• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 23
  • 13
  • 11
  • 4
  • 1
  • Tagged with
  • 101
  • 101
  • 101
  • 84
  • 61
  • 31
  • 31
  • 31
  • 30
  • 27
  • 27
  • 22
  • 18
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Interfaces mobiles : friction en mouillage nul et dynamiques de fronts

Raux, Pascal 20 December 2013 (has links) (PDF)
Cette thèse discute différentes situations dans lesquelles les interfaces jouent un rôle prépondérant dans la dynamique de gouttes et de fronts liquides. Dans une première partie, nous nous intéressons à des gouttes très mobiles, dans trois situations de mouillage nul. (i) Lorsqu'on dépose un liquide sur une surface portée à une température très supérieure à sa température d'ébullition, un film de vapeur s'intercale entre le liquide et le substrat, empêchant tout contact. (ii) Sur un substrat superhydrophobe, c'est-à-dire un substrat rugueux et hydrophobe, la surface inférieure d'une goutte n'est en contact qu'avec une fraction réduite de solide. (iii) Enfin, lorsqu'on met en contact une goutte avec des grains hydrophobes, elle les capture à sa surface, ce qui l'isole de son substrat. Dans chacun de ces trois cas, nous étudions la friction résiduelle qui se manifeste lorsque ces gouttes dévalent. Nous montrons que le frottement est bien plus faible que celui observé habituellement en mouillage partiel et qu'il a une origine physique différente. Dans une seconde partie, nous étudions des fronts mobiles variés. Lorsqu'un liquide est mis en contact avec des grains, il peut soit l'imprégner si son angle de contact est inférieur à un angle de contact critique, soit rester en surface dans le cas contraire. Dans ce dernier cas, le dévalement d'une goutte entraîne l'érosion du tas de grains : nous nous intéressons à la quantité de grains emportée par la goutte. Par ailleurs, un goutte-à-goutte tombant sur une surface refroidie sous la température de solidification provoque la croissance d'une stalagmite de glace. Enfin, lorsqu'on confine une goutte en caléfaction entre deux plaques parallèles, une série d'instabilités se développe : un anneau se forme, qui grandit ensuite avant de se briser en gouttelettes.
52

Termodinâmica da água e dobramento de proteínas: estudo de modelos em rede / Water thermodynamics and protein folding: studies on lattice models

Marco Aurélio Alves Barbosa 19 September 2008 (has links)
Neste trabalho realizamos dois estudos independentes sobre a termodinâmica de modelos de água e o dobramento de proteínas em rede. / On this work we develop two independent studies on lattice models for water thermodynamics and protein folding.
53

Effet Marangoni aux interfaces fluides / Marangoni effect at fluid interfaces

Le Roux, Sébastien 10 July 2015 (has links)
Nous présentons au cours de ce manuscrit diverses expériences de dépôt de tensioactifs solubles dans l'eau à l'interface entre deux fluides. Après quelques développements théoriques, nous étudions l'étalement de tensioactifs solubles déposés à une interface eau/air. Nous présentons au cours de cette partie deux configurations expérimentales dans lesquelles ces molécules exhibent une vitesse caractéristique d'écoulement induit ainsi qu'une distance finie d'étalement dépendant de la CMC du surfactant utilisé, qui se traduit par l'apparition d'une tache centimétrique à la surface de l'eau. Nous mettons alors au point un protocole de mesure simple et rapide de CMC utilisant notre dispositif expérimental. À cet étalement s'ajoutent une déformation verticale de l'interface, la mise en place d'une double recirculation toroïdale, ainsi qu'une instabilité hydrodynamique de surface tout autour de la tache. La deuxième expérience porte sur l'étalement de tensioactifs solubles à une interface eau/huile. Dans cette expérience, les déformations verticales induites par l'étalement peuvent devenir très importantes, si bien que sous certaines conditions cette déformation crée un trou dans la couche d'huile. Nous nous penchons donc sur l'étude de ces déformations verticales, ainsi que sur les caractéristiques de ce cratère. Enfin, la dernière partie traite du dépôt d'une goutte de Triton X-100 à la surface de l'eau. Ce tensioactif possède la propriété de gélifier lorsqu'il est hydraté, ce qui lui permet de flotter. On observe alors un phénomène d'auto-propulsion de la goutte. Nous nous intéressons plus particulièrement à la structure microscopique de cette phase gel, ainsi qu'aux trajectoires erratiques empruntées par la goutte. / We report experiments about the deposition of water soluble surfactants at the interface between two fluids. After some theoretical developments, we study the spreading of water soluble amphiphiles at the water/air interface. In this part, we present two experimental setups where these molecules show a typical induced flow velocity, and a finite spreading distance, depending on the CMC of surfactant we use, which results in the apparition of a coronna on the surface of the liquid. We then set up a fast and simple CMC measurement protocole using our experimental setup. This spreading induces also a vertical deformation of the interface, a double toroidal recirculation in the bulk, and a beatiful hydrodynamic surface instability all around the coronna. The second experiment is about the spreading of amphiphiles at the interface between oil and water. In this experiment, the vertical deformations induced by the spreading can become so important that under certain circumstances, we manage to create a hole in the oil layer. We focus on the study of these vertical deformations and on the caracteristics of this hole. Finally, the last experiment is about the deposition of a Triton X-100 drop at the water/air interface. This molecule has the ability to gelify when it gets hydrated, allowing him to float. Then we can observe the self propulsion of the droplet. We focus on the microscopic structure of this gel phase, and also on the erratic trajectories followed by the drop.
54

ESTABLISHING THE OPTOELECTRONIC INTERACTIONS BETWEEN CONJUGATED POLYMERS AND ORGANIC RADICALS

Daniel A Wilcox (9116285) 28 July 2020 (has links)
<div> Design rules and application spaces for closed-shell conjugated polymers have been well established in the field of organic electronics, and this has allowed for significant breakthroughs to occur in myriad device platforms [e.g., organic field-effect transistors (OFETs) and organic light-emitting devices (OLEDs)]. Conversely, organic electronic materials that are based on the emerging design motif that includes open-shell stable radicals have not been evaluated in such detail, despite the promise these materials show for charge transfer, light-emission, and spin manipulation platforms. Moreover, recent results have demonstrated that the materials performance of hybrid systems will allow for future applications to harness both of these platform design archetypes to generate composites that combine the performance of current state-of-the-art conjugated polymer systems with the novel functions provided by open-shell species. Thus, establishing the underlying physical phenomena associated with the interactions between both classes of materials is imperative for the effective utilization of these soft materials.</div><div><br></div><div> In the first part of this work, Förster resonance energy transfer (FRET) is demonstrated to be the dominant mechanism by which energy transfer occurs from a common conjugated polymer to various radical species using a combination of experimental and computational approaches. Specifically, this is determined by monitoring the fluorescence quenching of poly(3hexylthiophene) (P3HT) in the presence of three radical species: (1) the galvinoxyl; (2) the 2phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO); and (3) the 4-hydroxy-2,2,6,6tetramethylpiperidine-1-oxyl (TEMPO) radicals. Both in solution and in the solid-state, the galvinoxyl and PTIO radicals show quenching on par with that of a common fullerene electronaccepting derivative. Conversely, the TEMPO radical shows minimal quenching at similar concentrations. Using both ultrafast transient absorption spectroscopy and computational studies, FRET is shown to occur at a significantly faster rate than other competing processes. These findings suggest that long-range energy transfer can be accomplished in applications when radicals that can act as FRET acceptors are utilized, forming a new design paradigm for future applications involving both closed- and open-shell soft materials.</div><div><br></div><div> Following this, addition of the galvinoxyl radical to P3HT is shown to alter the thin film transistor response from semiconducting to conducting. This is accompanied by a modest enhancement in electrical conductivity. This interaction is not seen with either the TEMPO or PTIO radicals. While an increase in charge carrier concentration is observed, the interaction is not otherwise consistent with a simple charge-transfer doping mechanism, due to the mismatched reduction and oxidation potentials of the two species. Additionally, no freeze-out of charge carriers is observed at reduced temperatures. It is also not due to parallel conduction through the radical fraction of the bulk composite, as the radical species is non-conductive. Hole mobility is enhanced at lower concentrations of the radical, but it decreases at higher concentrations due to the reduced fraction of conductive material in the polymer bulk. Despite the increase in mobility at lower concentrations, the activation energy for charge transport is increased by the presence of the radical. This suggests that the radical is not improving the charge transport through filling of deep trap states or by reducing the activation energy for the charge transport reaction; however, the galvinoxyl radical is likely filling shallow trap states within the P3HT for the composite thin film.</div><div><br></div><div> Finally, a novel analysis technique for polymer relaxation is investigated through dielectric spectroscopy of model polyalcohols. An understanding of relaxation phenomena and the physics of amorphous solids in general remains one of the grand open challenges in the field of condensed matter physics. This problem is particularly relevant to organic electronics as many organic electronic materials are found in the amorphous state, and their physical relaxation can lead to undesirable effects such as hysteresis and instability. Current procedures describe relaxation phenomena in terms of empirical functions, but the physical insights provided by this representation are limited. The new approach instead represents the dielectric response as a spectrum of Debye processes. Rather than varying the spectral strength at fixed time points as traditional spectral analysis implicitly does, this approach instead varies the characteristic time of each spectral element while the strength remains fixed. This allows the temperature dependence on relaxation time of each spectral element to be determined, and the <i>α</i>- and <i>β</i>-relaxation are interpreted in light of this analysis. </div><div> </div>
55

Theoretical and Numerical Analysis of Phase Changes in Soft Condensed Matter

Lu, Zijun 28 August 2019 (has links)
No description available.
56

Les fluctuations de surface pour mesurer les propriétés de systèmes complexes en l'absence de sollicitation

Pottier, Basile 26 November 2013 (has links) (PDF)
La dynamique des fluctuations thermiques d'un milieu révèle les propriétés de ce milieu, sans qu'il soit nécessaire de le solliciter. Afin d'exploiter ce principe, nous avons mis au point une technique optique destinée à mesurer des fluctuations spontanées de hauteur de surfaces libres, basée sur la mesure de la déflexion d'un laser réfléchi à la surface. Nous montrons que l'on peut ainsi mesurer les fluctuations de surface de milieux très variés, allant des liquides peu visqueux aux solides viscoélastiques. Les propriétés viscoélastiques du milieu sondé peuvent être déterminées à partir du spectre expérimental des fluctuations. On compare les valeurs obtenues avec des mesures rhéométriques conventionnelles, la technique s'avère être un moyen fiable pour caractériser les propriétés rhéologiques dans une gamme de fréquences allant de 0,1 Hz à quelques dizaines de kHz. Par ailleurs, on s'intéresse à l'influence du confinement sur les fluctuations de surface d'un liquide newtonien. On étudie l'effet du confinement en utilisant des substrats de différentes natures : solide plan, solide en relief et liquide. On montre que les fluctuations de surface dépendent fortement du substrat utilisé. On étudie en particulier le cas où le film liquide est déposé sur une surface solide plane. En créant un effet Marangoni induit par un gradient de température à la surface libre du liquide, on parvient à contrôler l'épaisseur du film sondé. On mesure ainsi les fluctuations de surface de films dont l'épaisseur varie entre 30 nanomètres et quelques micromètres. Les spectres mesurés sont sensibles à la condition hydrodynamique à l'interface liquide-solide et permettent d'évaluer une éventuelle longueur de glissement.
57

Phase Transition In Soft-Condensed Matter Fluids And Contribution To Enzyme Kinetics Including Kinetic Proofreading

Santra, Mantu 07 1900 (has links) (PDF)
The thesis involves computer simulation and theoretical studies of phase transition in soft-condensed matter systems and theoretical understanding of enzyme kinetics along with kinetic proofreading of tRNA-aminoacylation in biological systems. Based on the system and phenomena of interest, the work has be classified into the following four major parts: I. Surface phenomena and surface energy of vapor-liquid interface. II. Condensation of vapor in two and three dimensions. III. Liquid-solid phase transition in polydisperse systems. IV. Enzyme catalysis and kinetic proofreading in biosynthesis. Above mentioned four parts have further been divided into thirteen chapters. In the following we provide a brief chapter-wise outline of the thesis. Part I deals with surface tension and interfacial properties of vapor-liquid interface for Lennard-Jones (LJ) fluid in both two and three dimensions. In Chapter 1, we provide a brief overview of vapor-liquid interface and existing theoretical and computer simulation studies of surface/line tension. In this chapter we also discuss about the existing experimental studies. In Chapter 2, we present computer simulation studies of surface tension in two dimensional Lennard-Jones system. The sensitivity of line tension on range (potential cut-off) of interparticle interaction is discussed in this chapter. We present Density Functional Theory (DFT) of line tension of vapor-liquid interface based on Weeks-Chandler-Anderson (WCA) and Barker-Hendersen (BH) perturbation techniques. We compare the DFT prediction with the computer simulation results. In general, WCA approach has been found to be successful for 3D system in predicting the surface tension. In 2D, however, it does not give good agreement either for phase diagram or for the line tension. In fact, BH also does not give accurate values of the coexistence parameters, however, it predicts better line tension compared to WCA. In Chapter 3 we present both theoretical and computer simulation studies of gas-liquid surface tension for three dimensional Lennard-Jones fluid. We perform non-equilibrium computer simulation study following Transition Matrix Monte Carlo (TMMC) method to obtain surface tension for various ranges of potential and introduce a new scaling relation of surface tension in order to capture both the temperature and interparticle interaction range dependence. The scaling shows excellent agreement with the simulation result and it can also predict the critical temperature with sufficient accuracy. The width of the gas-liquid interface is found to be insensitive to the range of the potential, whereas the density separation of the bulk vapor and liquid phases increases with increasing range of potential. Thus, the major contribution comes from the increasing density separation of the bulk vapor and liquid phases. Part II consists of four chapters, where we focus on the age old problem of nucleation, from the perspective of thermodynamics and kinetics. We account for the rich history of the problem in the introductory Chapter 4. In this chapter we describe various types and examples of the nucleation phenomena, and a brief account of the major theoretical approaches used so far. We begin with the most successful Classical Nucleation Theory (CNT), and then move on to more recent applications of Density Functional Theory (DFT) and other mean-field types of models. We present various experimental techniques used in the literature to obtain rate of nucleation. We conclude with a comparison between the experiments, theories and computational studies. In the next chapter (Chapter 5) we attempt to understand the mechanism of the gas-liquid nucleation in three dimension at large metastability from microscopic point of view. Here we study the nature of sequential growth of all liquid-like clusters (not just the largest cluster) at different degrees of metastability. Therefore, we have ordered the clusters according to their decreasing sizes and identified them in terms of kth largest cluster where, k = 1 denotes the largest cluster in the system, k = 2 represents the second largest and k = 3 is the third largest and so on. We have studied both the free energies and the trajectories of the liquid-like clusters in this extended set of order parameters. We further define Fkl(n) as the free energy of the kth largest cluster with size n. Classical nucleation theory provides an expression of unconditional free energy of a single cluster, F (n) (the free energy of formation of a cluster of size n), which is an intensive property of the system. The study of our conditional free energy surfaces, Fkl(n), reveals a more detailed, microscopic picture of the system’s cluster size distribution that is necessary to understand the kinetics of nucleation and growth at large metastability. The rate of nucleation shows a cross over at kinetic spinodal (the limit of metastability, ∆F1 l = 0). Below kinetic spinodal only one (largest) cluster crosses the critical size through activation whereas above this point more than one cluster grow simultaneously through barrierless diffusion. We present a theoretical analysis of the free energy of kth largest cluster based on order statistics. The theoretical predictions are in excellent agreement with computer simulation results for the range of supersaturation we studied. While the previous chapter focuses on relatively well-studied nucleation mechanism in 3dimensional (3D) LJ system at large metastability, in Chapter 6 we present our studies on the characteristics of the nucleation phenomena in two dimensional Lennard-Jones fluid for different ranges of interparticle interaction. Using various Monte Carlo (MC) methods, we calculate the free energy barrier of nucleation and bulk densities of equilibrium liquid and vapor phases, and also investigate the size and shape of the critical nuclei. We find an interesting interplay between the range of interaction potential and the extent of metastability. The free energy barrier of nucleation strongly depends on the range of interaction potential. The study is carried out at an intermediate level of supersaturation (away from the kinetic spinodal limit). A surprisingly large cutoff (rc � 7.0�, where � is the diameter of LJ particles) in the truncation of the LJ potential is required to obtain converged results. A lower cutoff leads to a substantial deviation in the values of the nucleation barrier, and characteristics of the critical cluster (with respect to full range of interaction). We observe that in 2D system CNT fails to provide a reliable estimate of the free energy barrier. While it is known to slightly overestimate the nucleation barrier in 3D, it underestimates the barrier by � 50% at the saturation ratio S =1.1 (defined as S = P/Pc, where Pc is the coexistence pressure) and at the reduced temperature T � =0.427 (defined as T � = kBT/�, where � is the depth of the potential well). The reason for the marked inadequacy of the CNT in 2D can be attributed to the non-circular nature of the critical clusters. Although the shape becomes increasingly circular and the clusters become more compact with increase in cutoff radius, an appreciable non-circular nature remains even for full potential (without truncation) to make the predictions of CNT inaccurate. In Chapter 7 we report the computer simulation study of nucleation in three dimensional LJ system. At a fixed supersaturation the free energy barrier of nucleation increases with increasing range of interparticle interaction. On increasing range of intermolecular interaction, the kinetic spinodal where the mechanism of nucleation changes from activated barrier crossing to barrierless diffusion, shifts towards the deep metastable region. Both the critical cluster size and pre-critical minimum in the free energy surface of kth largest cluster shift towards the smaller size at their respective kinetic spinodal as we increase the range of potential. We find only a weak non-trivial (other than supersaturation and surface tension) contribution to the free energy barrier of nucleation. Part III consists of two chapters and focuses on the liquid-solid phase transition of polydisperse fluid. In Chapter 8 we introduce polydisperse systems and their classification based on different identities. We describe the importance and abundance of polydisperse system in nature. The theoretical modeling of different polydisperse systems and their extent of applicability have also been presented. We have discussed about the various factors which control the phase diagram and various phenomena related to the structure and phase transition. In Chapter 9 we present computer simulation study on freezing/melting of Lennard-Jones (LJ) fluid at different polydispersities. The freezing/melting of polydisperse LJ fluids presents an interesting case study, because, as the polydispersity increases the energy-entropy balance becomes increasingly unfavorable for the solid to exist as a stable phase. The energy of the solid increases due to build up of strain energy because of increasing mismatch in size of the neighbors, while the entropy of the liquid increases. These two factors lead to the existence of a terminal polydispersity. We find beyond the terminal ploydispersity, δ. 0.11system remains in the disorder state even at very high pressure and low temperature. The terminal polydispersity obtained in the present study is close to the experimental value (δt. ≈ 12%). Interestingly, contrary to hard sphere polydisperse fluid, LJ fluid does not exhibit reentrant melting. The last part (Part IV) of the thesis consists of three chapters that deal with the enzyme catalysis and kinetic proofreading of tRNA-aminoacyl synthetases. In Chapter 10 we describe protein synthesis process in biological system and corresponding two processes: aminoacylation of tRNA and translation of amino acid in ribosome. Our interest is to understand the enzyme catalysis involved in aminoacylation of tRNA in the process of protein synthesis. We present the classification of 20 aminoacyl-tRNA synthetases into two classes based on their structure and mode of binding to ATP and tRNA. We discuss all the steps involved in whole tRNA-aminoacylation process. Then we introduce kinetic proofreading during aminoacylation reaction. In Chapter 11 we theoretically analyze the single turn over and steady state reaction mechanism of two classes of aminoacyl-tRNA synthetases. Class I enzymes not only differ in their structure but they also differ with respect to the pre-steady kinetics compared to class II enzymes. We find that the strong binding of product to class I enzymes causes the product release step to be rate limiting step leading to the burst of product formation in pre-steady reaction. On the other hand class II enzymes do not show any burst kinetics. The present study based on time dependent probability statistics is successful in explaining all the experimental results quantitatively. In Chapter 12 we present an augmented kinetic scheme and then employ methods of time dependent probability statistics to understand the mechanism of kinetic proofreading of isoleucyl-tRNA synthetase (IRS) which belongs to class I. We investigate that the enhanced hydrolysis of wrong substrate (Val) enables IRS to discriminate the correct substrate (Ile) and wrong substrate (Val) efficiently. It has been observed that an extra CP1 editing domain serves as an activating domain towards enhanced hydrolysis of Val. The present study is able to explain most of the existing experimental observations. In the concluding note, Chapter 13 lists a few relevant problems that may prove worthwhile to be addressed in future. In the Appendices, we present two of the techniques used in our present computer simulation and theoretical studies. Appendix A describes Grand Canonical Transition Matrix Monte Carlo (GC-TMMC) method which is employed in computer simulation studies of nucleation and surface tension. In Appendix B we present the probabilistic method of waiting time distribution computation used in enzyme catalysis and kinetic proofreading.
58

Mesoscale Interactions in Porous Electrodes

Aashutosh Mistry (6630413) 11 June 2019 (has links)
Despite the central importance of porous electrodes to any advanced electrochemical system, there is no clear answer to “<i>How to make the best electrode</i>?”. The source of ambiguity lies in the incomplete understanding of convoluted material interactions at smaller – difficult to observe length and timescales. Such mesoscopic interactions, however, abide by the fundamental physical principles such as mass conservation. The porous electrodes are investigated in such a physics-based setting to comprehend the interplay among structural arrangement and off-equilibrium processes. As a result, a synergistic approach exploiting the complementary characteristics of controlled experiments and theoretical analysis emerges to allow mechanistic insights into the associated mesoscopic phenomena. The potential of this philosophy is presented by investigating three distinct electrochemical systems with their unique peculiarities.
59

Structure et dynamiques de dispersions de gliadines de blé : effet de la concentration en protéines et de la température du solvant / Structure and dynamics of a wheat gliadins dispersions : effect of the protein concentration and solvent temperature.

Boire, Adeline 14 February 2014 (has links)
De nombreuses études théoriques et expérimentales ont été menées au cours des 30 dernières années afin d'établir le lien entre les propriétés d'interaction des protéines, leurs transitions de phase et leur auto-assemblage. Des avancées significatives ont ainsi été permises grâce à l'application de concepts et méthodes de la physique des polymères et des colloïdes. Ces études ont, pour la majeure partie d'entre elles, été limitées à des protéines d'intérêt médical et à des protéines animales. Ce travail de thèse vise à appliquer ce type d'approche aux protéines végétales afin de mieux comprendre leurs propriétés d'interaction à l'origine de leurs propriétés fonctionnelles au sein des grains et dans les matrices alimentaires. Ce travail a été mené sur un isolat de protéines de réserve du blé composé principalement de la fraction monomérique: les gliadines. Nous avons étudié les transitions de phase des gliadines afin de mieux comprendre leurs propriétés d'interaction d'une part et les structures associées d'autre part. Dans un premier temps, une procédure d'extraction a été développée afin de travailler sur un isolat de composition contrôlée dont les masses moléculaires sont comprises entre 20 kDa et 300 kDa. Le comportement de phase de cet isolat a ensuite été étudié en diminuant la qualité du solvant. Nous avons ainsi déterminé le diagramme de phases (T-Φ), où T est la température et Φv la fraction volumique des gliadines. Cette étude a mis en évidence une séparation de phase de type liquide-liquide dans le système par diminution de la température. Une analyse détaillée de la répartition des protéines au sein des deux phases en fonction de leur masse moléculaire a permis d'identifier une masse moléculaire critique séparant des protéines de comportement de type colloïdal et des protéines de comportement de type polymérique. A partir du diagramme de phase, deux études structurales ont été effectuées. La première a étudié les cinétiques de séparation de phase lors de la diminution de la température pour caractériser la dynamique locale de séparation de phase et identifier les mécanismes qui génèrent les systèmes concentrés. Deux grands types de mécanismes de séparation de phase ont été identifiés : nucléation-croissance et décomposition spinodale. La seconde étude structurale a consisté à établir l'équation d'état pression osmotique vs concentration dans des conditions de bon solvant et à caractériser la structure des dispersions de protéines associée. La relation pression osmotique vs fraction volumique a permis de mettre en évidence l'existence de plusieurs régimes de structuration, associés à des changements de structure secondaire et de propriété rhéologique. La discussion générale permet de mettre en relation les propriétés thermodynamiques déduites de cette approche expérimentale et les changements structuraux observés à différentes échelles. / A substantial body of theoretical and experimental studies has been conducted over the last 30 years to establish the link between protein interaction properties, phase transitions and self-assembly. Both colloidal and polymer physics provide a new framework for understanding the driving force for proteins phase behaviour. Such studies have been limited to health-related proteins and to a few food proteins, mainly animal proteins such as casein, whey proteins. This thesis aims to apply this approach to plant proteins to better understand their interactions properties, at the basis of their functional properties within grains and food matrices. This work was carried out on a wheat storage protein isolate mainly composed of the monomeric fraction: gliadins.The objective of this PhD thesis is to investigate the phase transitions of wheat proteins to develop our knowledge on their interaction properties and the associated structures. We organized our experimental approach in five steps. First, we developed an extraction procedure to work on a protein isolate of controlled composition with molecular weight ranging from 20 to 300 kg mol-1. Then, we investigated the phase behaviour of the protein isolate by decreasing the solvent quality, here the temperature. We determined the T-Φ phase diagram, where T is the temperature and Φv the protein volume fraction, that maps the phase and structural transitions of the proteins. This study showed the existence of a liquid-liquid phase separation in the system upon a temperature decrease. We evidenced two different behaviours among proteins as a function of their MWs and highlighted a critical protein size above which the molecular weight is the key determinant of the protein properties. From the phase diagram, two structural studies were conducted. The first one studied the kinetics of phase separation upon temperature decrease to characterize the local dynamics of phase separation and to identify the mechanisms that generate concentrated systems. Two main mechanisms of phase separation have been identified: nucleation-growth and spinodal decomposition. The second one studied the effect of protein concentration on the multi-scale structure of wheat gliadins in good solvent. The integration of all these results allowed us to build the phase diagram of wheat gliadins, integrating thermodynamic and structural data.
60

Dynamiques spéciales de gouttes non-mouillantes

Piroird, Keyvan 04 October 2011 (has links) (PDF)
Dans cette thèse, nous étudions à l'aide de plusieurs expériences la dynamique de gouttes non-mouillantes dans des situations où la gravité n'intervient pas, mais où d'autres forces, moins communes, sont à l'oeuvre. La première partie porte sur l'étude de gouttes d'oxygène liquide qui, en plus d'être en caléfaction sur un support à température ambiante, ont la particularité d'être susceptibles à la présence d'un champ magnétique. Nous étudions la force magnétique exercée sur ces gouttes ultra-mobiles et nous montrons qu'elles peuvent être déviées, ralenties, déformées, capturées et même parfois accélérées à l'aide d'un aimant. Dans la deuxième partie de ce travail, nous avons étudié une situation inverse, où nous avons cherché à mettre en mouvement une goutte non-mouillante initialement au repos. La goutte est cette fois faite d'huile se trouvant dans un tube capillaire rempli d'eau, et nous avons montré qu'un gradient de concentration en tensioactif provoque un mouvement spontané et permet à la goutte d'huile de s'échapper du tube. Cette expérience réalise ainsi une situation modèle de détergence. Une dynamique très particulière est mise en évidence à temps long : le mouvement est continu ou intermittent selon les paramètres de l'expérience.

Page generated in 0.2589 seconds