel-coupled wires. Our preliminary measurements show a signature that can be attributed to the coherent tunneling of the electrons injected into this system. In the near future, this system could be used to reveal these new striking effects due to the interaction of the voltage pulse with the Fermi sea.
|
Page generated in 0.0569 seconds