Spelling suggestions: "subject:"solar wind."" "subject:"polar wind.""
121 |
Une étude du bruit quasi-thermique et du bruit d'impact dans les plasma spatiaux / A study of quasi-thermal noise and shot noise in space plasmasMartinović, Mihailo 20 October 2016 (has links)
La spectroscopie de bruit quasi-thermique est une méthode précise de déterminat-ion de la densité et de la température dans les plasmas spatiaux. Lorsqu'une antenne électrique est immergé dans un plasma, elle est capable de mesurer les fluctuations électrostatiques provoquées par le mouvement thermique des particules de plasma. Ces fluctuations sont détectées par la densité de puissance spectrale aux bornes de l'antenne, en observant un spectre à des fréquences comparables à la fréquence plasma électronique aussi bien pour les électrons que pour les protons, car le signal du proton est fortement décalé Doppler vers des fréquences plus élevées en raison de la vitesse de dérive du vent solaire. En plus d'induire le champ électrique fluctuant, une partie des électrons impactent sur la surface de l'antenne, ce qui provoque des perturbations de son potentiel électrique. Le signal provoqué par cette population est directement proportionnelle au flux d'électrons du plasma impactant l'antenne et est dominante si l'antenne a une grande surface. Dans ce travail, nous utilisons la théorie de l'orbite limite pour calculer le flux de particules impactantes pour un plasma non thermique décrit par fonction de distribution de vitesses $kappa$ ou Lorentzienne, communément mesurée dans le vent solaire. L'augmentation de la collecte de particules par des objets cylindriques et sphériques est quantifié et présenté en tant que fonction du potentiel électrostatique de surface et de la fraction des particules supra-thermique. La prise en compte de ces résultats théoriques est absolument nécessaire pour des mesures précises des paramètres du plasma à chaque fois que le bruit d'impact est l'élément dominant dans le spectre de puissance. Ceci est le cas pour STEREO, car les bruit d'impact est dominant pour cette sonde, en raison de la présence d'antennes courtes et épaisses. L'étude approfondie des données sur cette mission est motivée par le fait que ses analyseurs d'électrons sont défectueux depuis le lancement et aucune information sur les électrons thermiques n'est disponible. Les résultats obtenus sont vérifiés en comparant avec les résultats de Wind, montrant une bonne concordance entre les valeurs mesurées par les deux satellites. Les incertitudes des mesures sont déterminées par les incertitudes des instruments utilisés et sont estimés à environ $40%$. Le résultat final de ce travail sera l'établissement d'une base de données des moments d'électrons pour les deux sondes STEREO A et B qui couvriront toute la durée de la mission. Dans une seconde partie de la thèse, nous utilisons l'approche cinétique pour étendre la théorie du bruit quasi-thermique à des plasmas où les collisions des électrons avec les neutres jouent un rôle dominant. Cette technique permet de mesurer la densité et la température des électrons, et aussi la fréquence des collisions en tant que paramètres indépendants. Ceci est obtenu sur une large gamme de fréquences aussi bien en dessous qu'au dessus de la fréquence plasma, pour peu que le rapport entre la fréquence de collision et fréquence de plasma ne soit pas inférieur à 0.1. Les résultats présentés ici peuvent potentiellement être appliqués avec succès dans les plasmas de laboratoire et ionosphères non magnétisés, tandis que pour l'ionosphère de la Terre leur utilisation est limitée aux fréquences basses à cause de la présence d'un champ magnétique fort. / The quasi-thermal noise spectroscopy is an accurate method of determination of density and temperature in space plasmas. When an electric antenna is immersed into a plasma, it is able to measure electrostatic fluctuations caused by the thermal motion of plasma particles. These fluctuations are detected as the power spectral density at the antenna terminals, observing a spectrum at frequencies comparable to the electron plasma frequency for both electrons and protons, since the proton signal is strongly Doppler-shifted towards higher frequencies due to the solar wind drift velocity. Beside inducing the fluctuating electric field, some of the electrons are impacting the antenna surface, causing disturbances of the antenna electric potential. The signal caused by this population is directly proportional to the flux of plasma electrons impacting the antenna and is dominant if the antenna has a large surface area. In this work, we use the orbit limited theory to calculate the incoming particle flux for a non-thermal plasma described by $kappa$ velocity distribution function, commonly measured in the solar wind. The increase in the particle collection by cylindrical and spherical objects is quantified and presented as a function of the surface electrostatic potential and the fraction of supra-thermal particles. Including these results into the theory has turned out to be absolutely necessary for accurate measurements of the plasma parameters whenever the shot noise is the dominant component in the power spectrum. This is the case for STEREO because the impact noise is overwhelming on this probe, due to the presence of short and thick antennas. The comprehensive study of data on this mission is motivated by the fact that the electron analyzers are malfunctioning since launch and no information on thermal electrons is available. Results obtained are verified by comparing with the results from Wind, showing a good match between the values measured by the two spacecraft. Uncertainties of the measurements are determined by the uncertainties of the instruments used and are estimated to be around $40%$. The final outcome of this work will be establishing a database of the electron moments in both STEREO A and B that will be covering the entire duration of the mission. In the second part of the thesis, we use the kinetic approach to expand the theory of the quasi-thermal noise to plasmas where electron-neutral collisions play a dominant role. This technique is able to measure the electron density, temperature and the collision frequency as independent parameters using the wide frequency range both below and above the plasma frequency, if the ratio of the collisional to plasma frequency is not smaller than 0.1. The results presented here have can be potentially applied in laboratory plasmas and unmagnetized ionospheres, while at the ionosphere of Earth their use is limited to low frequencies due to the presence of the magnetic field.
|
122 |
Observations of solar wind related climate effects in the Northern Hemisphere winterMaliniemi, V. (Ville) 21 December 2016 (has links)
Abstract
This thesis studies the long-term relation between the solar wind driven energetic particle forcing into the atmosphere and the tropospheric circulation in the Northern Hemisphere winter. The work covers the period of more than one hundred years since the turn of the 20th century to present. The thesis makes a statistical analysis of satellite measurements of precipitating energetic electrons, sunspot number data and geomagnetic activity, and compares them with temperature and pressure measurements made at the Earth's surface.
Recent results, both observational and from chemistry climate models, have indicated significant effects in the Earth's middle atmosphere due to the energetic electrons precipitating from the magnetosphere. These effects include the formation of reactive hydrogen and nitrogen oxides in the high latitude mesosphere and the depletion of ozone caused by them. Ozone is a radiatively active and important gas, which affects the thermal structure and dynamics of the middle atmosphere. Accordingly, the depletion of ozone can intensify the large scale stratospheric circulation pattern called the polar vortex. Winter weather conditions on the surface have been shown to be dependent on the polar vortex strength.
This thesis shows that there is a significant relation between the average fluxes of medium energy (ten to hundred keVs) precipitating electrons and surface temperatures in parts of the Northern Hemisphere in winter time. Temperatures are positively correlated with electron fluxes in North Eurasia and negatively correlated in Greenland during the period 1980-2010 which is covered by direct satellite observations of precipitating particles. This difference is especially notable when major sudden stratospheric warmings and the quasi-biennial oscillation (QBO), which both are known to affect the polar vortex strength, are taken into account. When extended to the late 19th century, the analysis shows that a similar temperature pattern is predominated during the declining phase of the sunspot cycle. The high speed solar wind streams and energetic particle precipitation typically maximize also at the declining phase of the solar cycle. This specific temperature pattern is related to the variability of the northern annular mode (NAM), which is the most significant circulation pattern in the Northern Hemisphere winter. Before the space era, geomagnetic activity measured by ground observations can be used as a proxy for energetic particle precipitation. Earlier studies have found a significant positive correlation between geomagnetic activity and NAM since the 1960s. We find that, when the QBO measured at 30 hPa height is in the easterly phase, a positive correlation is extended to the beginning of 1900s. We also show that high geomagnetic activity causes a stronger effect in the Northern Hemisphere winter than high sunspot activity, especially in the Atlantic and Eurasia.
A comprehensive knowledge of the Earth's climate system and all its drivers is crucial for the future projection of climate. Solar variability effects have been estimated to produce only a small factor to the global climate change. However, there is increasing evidence, including the results presented in this thesis, that the different forms of solar variability can have a substantial effect to regional and seasonal climate variability. With this new evidence, the solar wind related particle effects in the atmosphere are now gaining increasing attention. These effects will soon be included in the next coupled model inter comparison project (CMIP6) as an additional solar related climate effect. This emphasizes the relevance of this thesis.
|
123 |
Optimization of Strongly Nonlinear Dynamical Systems Using a Modified Genetic Algorithm With Micro-Movement (MGAM)Wei, Xing 01 May 2009 (has links)
The genetic algorithm (GA) is a popular random search and optimization method inspired by the concepts of crossover, random mutation, and natural selection from evolutionary biology. The real-valued genetic algorithm (RGA) is an improved version of the genetic algorithm designed for direct operation on real-valued variables. In this work, a modified version of a genetic algorithm is introduced, which is called a modified genetic algorithm with micro-movement (MGAM). It implements a particle swarm optimization(PSO)-inspired micro-movement phase that helps to improve the convergence rate, while employing the e'cient GA mechanism for maintaining population diversity. In order to test the capability of the MGAM, we firrst implement it on five generally used test functions. Then we test the MGAM on two typical nonlinear dynamical systems. The performance of the MGAM is compared to a basic RGA on all these applications. Finally, we implement the MGAM on the most important application, which is the plasma physics-based model of the solar wind-driven magnetosphere-ionosphere system (WINDMI). In order to use this model for real-time prediction of geomagnetic activity, the model parameters require up-dating every 6-8 hours. We use the MGAM to train the parameters of the model in order to achieve the lowest mean square error (MSE) against the measured auroral electrojet (AL) and Dst indices. The performance of the MGAM is compared to the RGA on historical geomagnetic storm datasets. While the MGAM performs substantially better than the RGA when evaluating standard test functions, the improvement is about 6-12 percent when used on the 20D nonlinear dynamical WINDMI model.
|
124 |
Definition and evaluation of a system for measuring local geomagnetic variations : Autonomous station for magnetic measurements / Definition och utvärdering av ett system för mätning av lokala geomagnetiska variationer : Autonom station för magnetiska mätningarOlsson, Viktor January 2023 (has links)
Earth is under constant influence of the Sun and phenomena driven by the solar wind that may affect man-made technology. These events are summarized under the concept of space weather. This creates variations in Earth’s magnetic field and nearby space. Space weather can affect power grids, gas pipelines and also have effects on human health. Due to these effects, as well as the scientific interest in space and the growing space industry, the need to monitor space weather, the space environment and how Earth is affected by them increases. Accurate magnetic mesurements rely on expensive magnetometers and careful calibration. Swedish Institute of Space Physics IRF, operates two magnetometers in Sweden, one observatory and one variometer to measure local geomagnetic variations. For the purpose of space weather, measurements of local variations have high demands on temporal resolution and precision but not the same need for long-term accuracy. The purpose of this thesis is to define and evaluate an autonomous system for local geomagnetic variations, with future hopes of creating a network of systems for space weather monitoring. The future goal is to be able to place systems in remote locations where they will be able to conduct measurements autonomously. The work was done by analysis and testing of a fluxgate magnetometer that was placed close to one of the IRFs existing magnetometers. Using data from the existing station as a reference, an analysis of the magnetometer could be performed. The results showed that the tested magnetometer had less precision than the existing station but could within a certain frequency range provide good results that make it possible to measure the local geomagnetic variations that may be of use for space weather. Conclusions from this study show that it is possible to create a simpler autonomous system for measurements of the local geomagnetic variations, but that this system requires further development, where future work can be based on this degree project as a basis. / Jorden är under konstant påverkan av solen och fenomen drivna av solvinden som kan påverka mänsklig teknologi. Dessa event sammanfattas under begreppet rymdväder. Genom detta skapas variationer i Jordens magnetfält och närliggande rymd. Rymdväder kan påverka kraftnät, gasledningar och även ha effekter på mänsklig hälsa. På grund av dessa effekter samt det vetenskapliga intresset för rymden och den växande rymdbranschen ökar behovet av att övervaka rymdväder, rymdmiljön samt hur Jorden påverkas av de. Exakta magnetiska mätningar är beroende av dyra magnetometrar och nogrann kalibrering. Institutet för Rymdfysik IRF driver två magnetometrar i Sverige, ett observatorium och en variometer för att mäta lokala geomagnetiska variationer. Då mätningar av lokala variationer har höga krav på temporal upplösning och precision men inte samma behov av kontroll på långsiktig noggrannhet. Syftet med det här examensarbetet är att definiera och utvärdera ett autonomt system för lokala geomagnetiska variationer, med framtida förhoppningar om att skapa ett nätverk av system för övervakning av rymdväder. Framtidsmålet är att kunna placera ut system på avlägsna platser där det autonomt ska kunna bedrivas mätningar. Arbetet gjordes genom analys och tester med en fluxgate-magnetometer som placerades i närheten av en av IRF befintliga magnetometrar. Med data från den existerande stationen som referens kunde en analys av magnetometern utföras. Resultatet visade att den testade magnetometern hade mindre precision än den befintliga stationen men kunde inom ett viss frekvensspann förse goda resultat som gjorde det möjligt att mäta de lokala geomagnetiska variationerna som kan vara till nytta för rymdväder. Slutsatser från denna studie visar att det är möjligt att skapa ett enklare autonomt system för mätningar av de lokala geomagnetiska variationerna men att detta system kräver vidare utveckling, där framtida arbete kan utgå från resultaten som erhölls i detta examensarbete.
|
125 |
Identifying Fundamental Characteristics of Shock Nonstationarity using MMS Measurements : Identifying and Distinguishing Non-stationary Behaviour Through the Magnetic Field Gradient in Quasi-perpendicular Shocks / Indentifiera fundamentala egenskaper av icke-stationärt beteende i chocker genom MMS mätningar : Använding av magnetfältsgradienten i kvasi-vinkelräta chockar för att identifiera och urskilja icke-stationärt beteendeWik, Hannah January 2023 (has links)
Collisionless shocks are widespread phenomena in the universe, and understanding the mechanisms behind their energy dissipation, with a rare number of collisions between particles, remains a significant unresolved question. The Earth’s bow shock provides an excellent opportunity to study this phenomena in situ. For high Mach number shocks, the shock cannot be sustained without partial reflection of the incoming ions. At higher Mach numbers, the shock surface starts to exhibit non-stationary behaviours, meaning that the shock surface starts evolving. One such behaviour is known as shock reformation, where a new shock forms upstream of an existing one. This study aims to investigate shock reformation using data obtained from NASA’s MMS mission, which offers precise measurements with high spatial and temporal resolutions through its constellation of four spacecraft. Using the MMS shocks database (Lalti et al., 2022), the gradient of the magnetic field magnitude is computed to infer non-stationary behaviour and identify potential instances of shock reformation and other shock behaviours. Through the analysis of the MMS measurements, some insight into the non-stationary characteristics of shocks is obtained using the gradient of the magnetic field. However, further analysis is needed in order to refine the method of identifying non-stationary behaviour of shocks, for future applications. / Kollisionsfria chocker är ett vanligt fenomen som förekommer i universum, och att förstå hur energidissipation inträffar i chocker med ett fåtal kollisioner mellan partikar är ett olöst problem. Jordens bogchock utger en bra möjlighet att studera detta på plats med mätningar från rymdfarkoster. Detta projekt försöker studera delar av jordens bogchock och undersöka dess dynamic. För chocker med högt machtal, måste en del av jonerna från solvinden reflekteras för att chocken ska skunna upprätthållas. Vid högre machtal kan chockytan visa icke-stationära beteenden, vilket innebär att den börjar förändras. Ett exempel på sådant beteende är chockreformation, där en ny chock formas framför en befintlig chock. Denna studie har som mål att undersöka chockreformation med hjälp av data som erhållits från NASA:s MMS-uppdrag, vilket erbjuder precisa mätningar med hög rumslig och tidsmässig upplösning genom sin konstellation av fyra rymdfarkoster. Genom användning av MMS-shockdatabasen (Lalti et al., 2022) beräknades gradienten av magnetfältets magnitud för att härleda icke-stationärt beteende och identifierade potentiella fall av chockreformation och andra beteenden. Genom analys av MMS-mätningarna erhölls viss insikt i de icke-stationära egenskaperna hos chocker med hjälp av gradienten av magnetfältet, men ytterligare analys krävs för att förbättra metoden för framtida tillämpningar.
|
126 |
Progress in space weather modeling in an operational environmentTsagouri, I., Belehaki, A., Bergeot, N., Cid, C., Delouille, V., Egorova, T., Jakowski, N., Kutiev, I., Mikhailov, A., Nunez, M., Pietrella, M., Potapov, A., Qahwaji, Rami S.R., Tulunay, Y., Velinov, P., Viljanen, A. January 2013 (has links)
Yes / This paper aims at providing an overview of latest advances in space weather modeling in an operational environment in Europe, including both the introduction of new models and improvements to existing codes and algorithms that address the broad range of space weather's prediction requirements from the Sun to the Earth. For each case, we consider the model's input data, the output parameters, products or services, its operational status, and whether it is supported by validation results, in order to build a solid basis for future developments. This work is the output of the Sub Group 1.3 "Improvement of operational models'' of the European Cooperation in Science and Technology (COST) Action ES0803 "Developing Space Weather Products and services in Europe'' and therefore this review focuses on the progress achieved by European research teams involved in the action.
|
127 |
Plasma Interactions with Icy Bodies in the Solar System / Plasmaväxelverkan med isiga kroppar i solsystemetLindkvist, Jesper January 2016 (has links)
Here I study the “plasma interactions with icy bodies in the solar system”, that is, my quest to understand the fundamental processes that govern such interactions. By using numerical modelling combined with in situ observations, one can infer the internal structure of icy bodies and their plasma environments. After a broad overview of the laws governing space plasmas a more detailed part follows. This contains the method on how to model the interaction between space plasmas and icy bodies. Numerical modelling of space plasmas is applied to the icy bodies Callisto (a satellite of Jupiter), the dwarf planet Ceres (located in the asteroid main belt) and the comet 67P/Churyumov-Gerasimenko. The time-varying magnetic field of Jupiter induces currents inside the electrically conducting moon Callisto. These create magnetic field perturbations thought to be related to conducting subsurface oceans. The flow of plasma in the vicinity of Callisto is greatly affected by these magnetic field perturbations. By using a hybrid plasma solver, the interaction has been modelled when including magnetic induction and agrees well with magnetometer data from flybys (C3 and C9) made by the Galileo spacecraft. The magnetic field configuration allows an inflow of ions onto Callisto’s surface in the central wake. Plasma that hits the surface knocks away matter (sputtering) and creates Callisto’s tenuous atmosphere. A long term study of solar wind protons as seen by the Rosetta spacecraft was conducted as the comet 67P/Churyumov-Gerasimenko approached the Sun. Here, extreme ultraviolet radiation from the Sun ionizes the neutral water of the comet’s coma. Newly produced water ions get picked up by the solar wind flow, and forces the solar wind protons to deflect due to conservation of momentum. This effect of mass-loading increases steadily as the comet draws closer to the Sun. The solar wind is deflected, but does not lose much energy. Hybrid modelling of the solar wind interaction with the coma agrees with the observations; the force acting to deflect the bulk of the solar wind plasma is greater than the force acting to slow it down. Ceres can have high outgassing of water vapour, according to observations by the Herschel Space Observatory in 2012 and 2013. There, two regions were identified as sources of water vapour. As Ceres rotates, so will the source regions. The plasma interaction close to Ceres depends greatly on the source location of water vapour, whereas far from Ceres it does not. On a global scale, Ceres has a comet-like interaction with the solar wind, where the solar wind is perturbed far downstream of Ceres. / Här studerar jag “plasmaväxelverkan med isiga kroppar i solsystemet”, det vill säga, min strävan är att förstå de grundläggande processerna som styr sådana interaktioner. Genom att använda numerisk modellering i kombination med observationer på plats vid himlakropparna kan man förstå sig på deras interna strukturer och rymdmiljöer. Efter en bred översikt över de fysiska lagar som styr ett rymdplasma följer en mer detaljerad del. Denna innehåller metoder för hur man kan modellera växelverkan mellan rymdplasma och isiga kroppar. Numerisk modellering av rymdplasma appliceras på de isiga himlakropparna Callisto (en måne kring Jupiter), dvärgplaneten Ceres (lokaliserad i asteroidbältet mellan Mars och Jupiter) och kometen 67P/Churyumov-Gerasimenko. Det tidsvarierande magnetiska fältet kring Jupiter inducerar strömmar inuti den elektriskt ledande månen Callisto. Dessa strömmar skapar magnetfältsstörningar som tros vara relaterade till ett elektriskt ledande hav under Callistos yta. Plasmaflödet i närheten av Callisto påverkas i hög grad av dessa magnetfältsstörningar. Genom att använda en hybrid-plasma-lösare har växelverkan modellerats, där effekten av magnetisk induktion har inkluderats. Resultaten stämmer väl överens med magnetfältsdata från förbiflygningarna av Callisto (C3 och C9) som gjordes av den obemannade rymdfarkosten Galileo i dess bana kring Jupiter. Den magnetiska konfigurationen som uppstår möjliggör ett inflöde av laddade joner på Callistos baksida. Plasma som träffar ytan slår bort materia och skapar Callistos tunna atmosfär. En långtidsstudie av solvindsprotoner sett från rymdfarkosten Rosetta utfördes då kometen 67P/Churyumov-Gerasimenko närmade sig solen. Ultraviolett strålning från solen joniserar det neutrala vattnet i kometens koma (kometens atmosfär). Nyligt joniserade vattenmolekyler plockas upp av solvindsflödet och tvingar solvindsprotonernas banor att böjas av, så att rörelsemängden bevaras. Denna effekt ökar stadigt då kometen närmar sig solen. Solvinden böjs av kraftigt, men förlorar inte mycket energi. Hybridmodellering av solvindens växelverkan bekräftar att kraften som verkar på solvinden till störst del får den att böjas av, medan kraften som verkar till att sänka dess fart är mycket lägre. Ceres har enligt observationer av rymdteleskopet Herschel under 2012 och 2013 haft högt utflöde av vattenånga från dess yta. Där har två regioner identifierats som källor för vattenångan. Eftersom Ceres roterar kommer källornas regioner göra det också. Plasmaväxelverkan i närheten av Ceres beror i hög grad på vattenångskällans placeringen, medan det inte gör det långt ifrån Ceres. På global nivå har Ceres en kometliknande växelverkan med solvinden, där störningar i solvinden propagerar långt nedströms från Ceres.
|
128 |
Multi-instrument and modelling studies of the ionospheres at Earth and MarsGrandin, M. (Maxime) 24 January 2018 (has links)
Abstract
This thesis studies the ionospheres of the Earth and Mars by combining the observations of versatile instruments providing information on various aspects of the planetary environments. The work on the terrestrial ionosphere focuses particularly on solar wind–magnetosphere–ionosphere coupling, while the work on the Martian ionosphere is based on the development of a new approach to analyse radio-occultation data to retrieve the atmospheric and ionospheric profiles.
In the Earth's ionosphere, two papers study the effects of solar wind high-speed streams on the ionospheric F-region peak electron density and on cosmic noise absorption resulting from the precipitation of energetic (>30 keV) electrons into the D region. For the first paper, a modified version of the superposed epoch analysis method, called phase-locked superposed epoch analysis method, was developed. The main finding is that a depletion near the F-region peak takes place in the afternoon and evening sectors during high-speed stream events. This could be explained by an increase in the electron loss rate as a consequence of ion-neutral frictional heating, which enhances the ion temperature and leads to neutral atmosphere expansion. In addition, dayside and post-midnight F-peak electron density increases are observed, probably related to soft particle precipitation. The second study reveals that cosmic noise absorption occurs during up to 4 days after the arrival of a high-speed stream, as substorm-injected energetic electrons precipitate in the midnight to early-afternoon ionosphere, principally at auroral latitudes. A third study reports for the first time observations of a modulation of cosmic noise absorption at periods near 10 s, associated with pulsating aurora. This suggests that the energetic component of the precipitating ux is modulated consistently with the auroral (1–10 keV) energies.
At Mars, radio-occultation experiments have been performed by the Mars Express spacecraft since 2004. In this thesis, a new data analysis approach is developed, based on the numerical simulation of radio wave propagation through modelled Martian atmosphere and ionosphere. This approach enables one to overcome limitations inherent in the classical inversion method which has been in use so far. It also gives access to new parameters such as ion density profiles. The new method is tested by analysing the data from two radio-occultation experiments. / Tiivistelmä
Tämä väitöskirja tutkii Maapallon ja Marsin ionosfäärejä yhdistämällä useiden eri instrumenttien havaintoja, joilla saadaan tietoa planeettojen ympäristöistä. Maapallon ionosfääriä koskeva työ tutkii aurinkotuuli–magnetosfääri–ionosfäärikytkentää, kun taas Marsin ionosfääriä koskevan työn tavoite on uuden radio-okkultaatiomittauksen data-analyysimenetelmän kehittäminen, joka tuottaa ilmakehän ja ionosfäärin profiileja.
Maan ionosfäärin tapauksessa yhdessä julkaisussa tutkitaan nopeiden aurinkotuulivirtausten vaikutuksia F-kerroksen elektronitiheyteen ja toisessa julkaisussa tutkitaan energeettisten (>30 keV) elektronien sateesta johtuvaa kosmisen radiokohinan absorptiota D-kerroksessa. Ensimmäisessä julkaisussa on kehitetty uusi versio data-analyysimenetelmästä, jota kutsutaan vaihelukituksi epookkien superpositiomenetelmäksi. Julkaisun päätulos on, että nopeiden aurinkotuulivirtausten aikana F-kerroksen maksimielektronitiheys pienenee iltapäivän ja illan sektoreilla. Tämä voidaan selittää johtuvan siitä, että ioni-neutraalitörmäysten synnyttämä kitkalämpö kasvattaa ionilämpötilaa ja aiheuttaa lisäksi ilmakehän laajenemisen. Molemmat prosessit kasvattavat elektronien häviönopeutta. F-kerroksen elektronitiheysmaksimi puolestaan kasvaa sektorilla, joka ulottuu keskiyöstä aamun kautta keskipäivään, ja tämä johtuu matalaenergeettisestä elektronisateesta. Toisessa julkaisussa havaitaan, että lisääntynyt kosmisen radiokohinan absorptio kestää jopa neljä päivää nopean aurinkotuulivirtauksen saavuttua Maan kohdalle. Tämä johtuu siitä, että alimyrskyitse injektoidut energeettiset elektronit satavat keskiyön ja aamun ionosfääriin, pääasiassa revontuliovaalin alueella. Kolmas julkaisu raportoi ensimmäistä kertaa havainnon sykkiviin revontuliin liittyvästä kosmisen radiokohinan absorptiosta n. 10 s jaksollisuudella. Tämä osoittaa, että elektronivuon energeettinen komponentti on moduloitu samalla jaksollisuudella kuin revontulielektronien energiat (1–10 keV).
Marsissa on tehty radio-okkultaatiomittauksia vuodesta 2004 saakka Mars Express -luotaimen avulla. Vaitoskirjassa on kehitetty uusi datan analyysimenetelmä, joka perustuu numeeriseen simulointiin radioaaltojen etenemisestä Marsin ilmakehässä ja ionosfäärissä. Tämän lähestymistavan avulla vältetään tähän asti käytetyn klassisen inversiomenetelmän rajoitukset. Lisäksi menetelmä tuottaa uusia parametrejä kuten ionitiheysprofiileja. Uutta menetelmää testattiin tulkiten kahden radio-okkultaatiomittauksen aineistoa. / Résumé
Le travail présenté dans ce manuscrit de thèse s'articule autour de l'étude des ionosphères terrestre et martienne. Une approche multi-instrumentale est adoptée afin de combiner des observations permettant de mettre en perspective des manifestations de phénomènes physiques de natures différentes mais intervenant dans un même contexte global. Le travail doctoral comporte également un volet modélisation. Le manuscrit de thèse consiste en une partie introductrice à laquelle sont adossées cinq publications dans des revues scientifiques à comité de lecture.
La partie introductrice de ce manuscrit de thèse a pour objectif de présenter le contexte scientifique sur lequel est basé le travail doctoral. Un premier chapitre passe en revue les principaux aspects théoriques dans lesquels s'inscrivent les études dont les résultats sont publiés dans les cinq articles. Les atmosphères et ionosphères de la Terre et de Mars y sont succinctement décrites, de même que les interactions entre ces planètes et le vent solaire, comprenant notamment la formation de magnétosphères. Les deux chapitres suivants présentent les instruments dont sont issues les données utilisées dans ce travail doctoral ainsi que les méthodes d'analyse des données. Le quatrième chapitre résume les principaux résultats obtenus autour des trois grandes thématiques abordées au cours de cette thèse. Enfin, des pistes quant à la continuation potentielle du travail présenté dans ce manuscrit de thèse sont évoquées en conclusion.
Le premier article porte sur une étude statistique des effets des courants de vent solaire rapide sur la région F de l'ionosphère aurorale. Il s'appuie sur des données mesurées par l'ionosonde de Sodankylä entre 2006 et 2008. Au cours de cette période, 95 événements associés à des courants de vent solaire rapide ont été sélectionnés, et la réponse de l'ionosphère au-dessus de Sodankylä a été étudiée à partir des fréquences critiques des régions E et F de l'ionosphère, qui donnent la valeur du pic de concentration électronique dans ces deux régions. Pour cela, une version modifiée de la méthode des époques superposées a été développée, appelée “méthode des époques superposées avec verrouillage de phase”. Une augmentation du pic de concentration des régions E et F est observée du côté nuit et le matin, en lien avec une activité aurorale accrue, tandis qu'une déplétion de la région F est révélée aux temps magnétiques locaux situés entre 12 h et 23 h. Une estimation des effets d'une possible modification de l'équilibre photo-chimique résultant d'un accroissement du chauffage issu de la friction entre les ions et les éléments neutres est proposée.
Le deuxième article s'intéresse aux précipitations énergétiques dans l'ionosphère aurorale durant ces mêmes 95 événements, en étudiant l'absorption du bruit cosmique qui en résulte. Il apparaît que les événements au cours desquels le vent solaire demeure rapide pendant plusieurs jours produisent davantage de précipitations énergétiques, qui peuvent atteindre les latitudes subaurorales. Par ailleurs, trois types de précipitations énergétiques sont étudiés séparément, selon qu'elles sont associées avec des signatures de sous-orage magnétique, avec des pulsations géomagnétiques, ou ni l'un ni l'autre. Les deux premiers types de précipitations semblent liés. En effet, l'analyse des données suggère que les électrons énergétiques sont injectés dans la magnétosphère interne durant les sous-orages. Tandis qu'une partie d'entre eux précipitent immédiatement du côté nuit, d'autres dérivent vers le côté matin, où ils subissent des interactions avec des ondes électromagnétiques de type siffleur (whistler en anglais), qui peuvent être modulées par des pulsations géomagnétiques, menant à leur précipitation.
Le troisième article présente pour la première fois l'observation de signatures d'aurore pulsante dans des données d'absorption du bruit cosmique. Ces signatures sont consistantes avec les pulsations observables dans l'émission aurorale, et semblent indiquer une modulation cohérente des composantes aurorale (1–10 keV) et énergétique (> 30 keV) du spectre des précipitations électroniques au cours d'une aurore pulsante.
Le quatrième article introduit une nouvelle méthode proposée pour analyser les données de radio-occultation mesurées par la sonde Mars Express. Cette approche vise à contourner des difficultés posées par les hypothèses fortes nécessaires à la mise en œuvre de la méthode classique d'inversion, notamment celle d'un environnement martien à symétrie sphérique — qui n'est pas acceptable lors de sondages proches du terminateur jour-nuit. La nouvelle méthode est basée sur la modélisation de l'atmosphère et de l'ionosphère de Mars, et sur la simulation de la propagation des ondes radio entre la station sol sur Terre et Mars Express lors d'une expérience de radio-occultation. Les paramètres libres contrôlant les profils atmosphériques et ionosphériques sont ajustés afin que la simulation reproduise le plus fidèlement possible les mesures.
Le cinquième article est une réponse à un commentaire sur l'article précédent. Il vise d'une part à répondre aux critiques émises sur la méthode développée, montrant que celles-ci n'en remettent en cause ni la validité ni la pertinence, et d'autre part à y apporter quelques améliorations.
|
129 |
An artificial compressibility analogy approach for compressible ideal MHD: application to space weather simulationYalim, Mehmet S. 05 December 2008 (has links)
Ideal magnetohydrodynamics (MHD) simulations are known to have problems in satisfying the solenoidal constraint (i.e. the divergence of magnetic field should be equal to zero, $<p>ablacdotvec{B} = 0$). The simulations become unstable unless specific measures have been taken.<p><p>In this thesis, a solenoidal constraint satisfying technique that allows discrete satisfaction of the solenoidal constraint up to the machine accuracy is presented and validated with a variety of test cases. Due to its inspiration from Chorin's artificial compressibility method developed for incompressible CFD applications, the technique was named as \ / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
130 |
Juice/JDC ion measurement perturbations caused by spacecraft charging in the solar wind and Earth’s magnetosheathvan Winden, Derek January 2024 (has links)
In July 2031, a new chapter in the exploration of the Jovian system will begin with the arrival of the Jupiter Icy Moons Explorer (Juice) at Jupiter. Launched on April 14 2024 as part of ESA’s Cosmic Vision programme, the mission aims to study Jupiter and its icy Galilean moons Callisto, Europa, and Ganymede. Juice carries a whole suite of instruments for in-situ and remote ground observations, one of which is the Jovian plasma Dynamics and Composition analyser (JDC). As a part of the Particle Environment Package (PEP), the particle detector will measure the energy, mass, charge and arrival direction of ions and electrons in the Jovian magnetosphere. Spacecraft charging caused by interactions between the spacecraft and its surrounding plasma environment poses a significant problem for JDC because the electrostatic potential of the spacecraft accelerates/decelerates charged particles, resulting in distorted measurements, particularly for the lowest energy particles. In this report, we show the results of spacecraft charging and instrument simulations performed in the Spacecraft Plasma Interaction System (SPIS) for the solar wind and Earth’s magnetosheath—two environments that Juice will encounter at the start of the cruise phase. We found that the conductive surfaces that cover the majority of the spacecraft become positively charged as a result of a large photoelectron current in both the solar wind and magnetosheath environments. We show that these surfaces are expected to reach potentials of 9 V in the solar wind and 4 V in the magnetosheath. The four radiators on Juice that are covered with dielectric paint and shaded by the sun shield become negatively charged in both simulated environments. The radiator potentials can be as low as -40 V in the solar wind and -100 V in the magnetosheath. We also conclude that due to blocking by the spacecraft main body, the ion population cannot be sampled in the solar wind unless a spacecraft roll is performed. Furthermore, due to the high ion f low energy, spacecraft charging will not influence JDC measurements in this environment. In the magnetosheath, the ion population can be sampled by JDC, and we identified three distortion mechanisms: (1) repulsion by the main body, (2) attraction by two of the radiators, and (3) repulsion by the MAG boom. Of all the distortion modes, the one originating from a negatively charged (-67.8 V) radiator close to JDC is the strongest, affecting ions with energies above 80 eV. The least powerful but most prevalent mode is the repulsion of ions by the main body. Our results can be compared with future in-situ measurements to identify distortion mechanisms well ahead of the science phase in which the scientifically important measurements will be carried out.
|
Page generated in 0.0577 seconds