91 |
Adaptive finite elements for a contact problem in elastoplasticity with Lagrange techniquesWiedemann, Sebastian 18 March 2013 (has links)
Das Thema dieser Dissertation ist die Herleitung und numerische Analyse von finiten Elementen für ein Problem in der Elastoplastizität mit Kontaktbedingungen. Die hergeleiteten finite Elemente Verfahren basieren auf einer Formulierung als Sattelpunktproblem und der Nutzung von Polynomen höherer Ordnung. Die Analyse der vorgestellten Verfahren beginnt mit dem Zeigen der Wohldefiniertheit und der Konvergenz. Im nächsten Schritt werden a priori Abschätzungen der Konvergenzraten gezeigt. Weiterhin führt die Einführung von Lagrange Multiplikatoren zu einem einheitlichen Ansatz zur a posteriori Abschätzung des Diskretisierungfehlers unter der Verwendung von Elementen höherer Ordnung. Zusätzlich ermöglicht es der Zugang über Lagrange Multiplikatoren die Äquivalenz der Diskretisierungsfehler in den Spannungen und in den Energien für finite Elemente niederer Ordnung zu zeigen, was insbesondere neu für Viereckselemente ist. Diese Äquivalenz wiederum erlaubt nun den Beweis der Konvergenz von adaptiven finiten Elementen niederer Ordnung. Für Dreieckselemente wird sogar die optimale Konvergenz bewiesen. Die theoretischen Erkenntnisse werden durch numerische Experimente bestätigt. / The topic of this thesis is the derivation and analysis of some finite element schemes for a contact problem in elastoplasticity. These schemes are based on the formulation of the models as saddle point problems and use finite element spaces of arbitrary polynomial degrees. In this thesis, these new approaches with higher-order finite elements are shown to be well defined and convergent. Moreover, some a~priori estimates on the rates of convergences are proven. The use of Lagrange multipliers in the saddle point formulation yields a coherent approach to reliable a~posteriori error estimates for the proposed higher-order schemes. Additionally, the Lagrange multipliers are used to show the equivalence of the errors of the stresses and the energies, for low order finite elements using triangular or quadrilateral cells. For the first time, this allows for a proof of convergence for quadrilateral-based adaptive finite elements. Furthermore, the approach based on triangular cells is shown to be of optimal convergence. The theoretical findings are confirmed by numerical experiments.
|
92 |
Phase transitions in the evolution of partially ordered setsTaraz, Anuschirawan Ralf 06 January 1999 (has links)
Unter dem Evolutionsprozeß eines Objekts, das aus einer gegebenen Klasse zufällig ausgewählt wird, versteht man das folgende Gedankenexperiment. Zu einem geeigneten Parameter der Objekte der Klasse betrachtet man die Teilklasse derjenigen Objekte, bei denen dieser Parameter einen bestimmten Wert x annimmt. Dadurch stellen sich die folgenden Fragen: Wie sieht ein typisches Objekt dieser Teilklasse aus? Wieviele Objekte gibt es in der Teilklasse? Und: Wie verändern sich die Antworten auf die ersten beiden Fragen, wenn sich x verändert? Die vorliegende Dissertation behandelt Phasenübergänge im Evolutionsprozeß teilweiser Ordnungen und bestimmt die Anzahl teilweiser Ordnungen mit einer gegebenen Anzahl vergleichbarer Paare. Wir bezeichnen durch Pn,d die Klasse aller teilweisen Ordnungen mit n Punkten und dn2 vergleichbaren Paaren. 1978 bestimmte Dhar |Pn,d| im Intervall 1/8 < d < 3/16 und zeigte, daß hier eine typische Ordnung aus drei "Ebenen" besteht. 1979 bestimmten Kleitman und Rothschild |Pn,d| im Intervall 0 < d < 1/8 und zeigten, daß hier eine typische Ordnung aus zwei Ebenen besteht, also bipartit ist. Das Hauptergebnis der Dissertation ist es, ein vollständiges Bild des Evolutionsprozesses zu geben. Wir bestimmen |Pn,d| im gesamten Intervall 0 < d < 1/2 und zeigen, daß es unendlich viele Phasenübergänge gibt. Abschließend beschreiben wir, wie sich die Struktur einer typischen Ordnung während dieser Phasen verändert. / The evolution process of a random structure from a certain class denotes the following "experiment". Choose a parameter of the objects in the class under consideration and consider only the subclass of those objects where the parameter is equal to a fixed value x. Then the following questions arise quite naturally: What does a typical object from this subclass look like? How many objects are there in this subclass? And how do the answers to the first two questions change when x changes? This thesis investigates the phase transitions in the evolution of partially ordered sets and determines the number of partially ordered sets with a given number of comparable pairs. Denote by Pn,d the class of all n-point posets with dn2 comparable pairs. In 1978, Dhar determined |Pn,d| in the range 1/8 < d < 3/16 and showed that here a typical poset consists of three layers. In 1979, Kleitman and Rothschild determined |Pn,d| in the range 0 < d < 1/8 and showed that here a typical poset consists of two layers, i.e. it is bipartite. The main result of this thesis is to complete the picture by describing the whole evolution process of Pn,d in the range 0 < d < 1/2. We determine |Pn,d| for any d and show that there exist an infinite number of phase transitions. Finally we describe how the structure of a typical partially ordered set changes during these phases.
|
93 |
Pattern formation in magnetic thin filmsCondette, Nicolas 24 May 2011 (has links)
Die vorliegende Arbeit beschäftigt sich mit einer Klasse von Variationsproblemen, die im Kontext des Ferromagnetismus entstehen. Es soll hierbei ein numerischer und analytischer Hintergrund zur Behandlung von harten magnetischen dünnen Filmen mit senkrechter Anisotropie gegeben werden. Bei magnetischen dünnen Filmen handelt es sich um Schichten von magnetischen Materialien mit Dicken von wenigen Mikrometern bis hin zu einigen Nanometern. Ausgangspunkt der Betrachtungen ist ein Modell von Landau und Lifshitz, das die Grundzustände der Magnetisierung in einem dreidimensionalen Körpers mit den Minimierer eines nichtkonvexen und nichtlokalen Energiefunktionals, der sogenannten mikromagnetischen Energie, verbindet. Unter der Annahme sehr kleiner Filmdicken wird aus dem betrachteten Modell ein zwei-dimensionales Modell hergeleitet. Anschließend wird mit Hilfe der Gamma-Konvergenz die Konvergenz zu einem Sharp-Interface-Modell gezeigt. Das resultierende Energiefunktional besteht aus konkurrierenden Interface- und Dipolenergieanteilen. Der zweite Teil der Arbeit beschäftigt sich mit der Analyse einer numerischen Methode, die die Lösungen des vorher hergeleiteten Modells approximiert. Hierbei stützen sich die Betrachtungen auf ein relaxiertes Modell, in dem der Interfaceenergiebeitrag durch seine Modica-Mortola Approximation ersetzt und dann der entsprechende L^2 Gradientenfluß betrachtet wird. Die daraus resultierende nichtlineare und nichtlokale parabolische Gleichung wird anschließend durch ein Crank-Nicolson-Verfahren in der Zeitvariablen und einem Fourieransatz für die Raumvariablen diskretisiert. Wir beweisen die Existenz und Eindeutigkeit von Lösungen des numerischen Verfahrens, sowie deren Konvergenz zu Lösungen des anfänglich betrachteten stetigen Modells. Ferner werden auch a priori Fehlerabschätzungen für die numerische Methode hergeleitet. Abschließend werden die analytischen Resultate anhand numerischer Experimente illustriert. / This thesis is concerned with the study of a class of variational problems arising in the context of ferromagnetism. More precisely, it aims at providing a numerical and analytical background to the study of hard magnetic thin films with perpendicular anisotropy. Magnetic thin films are sheets of magnetic materials with thicknesses of a few micrometers down to a few nanometers used mainly in electronic industry, for example as magnetic data storage media for computers. Our initial considerations are based on a model of Landau and Lifshitz that associates the ground states of the magnetization within a three-dimensional body to the minimizers of a nonconvex and nonlocal energy functional, the so-called micromagnetic energy. Under film thickness considerations (thin film regime), we first reduce the aforementioned model to two dimensions and then carry out a Gamma-limit for a sharp-interface model. The resulting energy functional features a competition between an interfacial and a dipolar energy contribution. The second part of the thesis is concerned with the analysis of a numerical method to approximate solutions of the previously derived sharp-interface model. We base our considerations on a relaxed model in which we replace the interfacial energy contribution by its Modica-Mortola approximation, and then study the associated L^2 gradient flow. The resulting evolution equation, a nonlinear and nonlocal parabolic equation, is discretized by a Crank-Nicolson approximation for the time variable and a Fourier collocation method for the space variable. We prove the existence and uniqueness of the solutions of the numerical scheme, the convergence of these solutions towards solutions of the initial continuous model and also derive a-priori error estimates for the numerical method. Finally, we illustrate the analytical results by a series of numerical experiments.
|
94 |
Darstellung von Hysterese-Operatoren mit stückweise monotaffinen Input-Funktionen durch Funktionen auf StringsKlein, Werner Olaf 02 October 2014 (has links)
In Brokate-Sprekels 1996 wurde ein Darstellungsresultat für Hysterese-Operatoren, die auf skalaren, stetigen, stückweise monotonen Funktionen definiert sind, hergeleitet. Dieses erlaubt es, die Operatoren eindeutig aus Funktionalen auf Strings reeller Zahlen, d.h. auf Tupeln aus reellen Zahlen mit beliebiger Länge, bei denen die Vorzeichen der Differenzen aufeinander folgender Paare alternieren, zu gewinnen. In dieser Habilitation wird nun ein Ansatz vorgestellt, um auch für Hysterese-Operatoren mit vektoriellen Input-Funktionen eine Darstellung durch Abbildungen auf einer String-Menge zu ermöglichen. Dabei wird die Rolle der monotonen Funktionen von den neu eingeführten sogenannten monotaffinen Funktionen übernommen, die man erhalten kann, indem man die Ausgabe einer monotonen Funktion auf den reellen Zahlen in eine affine Funktion auf den reellen Zahlen einsetzt. Die Rolle der alternierender Strings wird von den sogenannten Konvexitätstripel-freien Strings mit Elementen aus Vektorraum übernommen, d.h. von den Tupel aus Elementen aus dem Vektorraum, so dass sich kein Eintrag als Konvexkombination seines Vorgängers und seines Nachfolgers schreiben lässt. Das Darstellungsresultat erlaubt es, die Hysterese-Operatoren auf den stetigen, stückweise monotaffinen Input-Funktionen eindeutig aus den Abbildungen auf den Konvexitätstripel-freien Strings zu gewinnen. Damit können dann Eigenschaften des Hysterese-Operators durch Untersuchung der entsprechenden Abbildung bestimmt werden. Es wird ein weiteres Darstellungsresultat vorgestellt, bei dem die Hysterese-Operatoren für Funktionen definiert sind, die endlich viele Sprungstellen haben. Die betrachteten Strings sind jetzt Tupel von Quintupeln. In diesen Quintupeln werden für jede Sprung- und Richtungswechselstelle der Funktion der Funktionswert, der links- und der rechtsseitigen Grenzwert und Informationen über das Verhalten der Funktion in der Nähe dieser Stelle gespeichert. / In Brokate-Sprekels 1996 a representation result for hysteresis operators acting on scalar-valued continuous piecewise monotone functions was derived. Thanks to this result, the operators can be derived in a unique way from the functionals on alternating strings, i.e. on the tuple of real numbers of arbitrary length, such that the sign of the differences between the elements alternates. In this habilitation an ansatz will be presented that allows also to represent hysteresis operators with vector valued input functions by a mapping defined on a set of strings. Here,the monotone functions are replaced by the monotaffine functions, intruded by the author. One can describe these functions by considering the composition of a monotone function on the real numbers with an affine function from the real number to the vector space such that the monotone function is applied first. Instead of alternating strings of real numbers, the so called convexity triple free string are considered. These strings are tuple of elements of the vector space such that no element in the tuple can be written as the convex combination of its predecessor and its successor. Thanks to representation result, one can generate uniquely hysteresis operator on continuous piecewise monotaffine input functions from mappings on the set of all convexity triple free string. This allows to investigate properties of operators by investigating properties of the corresponding mapping. Moreover, a further representation result is presented for hysteresis operators with input functions having a finite number of jumps. The corresponding strings are now tuple of quintuples. In the quintuple for each position of a change of the direction of the input function and for each jump, the corresponding value of the function, its limits from the right and from the left and information about the behavior of the function near to this position are stored.
|
95 |
Resampling-based tuning of ordered model selectionWillrich, Niklas 02 December 2015 (has links)
In dieser Arbeit wird die Smallest-Accepted Methode als neue Lepski-Typ Methode für Modellwahl im geordneten Fall eingeführt. In einem ersten Schritt wird die Methode vorgestellt und im Fall von Schätzproblemen mit bekannter Fehlervarianz untersucht. Die Hauptkomponenten der Methode sind ein Akzeptanzkriterium, basierend auf Modellvergleichen für die eine Familie von kritischen Werten mit einem Monte-Carlo-Ansatz kalibriert wird, und die Wahl des kleinsten (in Komplexität) akzeptierten Modells. Die Methode kann auf ein breites Spektrum von Schätzproblemen angewandt werden, wie zum Beispiel Funktionsschätzung, Schätzung eines linearen Funktionals oder Schätzung in inversen Problemen. Es werden allgemeine Orakelungleichungen für die Methode im Fall von probabilistischem Verlust und einer polynomialen Verlustfunktion gezeigt und Anwendungen der Methode in spezifischen Schätzproblemen werden untersucht. In einem zweiten Schritt wird die Methode erweitert auf den Fall einer unbekannten, möglicherweise heteroskedastischen Fehlerstruktur. Die Monte-Carlo-Kalibrierung wird durch eine Bootstrap-basierte Kalibrierung ersetzt. Eine neue Familie kritischer Werte wird eingeführt, die von den (zufälligen) Beobachtungen abhängt. In Folge werden die theoretischen Eigenschaften dieser Bootstrap-basierten Smallest-Accepted Methode untersucht. Es wird gezeigt, dass unter typischen Annahmen unter normalverteilten Fehlern für ein zugrundeliegendes Signal mit Hölder-Stetigkeits-Index s > 1/4 und log(n) (p^2/n) klein, wobei n hier die Anzahl der Beobachtungen und p die maximale Modelldimension bezeichnet, die Anwendung der Bootstrap-Kalibrierung anstelle der Monte-Carlo-Kalibrierung theoretisch gerechtfertigt ist. / In this thesis, the Smallest-Accepted method is presented as a new Lepski-type method for ordered model selection. In a first step, the method is introduced and studied in the case of estimation problems with known noise variance. The main building blocks of the method are a comparison-based acceptance criterion relying on Monte-Carlo calibration of a set of critical values and the choice of the model as the smallest (in complexity) accepted model. The method can be used on a broad range of estimation problems like function estimation, estimation of linear functionals and inverse problems. General oracle results are presented for the method in the case of probabilistic loss and for a polynomial loss function. Applications of the method to specific estimation problems are studied. In a next step, the method is extended to the case of an unknown possibly heteroscedastic noise structure. The Monte-Carlo calibration step is now replaced by a bootstrap-based calibration. A new set of critical values is introduced, which depends on the (random) observations. Theoretical properties of this bootstrap-based Smallest-Accepted method are then studied. It is shown for normal errors under typical assumptions, that the replacement of the Monte-Carlo step by bootstrapping in the Smallest-Accepted method is valid, if the underlying signal is Hölder-continuous with index s > 1/4 and log(n) (p^2/n) is small for a sample size n and a maximal model dimension p.
|
96 |
Zur Lösung optimaler SteuerungsproblemeNzali, Appolinaire 12 October 2002 (has links)
Schwerpunkt dieser Arbeit ist die Untersuchung einer Klasse von Diskretisierungsmethoden für nichtlineare optimale Steuerungsprobleme mit gewöhnlichen Differentialgleichungen und Steuerungsbeschränkung sowie die Durchführung von numerischen Experimente. Die theoretischen Untersuchungen basieren aus einem gekoppeltes Parametrisierungs-Diskretisierungsschema aus stückweise polinomialen Ansatz für die Steuerung und einen Runge-Kutta-Verfahren zur Integration der Zustands-Differentialgleichung. Die Konvergenzordnung der Lösung wird unter Regularitätsbedingung und Optimalitätsbedingung 2.Ordnung ermittelt. Außerdem wird eine Möglichkeit zur numerischen Berechnung der Gradienten über internen numerischen Differentiation erläutert. Schließlich werden einige numerischen Resultate gegeben und die Abhängigkeiten zur den theoretischen Konvergenzresultate diskutiert. / The focal point of this work is the investigation of a class of discretization methods for nonlinear optimal control problems governed by ordinary differential equations with control restrictions, as well as the implementation of some numerical experiments. The theoretical investigations are based on a coupledparameterization-discretization pattern, a piecewise linear parameterization representation of the control, and the application of a Runge Kutta method for the integration of the differential state equation. The rate of convergence of the solution is obtained with the help of regularity conditions and the second order optimality conditions. Furthermore, we also present in this paper a possibility of the numerical computation of the gradients via numerical differentiation. Finally some numerical results are given and their relationship to the theoretical convergence results are discussed.
|
97 |
Functional analytic approaches to some stochastic optimization problemsBackhoff, Julio Daniel 17 February 2015 (has links)
In dieser Arbeit beschäftigen wir uns mit Nutzenoptimierungs- und stochastischen Kontrollproblemen unter mehreren Gesichtspunkten. Wir untersuchen die Parameterunsicherheit solcher Probleme im Sinne des Robustheits- und des Sensitivitätsparadigma. Neben der Betrachtung dieser problemen widmen wir uns auch einem Zweiagentenproblem, bei dem der eine dem anderen das Management seines Portfolios vertraglich überträgt. Wir betrachten das robuste Nutzenoptimierungsproblem in Finanzmarktmodellen, wobei wir Bedingungen für seine Lösbarkeit formulieren, ohne jegliche Kompaktheit der Unsicherheitsmenge zu fordern, welche die Maße enthält, auf die der Optimierer robustifiziert. Unsere Bedingungen sind über gewisse Funktionenräume beschrieben, die allgemein Modularräume sind, mittels dennen wir eine Min-Max-Gleichung und die Existenz optimalen Strategien beweisen. In vollständigen Märkten ist der Raum ein Orlicz, und nachdem man seine Reflexivität explizit überprüft hat, erhält man zusätzlich die Existenz einer Worst-Case-Maße, die wir charakterisieren. Für die Parameterabhängigkeit stochastischer Kontrollprobleme entwickeln wir einen Sensitivitätsansatz. Das Kernargument ist die Korrespondenz zwischen dem adjungierten Zustand zur schwachen Formulierung des Pontryaginschen Prinzips und den Lagrange-Multiplikatoren, die der Kontrollgleichung assoziiert werden, wenn man sie als eine Bedingung betrachtet. Der Sensitivitätsansatz wird dann auf konvexe Probleme mit additiver oder multiplikativer Störung angewendet. Das Zweiagentenproblem formulieren wir in diskreter Zeit. Wir wenden in größter Verallgemeinerung die Methoden der bedingten Analysis auf den Fall linearer Verträge an und zeigen, dass sich die Mehrheit der in der Literatur unter sehr spezifischen Annahmen bekannten Ergebnisse auf eine deutlich umfassenderer Klasse von Modellen verallgemeinern lässt. Insbesondere erhalten wir die Existenz eines first-best-optimalen Vertrags und dessen Implementierbarkeit. / In this thesis we deal with utility maximization and stochastic optimal control through several points of view. We shall be interested in understanding how such problems behave under parameter uncertainty under respectively the robustness and the sensitivity paradigms. Afterwards, we leave the single-agent world and tackle a two-agent problem where the first one delegates her investments to the second through a contract. First, we consider the robust utility maximization problem in financial market models, where we formulate conditions for its solvability without assuming compactness of the densities of the uncertainty set, which is a set of measures upon which the maximizing agent performs robust investments. These conditions are stated in terms of functional spaces wich generally correspond to Modular spaces, through which we prove a minimax equality and the existence of optimal strategies. In complete markets the space is an Orlicz one, and upon explicitly granting its reflexivity we obtain in addition the existence of a worst-case measure, which we fully characterize. Secondly we turn our attention to stochastic optimal control, where we provide a sensitivity analysis to some parameterized variants of such problems. The main tool is the correspondence between the adjoint states appearing in a (weak) stochastic Pontryagin principle and the Lagrange multipliers associated to the controlled equation when viewed as a constraint. The sensitivity analysis is then deployed in the case of convex problems and additive or multiplicative perturbations. In a final part, we proceed to Principal-Agent problems in discrete time. Here we apply in great generality the tools from conditional analysis to the case of linear contracts and show that most results known in the literature for very specific instances of the problem carry on to a much broader setting. In particular, the existence of a first-best optimal contract and its implementability by the Agent is obtained.
|
98 |
Statistics for diffusion processes with low and high-frequency observationsChorowski, Jakub 11 November 2016 (has links)
Diese Dissertation betrachtet das Problem der nichtparametrischen Schätzung der Diffusionskoeffizienten eines ein-dimensionalen und zeitlich homogenen Itô-Diffusionsprozesses. Dabei werden verschiedene diskrete Sampling Regimes untersucht. Im ersten Teil zeigen wir, dass eine Variante des von Gobet, Hoffmann und Reiß konstruierten Niedrigfrequenz-Schätzers auch im Fall von zufälligen Beobachtungszeiten verwendet werden kann. Wir beweisen, dass der Schätzer optimal im Minimaxsinn und adaptiv bezüglich der Verteilung der Beobachtungszeiten ist. Außerdam wenden wir die Lepski Methode an um einen Schätzer zu erhalten, der zusätzlich adaptiv bezüglich der Sobolev-Glattheit des Drift- und Volatilitätskoeffizienten ist. Im zweiten Teil betrachten wir das Problem der Volatilitätsschätzung für äquidistante Beobachtungen. Im Fall eines stationären Prozesses, mit kompaktem Zustandsraum, erhalten wir einen Schätzer, der sowohl bei hochfrequenten als auch bei niedrigfrequenten Beobachtungen die optimale Minimaxrate erreicht. Die Konstruktion des Schätzers beruht auf spektralen Methoden. Im Fall von niedrigfrequenten Beobachtungen ist die Analyse des Schätzers ähnlich wie diejenige in der Arbeit von Gobet, Hoffmann und Reiß. Im hochfrequenten Fall hingegen finden wir die Konvergenzraten durch lokale Mittelwertbildung und stellen daubt eine Verbindung zum Hochfrequenzschätzer von Florens-Zmirou her. In der Analyse unseres universalen Schätzers benötigen wir scharfe obere Schranken für den Schätzfehler von Funktionalen der Occupation time für unstetige Funktionen. Wir untersuchen eine auf Riemannsummen basierende Approximation der Occupation time eines stationären, reversiblen Markov-Prozesses und leiten obere Schranken für den quadratischen Fehler her. Im Fall von Diffusionsprozessen erhalten wir Konvergenzraten für Sobolev Funktionen. / In this thesis, we consider the problem of nonparametric estimation of the diffusion coefficients of a scalar time-homogeneous Itô diffusion process from discrete observations under various sampling assumptions. In the first part, the low-frequency estimation method proposed by Gobet, Hoffmann and Reiß is modified to cover the case of random sampling times. The estimator is shown to be optimal in the minimax sense and adaptive to the sampling distribution. Moreover, Lepski''s method is applied to adapt to the unknown Sobolev smoothness of the drift and volatility coefficients. In the second part, we address the problem of volatility estimation from equidistant observations without a predefined frequency regime. In the case of a stationary diffusion with compact state space and boundary reflection, we introduce a universal estimator that attains the minimax optimal convergence rates for both low and high-frequency observations. Being based on the spectral method, the low-frequency analysis is similar to the study conducted by Gobet, Hoffmann and Reiß. On the other hand, the derivation of the convergence rates in the high-frequency regime requires local averaging of the low-frequency estimator, which makes it mimic the behaviour of the classical high-frequency estimator introduced by Florens-Zmirou. The analysis of the universal estimator requires tight upper bounds on the estimation error of the occupation time functional for non-continuous functions. In the third part of the thesis, we thus consider the Riemann sum approximation of the occupation time functional of a stationary, time-reversible Markov process. Upper bounds on the squared mean estimation error are provided. In the case of diffusion processes, convergence rates for Sobolev regular functions are obtained.
|
99 |
Gieseker-Petri divisors and Brill-Noether theory of K3-sectionsLelli-Chiesa, Margherita 04 October 2012 (has links)
Diese Dissertation untersucht Brill-Noether-Theorie der algebraischen Kurven, unter besonderer Berücksichtigung von Kurven auf K3-Flächen und Del-Pezzo-Flächen. In Kapitel 2 studieren wir den Gieseker-Petri-Ort GP_g im Modulraum M_g der glatten irreduziblen Kurven vom Geschlecht g. Dieser Ort wird definiert durch Kurven mit einer Brill-Noether-Varietät G^r_d(C), die singulär ist oder deren Dimension größer als erwartet ist. Der Satz von Gieseker-Petri impliziert, dass GP_g mindestens Kodimension 1 hat, und es wurde vermutet, dass er von reiner Kodimension 1 ist. Wir beweisen diese Vermutung für Geschlecht höchstens 13. Dies wird dadurch ermöglicht, dass man für kleine Geschlechter die Dimension der irreduziblen Komponenten von GP_g mittels "ad hoc"-Beweisführungen untersuchen kann. Lazarsfelds Beweis des Gieseker-Petri-Theorems mittels Kurven auf allgemeninen K3-Flächen deutet darauf hin, dass die Brill-Noether-Theorie von K3-Schnitten wichtig ist, um den Gieseker-Petri-Ort besser zu verstehen. Linearscharen von Kurven, die auf K3-Flächen liegen, stehen in tiefgehender Beziehung zu sogenannten Lazarsfeld-Mukai-Vektorbündeln. In Kapitel 3 untersuchen wir die Stabilität der Lazarsfeld-Mukai-Vektorbündel vom Rang 3 auf einer K3-Fläche S, und wir zeigen, dass sie viele Informationen über Netze vom Typ g^2_d auf Kurven in S enthalten. Wenn d größ genug ist, erhalten wir eine obere Schranke für die Dimension der Varietät G^2_d(C). Wenn die Brill-Noether-Zahl negativ ist, beweisen wir, dass jedes g^2_d in einer von einem Geradenbündel induzierten Linearschar enthalten ist, wie von Donagi und Morrison vermutet wurde. Kapitel 4 befasst sich mit Syzygien einer gegebenen Kurve C, die auf einer Del-Pezzo-Fläche liegt. Wir insbesondere, dass C die Greens Vermutung erfüllt, die impliziert, dass die Existenz gewisser spezieller Linearscharen auf C von den Gleichungen ihrer kanonischen Einbettung abgelesen werden kann. / We investigate Brill-Noether theory of algebraic curves, with special emphasis on curves lying on $K3$ surfaces and Del Pezzo surfaces. In Chapter 2, we study the Gieseker-Petri locus GP_g inside the moduli space M_g of smooth, irreducible curves of genus g. This consists, by definition, of curves [C] in M_g such that for some r, d the Brill-Noether variety G^r_d(C), which parametrizes linear series of type g^r_d on C, either is singular or has some components exceeding the expected dimension. The Gieseker-Petri Theorem implies that GP_g has codimension at least 1 in M_g and it has been conjectured that it has pure codimension 1. We prove this conjecture up to genus 13; this is possible since, when the genus is low enough, one is able to determine the irreducible components of GP_g and to study their codimension by "ad hoc" arguments. Lazarsfeld''s proof of the Gieseker-Petri-Theorem by specialization to curves lying on general K3 surfaces suggests the importance of the Brill-Noether theory of K3-sections for a better understanding of the Gieseker-Petri locus. Linear series on curves lying on a K3 surface are deeply related to the so-called Lazarsfeld-Mukai bundles. In Chapter 3, we study the stability of rank-3 Lazarsfeld-Mukai bundles on a K3 surface S, and show it encodes much information about nets of type g^2_d on curves C contained in S. When d is large enough and C is general in its linear system, we obtain a dimensional statement for the variety G^2_d(C). If the Brill-Noether number is negative, we prove that any g^2_d is contained in a linear series which is induced from a line bundle on S, as conjectured by Donagi and Morrison. Chapter 4 concerns syzygies of any given curve C lying on a Del Pezzo surface S. In particular, we prove that C satisfies Green''s Conjecture, which implies that the existence of some special linear series on C can be read off the equations of its canonical embedding.
|
100 |
Eigenschaften pseudo-regulärer Funktionen und einige Anwendungen auf OptimierungsaufgabenFúsek, Peter 26 February 1999 (has links)
im Postscript-Format / PostScript
|
Page generated in 0.0358 seconds