• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 17
  • 10
  • Tagged with
  • 106
  • 102
  • 96
  • 88
  • 75
  • 65
  • 63
  • 48
  • 48
  • 48
  • 21
  • 21
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Device Physics of Organic Solar Cells / Physik organischer Solarzellen untersucht mittels Drift-Diffusionssimulation

Tress, Wolfgang 08 August 2012 (has links) (PDF)
This thesis deals with the device physics of organic solar cells. Organic photovoltaics (OPV) is a field of applied research which has been growing rapidly in the last decade leading to a current record value of power-conversion efficiency of 10 percent. One major reason for this boom is a potentially low-cost production of solar modules on flexible (polymer) substrate. Furthermore, new application are expected by flexible or semitransparent organic solar cells. That is why several OPV startup companies were launched in the last decade. Organic solar cells consist of hydrocarbon compounds, deposited as ultrathin layers (some tens of nm) on a substrate. Absorption of light leads to molecular excited states (excitons) which are strongly bound due to the weak interactions and low dielectric constant in a molecular solid. The excitons have to be split into positive and negative charges, which are subsequently collected at different electrodes. An effective dissociation of excitons is provided by a heterojunction of two molecules with different frontier orbital energies, such that the electron is transfered to the (electron) acceptor and the positive charge (hole) remains on the donor molecule. This junction can be realized by two distinct layers forming a planar heterojunction or by an intermixed film of donor and acceptor, resulting in a bulk heterojunction. Electrodes are attached to the absorber to collect the charges by providing an ohmic contact in the optimum case. This work focuses on the electrical processes in organic solar cells developing and employing a one-dimensional drift-diffusion model. The electrical model developed here is combined with an optical model and covers the diffusion of excitons, their separation, and the subsequent transport of charges. In contrast to inorganics, charge-carrier mobilities are low in the investigated materials and charge transport is strongly affected by energy barriers at the electrodes. The current-voltage characteristics (J-V curve) of a solar cell reflect the electrical processes in the device. Therefore, the J-V curve is selected as means of comparison between systematic series of simulation and experimental data. This mainly qualitative approach allows for an identification of dominating processes and provides microscopic explanations. One crucial issue, as already mentioned, is the contact between absorber layer and electrode. Energy barriers lead to a reduction of the power-conversion efficiency due to a decrease in the open-circuit voltage or the fill factor by S-shaped J-V curve (S-kink), which are often observed for organic solar cells. It is shown by a systematic study that the introduction of deliberate barriers for charge-carrier extraction and injection can cause such S-kinks. It is explained by simulated electrical-field profiles why also injection barriers lead to a reduction of the probability for charge-carrier extraction. A pile-up of charge carriers at an extraction barrier is confirmed by measurements of transient photocurrents. In flat heterojunction solar cells an additional reason for S-kinks is found in an imbalance of electron and hole mobilities. Due to the variety of reasons for S-kinks, methods and criteria for a distinction are proposed. These include J-V measurements at different temperatures and of samples with varied layer thicknesses. Most of the studies of this this work are based on experimental data of solar cells comprisiing the donor dye zinc phthalocyanine and the acceptor fullerene C60. It is observed that the open-circuit voltage of these devices depends on the mixing ratio of ZnPc:C60. A comparison of experimental and simulation data indicates that the reason is a changed donor-acceptor energy gap caused by a shift of the ionization potential of ZnPc. A spatial gradient in the mixing ratio of a bulk heterojunction is also investigated as a donor(acceptor)-rich mixture at the hole(electron)-collecting contact is supposed to assist charge extraction. This effect is not observed, but a reduction of charge-carrier losses at the “wrong” electrode which is seen at an increase in the open-circuit voltage. The most important intrinsic loss mechanism of a solar cell is bulk recombination which is treated at the example of ZnPc:C60 devices in the last part of this work. An examination of the dependence of the open-circuit voltage on illumination intensity shows that the dominating recombination mechanism shifts from trap-assisted to direct recombination for higher intensities. A variation of the absorption profile within the blend layer shows that the probability of charge-carrier extraction depends on the locus of charge-carrier generation. This results in a fill factor dependent on the absorption profile. The reason is an imbalance in charge-carrier mobilities which can be influenced by the mixing ratio. The work is completed by a simulation study of the influence of charge-carrier mobilities and different recombination processes on the J-V curve and an identification of a photoshunt dominating the experimental linear photocurrent-voltage characteristics in reverse bias. / Diese Dissertation beschäftigt sich mit der Physik organischer Solarzellen. Die organische Photovoltaik ist ein Forschungsgebiet, dem in den letzten zehn Jahren enorme Aufmerksamkeit zu Teil wurde. Der Grund liegt darin, dass diese neuartigen Solarzellen, deren aktueller Rekordwirkungsgrad bei 10 Prozent liegt, ein Potential für eine kostengünstige Produktion auf flexiblem (Polymer)substrat aufweisen und aufgrund ihrer Vielfältigkeit neue Anwendungsbereiche für die Photovoltaik erschließen. Organische Solarzellen bestehen aus ultradünnen (einige 10 nm) Schichten aus Kohlenwasserstoffverbindungen. Damit der photovoltaische Effekt genutzt werden kann, müssen die durch Licht angeregten Molekülzustände zu freien Ladungsträgern führen, wobei positive und negative Ladung an unterschiedlichen Kontakten extrahiert werden. Für eine effektive Trennung dieser stark gebundenden lokalisierten angeregten Zustände (Exzitonen) ist eine Grenzfläche zwischen Molekülen mit unterschiedlichen Energieniveaus der Grenzorbitale erforderlich, sodass ein Elektron auf einem Akzeptor- und eine positive Ladung auf einem Donatormolekül entstehen. Diese Grenzschicht kann als planarer Heteroübergang durch zwei getrennte Schichten oder als Volumen-Heteroübergang in einer Mischschicht realisiert werden. Die Absorberschichten werden durch Elektroden kontaktiert, wobei es für effiziente Solarzellen erforderlich ist, dass diese einen ohmschen Kontakt ausbilden, da ansonsten Verluste zu erwarten sind. Diese Arbeit behandelt im Besonderen die elektrischen Prozesse einer organischen Solarzelle. Dafür wird ein eindimensionales Drift-Diffusionsmodell entwickelt, das den Transport von Exzitonen, deren Trennung an einer Grenzfläche und die Ladungsträgerdynamik beschreibt. Abgesehen von den Exzitonen gilt als weitere Besonderheit einer organischen Solarzelle, dass sie aus amorphen, intrinsischen und sehr schlecht leitfähigen Absorberschichten besteht. Elektrische Effekte sind an der Strom-Spannungskennlinie (I-U ) sichtbar, die in dieser Arbeit als Hauptvergleichspunkt zwischen experimentellen Solarzellendaten und den Simulationsergebnissen dient. Durch einen weitgehend qualitativen Vergleich können dominierende Prozesse bestimmt und mikroskopische Erklärungen gefunden werden. Ein wichtiger Punkt ist der schon erwähnte Kontakt zwischen Absorberschicht und Elektrode. Dort auftretende Energiebarrieren führen zu einem Einbruch im Solarzellenwirkungsgrad, der sich durch eine Verringerung der Leerlaufspanung und/oder S-förmigen Kennlinien (S-Knick) bemerkbar macht. Anhand einer systematischen Studie der Grenzfläche Lochleiter/Donator wird gezeigt, dass Energiebarrieren sowohl für die Ladungsträgerextraktion als auch für die -injektion zu S-Knicken führen können. Insbesondere die Tatsache, dass Injektionsbarrieren sich auch negativ auf den Photostrom auswirken, wird anhand von simulierten Ladungsträger- und elektrischen Feldprofilen erklärt. Das Aufstauen von Ladungsträgern an Extraktionsbarrieren wird durch Messungen transienter Photoströme bestätigt. Da S-Knicke in organischen Solarzellen im Allgemeinen häufig beobachtet werden, werden weitere Methoden vorgeschlagen, die die Identifikation der Ursachen ermöglichen. Dazu zählen I-U Messungen in Abhängigkeit von Temperatur und Schichtdicken. Als eine weitere Ursache von S-Knicken werden unausgeglichene Ladungsträgerbeweglichkeiten in einer Solarzelle mit flachem Übergang identifiziert und von den Barrierefällen unterschieden. Weiterer Forschungsgegenstand dieser Arbeit sind Mischschichtsolarzellen aus dem Donator-Farbstoff Zink-Phthalozyanin ZnPc und dem Akzeptor Fulleren C60. Dort wird beobachtet, dass die Leerlaufspannung vom Mischverhältnis abhängt. Ein Vergleich von Experiment und Simulation zeigt, dass sich das Ionisationspotenzial von ZnPc und dadurch die effektive Energielücke des Mischsystems ändern. Zusätzlich zu homogenen Mischschichten werden Solarzellen untersucht, die einen Gradienten im Mischungsverhältnis aufweisen. Die Vermutung liegt nahe, dass ein hoher Donatorgehalt am Löcherkontakt und ein hoher Akzeptorgehalt nahe des Elektronenkontakts die Ladungsträgerextraktion begünstigen. Dieser Effekt ist in dem hier untersuchten System allerdings vergleichsweise irrelevant gegenüber der Tatsache, dass der Gradient das Abfließen bzw. die Rekombination von Ladungsträgern am “falschen” Kontakt reduziert und somit die Leerlaufspannung erhöht. Der wichtigste intrinsische Verlustmechanismus einer Solarzelle ist die Rekombination von Ladungsträgern. Diese wird im letzten Teil der Arbeit anhand der ZnPc:C60 Solarzelle behandelt. Messungen der Leerlaufspannung in Abhängigkeit von der Beleuchtungsintensität zeigen, dass sich der dominierende Rekombinationsprozess mit zunehmender Intensität von Störstellenrekombination zu direkter Rekombination von freien Ladungsträgern verschiebt. Eine gezielte Variation des Absorptionsprofils in der Absorberschicht zeigt, dass die Ladungsträgerextraktionswahrscheinlickeit vom Ort der Ladungsträgergeneration abhängt. Dieser Effekt wird hervorgerufen durch unausgeglichene Elektronen- und Löcherbeweglichkeiten und äußert sich im Füllfaktor. Weitere Simulationsergebnisse bezüglich des Einflusses von Ladungsträgerbeweglichkeiten und verschiedener Rekombinationsmechanismen auf die I-U Kennlinie und die experimentelle Identifikation eines Photoshunts, der den Photostrom in Rückwärtsrichtung unter Beleuchtung dominiert, runden die Arbeit ab.
62

Alternative Electrodes for Organic Optoelectronic Devices

Kim, Yong Hyun 25 June 2013 (has links) (PDF)
This work demonstrates an approach to develop low-cost, semi-transparent, long-term stable, and efficient organic photovoltaic (OPV) cells and organic light-emitting diodes (OLEDs) using various alternative electrodes such as conductive polymers, doped ZnO, and carbon nanotubes. Such electrodes are regarded as good candidates to replace the conventional indium tin oxide (ITO) electrode, which is expensive, brittle, and limiting the manufacturing of low-cost, flexible organic devices. First, we report long-term stable, efficient ITO-free OPV cells and transparent OLEDs based on poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrodes by using a solvent post-treatment or a structure optimization. In addition, a high performance internal light out-coupling system for white OLEDs based on PEDOT:PSS-coated metal oxide nanostructures is developed. Next, we demonstrate highly efficient ITO-free OPV cells and OLEDs with optimized ZnO electrodes doped with alternative non-metallic elements. The organic devices based on the optimized ZnO electrodes show significantly improved efficiencies compared to devices with standard ITO. Finally, we report semi-transparent OPV cells with free-standing carbon nanotube sheets as transparent top electrodes. The resulting OPV cells exhibit very low leakage currents with good long-term stability. In addition, the combination of various kinds of bottom and top electrodes for semi-transparent and ITO-free OPV cells is investigated. These results demonstrate that alternative electrodes-based OPV cells and OLEDs have a promising future for practical applications in efficient, low-cost, flexible and semi-transparent device manufacturing. / Die vorliegende Arbeit demonstriert einen Ansatz zur Verwirklichung von kostengünstigen, semi-transparenten, langzeitstabilen und effizienten Organischen Photovoltaik Zellen (OPV) und Organischen Leuchtdioden (OLEDs) durch die Nutzung innovativer Elektrodensysteme. Dazu werden leitfähige Polymere, dotiertes ZnO und Kohlenstoff-Nanoröhrchen eingesetzt. Diese alternativen Elektrodensysteme sind vielversprechende Kandidaten, um das konventionell genutzte Indium-Zinn-Oxid (ITO), welches aufgrund seines hohen Preises und spröden Materialverhaltens einen stark begrenz Faktor bei der Herstellung von kostengünstigen, flexiblen, organischen Bauelementen darstellt, zu ersetzten. Zunächst werden langzeitstabile, effiziente, ITO-freie Solarzellen und transparente OLEDs auf der Basis von Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Elektroden beschrieben, welche mit Hilfe einer Lösungsmittel-Nachprozessierung und einer Optimierung der Bauelementstruktur hergestellt wurden. Zusätzlich wurde ein leistungsfähiges, internes Lichtauskopplungs-System für weiße OLEDs, basierend auf PEDOT:PSS-beschichteten Metalloxid-Nanostrukturen, entwickelt. Weiterhin werden hoch effiziente, ITO-freie OPV Zellen und OLEDs vorgestellt, bei denen mit verschiedenen nicht-metallischen Elementen dotierte ZnO Elektroden zur Anwendung kamen. Die optimierten ZnO Elektroden bieten im Vergleich zu unserem Laborstandard ITO eine signifikant verbesserte Effizienz. Abschließend werden semi-transparente OPV Zellen mit freistehenden Kohlenstoff-Nanoröhrchen als transparente Top-Elektrode vorgestellt. Die daraus resultierenden Zellen zeigen sehr niedrige Leckströme und eine zufriedenstellende Stabilität. In diesem Zusammenhang wurde auch verschiedene Kombinationen von Elektrodenmaterialen als Top- und Bottom-Elektrode für semi-transparente, ITO-freie OPV Zellen untersucht. Zusammengefasst bestätigen die Resultate, dass OPV und OLEDs basierend auf alternativen Elektroden vielversprechende Eigenschaften für die praktische Anwendung in der Herstellung von effizienten, kostengünstigen, flexiblen und semi-transparenten Bauelement besitzen.
63

Organische p-i-n Solarzellen

Männig, Bert 03 January 2005 (has links) (PDF)
In this work a p-i-n type heterojunction architecture for organic solar cells is shown, where the active region is sandwiched between two doped wide-gap layers. The term p-i-n means here a layer sequence in the form p-doped layer, intrinsic layer and n-doped layer. The doping is realized by controlled coevaporation using organic dopants and leads to conductivities of 10-4 to 10-5 S/cm in the p- and n-doped wide gap layers, respectively. The conductivity and field effect mobility of single doped layers can be described quantitatively in a self-consistent way by a percolation model. For the solar cells the photoactive layer is formed by a mixture of phthalocyanine zinc (ZnPc) and the fullerene C60 and shows mainly amorphous morphology. The solar cells exhibit a maximum external quantum efficiency of 40% between 630nm and 700nm wavelength. With the help of an optical multilayer model, the optical properties of the solar cells are optimized by placing the active region at the maximum of the optical field distribution. The results of the model are largely confirmed by the experimental findings. The optically optimized device shows an internal quantum efficiency of around 85% at short-circuit conditions and a power-conversion efficiency of 1.7%.
64

Numerical simulation and optimisation of organic light emitting diodes and photovoltaic cells / Numerische Simulation und Optimierung von organischen Leuchtdioden und Solarzellen

Kozlowski, Fryderyk 15 November 2005 (has links) (PDF)
A numerical model and results for the quantitative simulation of multilayer organic light emitting diode (OLED) and organic solar cell (OSC) are presented. In the model, effects like bipolar charge carrier drift and diffusion with field-dependent mobilities, trapping, dopants, indirect and direct bimolecular recombination, singlet Frenkel exciton diffusion, normal decay and quenching effects are taken into account. For an adequate description of multilayer devices with energetic barriers at interfaces between two adjacent organic layers, thermally assisted charge carrier hopping through the interface, interface recombination, and formation of interface charge transfer (CT) states have been introduced in the model. For the simulation of OSC, the generation of carrier pairs in the mixed layer or at the interface is additionally implemented. The light absorption profile is calculated from optical simulations and used as an input for the electrical simulation. The model is based on three elements: the Poisson equation, the rate equations for charge carriers and the rate equations for singlet Frenkel excitons. These equations are simultaeously solved by spatial and temporal discretisation using the appropriate boundary conditions and electrical parameters. The solution is found when a steady state is reached, as indicated by a constant value of current density. The simulation provides a detailed look into the distribution of electric field and concentration of free and trapped carriers at a particular applied voltage. For organic light emitting diodes, the numerical model helps to analyze the problems of different structures and provides deeper insight into the relevant physical mechanisms involved in device operation. Moreover, it is possible to identify technological problems for certain sets of devices. For instance, we could show that ? in contrast to literature reports - the contact between Alq3 and LiF/Al did not show ohmic behaviour for the series of devices. The role of an additional organic blocking layer between HTL and EML was presented. The explanation for the higher creation efficiency for singlet excitons in the three-layer structure is found in the separation of free holes and electrons accumulating close to the internal interface 1-Naphdata/Alq3. The numerical calculation has demonstrated the importance of controlled doping of the organic materials, which is a way to obtain efficient light emitting diodes with low operating voltage. The experimental results has been reproduced by numerical simulation for a series of OLEDs with different thicknesses of the hole transport layer and emitting layer and for doped emitting layers. The advantages and drawbacks of solar cells based on flat heterojunctions and bulk heterojunctions are analyzed. From the simulations, it can be understood why bulk-heterojunctions typically yield higher photocurrents while flat heterojunctions typically feature higher fill factors. In p-i-n ?structures, p and n are doped wide gap materials and i is a photoactive donor-acceptor blend layer using, e.g,. zinc phthalocyanine as a donor and C60 as an acceptor component. It is found that by introducing trap states, the simulation is able to reproduce the linear dependence of short circuit currents on the light intensity. The apparent light-induced shunt resistance often observed in organic solar cells can also be explained by losses due to trapping and indirect recombination of photogenerated carriers, which we consider a crucial point of our work. However, these two effects, the linear scaling of the photocurrent with light intensity and the apparent photoshunt, could also be reproduced when field-dependent geminate recombination is assumed to play a dominant role. First results that show a temperature independent short circuit photocurrent favour the model based on trap-mediated indirect recombination.
65

On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses – the ISOS-3 inter-laboratory collaboration

Teran-Escobar, Gerardo, Tanenbaum, David M., Voroshazi, Eszter, Hermenau, Martin, Norrman, Kion, Lloyd, Matthew T., Galagan, Yulia, Zimmermann, Birger, Hösel, Markus, Dam, Henrik F., Jørgensen, Mikkel, Gevorgyan, Suren, Kudret, Suleyman, Maes, Wouter, Lutsen, Laurence, Vanderzande, Dirk, Würfel, Uli, Andriessen, Ronn, Rösch, Roland, Hoppe, Harald, Rivaton, Agnès, Uzunoğlu, Gülşah Y., Germack, David, Andreasen, Birgitta, Madsen, Morten V., Bundgaard, Eva, Krebs, Frederik C., Lira-Cantu, Monica 07 April 2014 (has links) (PDF)
This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N2) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO3), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
66

Excited State Properties in Dicyanovinyl-Oligothiophene Donor Materials for Small Molecule Organic Solar Cells

Ziehlke, Hannah 11 April 2012 (has links) (PDF)
Key issues in improving small molecule organic solar cells (SMOSC) are the need for new absorber materials and optimized active layer morphology. This thesis deals with the improvement of SMOSC on the donor material side. Promising donor materials (D) are provided by dicyanovinyl endcapped oligothiophenes DCV2-nT (n = 3, . . . , 6) synthesized in the group of Prof. Bäuerle at the University of Ulm. Here, DCV2-nT (n = 3, 5) with different alkyl side chains are characterized. Side chain variations mainly influence the aggregation of molecules in pristine films as well as in blend films with the commonly used acceptor (A) fullerene C60. With changes in the layer morphology, important physical properties in thin film like absorption spectra, energy levels, as well as excited state properties are changed. The focus of this work are excited state properties accessed by photoinduced absorption spectroscopy (PIA). PIA probes the long living excited states in pristine and blend films, i. e. triplet excitons, anions, and cations. For a series of four dicyanovinyl-terthiophenes DCV2-3T (without side chains, with two methyl, two butyl, and four butyl side chains) a systematic study of the effect of alkyl side chains on the aggregation in neat and blend film is discussed. In consequence the efficiency of the energy transfer mechanism between DCV2-3T and C60 is affected. It turns out that in solution spectra and cyclic voltammetry (CV) measurements, the variation of alkyl side chains has almost no influence. However, in thin film there is strong impact on the molecular arrangement confirmed by strongly varying absorption spectra, ionization potentials, and surface roughnesses. Furthermore, PIA measurements reveal that the energy transfer efficiency between D and A in general decreases with increasing side chain length, but is most efficient for a compound with methyl side chains. For blends of dicyanovinyl-quinquethiophenes (DCV2-5T) with C60, the layer morphology is influenced by two different methods. On one hand substrate heating is applied while deposition of the active layer, on the other hand DCV2-5Ts with different alkyl side chains (four methyl and four butyl side chains) are used. Deposition on a heated substrate (80°C) results in an improved solar cell performance, assigned to the formation of a sufficient phase separation of D and A phase in the active layer. This leads to reduced recombination losses and closed percolation paths. The morphological change can be correlated to an increased lifetime of cations. In blends deposited on a heated substrate, the donor cation lifetime increases by almost one order of magnitude from around 10 μs to ≈ 80 μs. This increase of carrier lifetime is both detected optically by PIA as well as electrically by impedance spectroscopy. The increase in lifetime is consequently assigned to a better spatial separation of positive and negative charges induced by the phase separation. Comparing DCV2-5T with methyl and butyl side chains results in a similar effect: The dicyanovinyl-quinquethiophene with methyl side chains leads to an improved solar cell device performance compared to devices comprising the compound with butyl side chains as donor. The improved device performance is again accompanied by an increase in cation lifetime detected by PIA. / Die Entwicklung neuer Absorber-Materialien sowie die Morphologie der photo- aktiven Schicht sind zentrale Themen hinsichtlich der Optimierung organischer Solarzellen aus kleinen Molekülen. In der vorliegenden Arbeit werden diese beiden Aspekte von Seiten des Donor-Materials (D) her behandelt. Die Material- klasse der Dicyanovinyl-Oligothiophene DCV2-nT(n=3,...,6) (synthetisiert in der Arbeitsgruppe von Prof. Bäuerle an der Universität Ulm) dient dabei als Ausgangspunkt. Insbesondere werden DCV2-nT-Moleküle (n = 3, 5) mit verschiedenen Alkyl-Seitenketten charakterisiert. Die Variation der Seitenketten beeinflusst in erster Linie die Anordnung der Moleküle in Einzel- sowie in Mischschichten mit dem typischerweise verwendeten Akzeptor-Material Fulleren C60 (A). Als Folge der Schichtmorphologie ändern sich physikalische Eigenschaften wie u. a. Absorptions- spektren, Energieniveaus sowie die Eigenschaften angeregter Zustände. Angeregte Zustände, wie Triplett-Exzitonen, Anionen und Kationen werden in dieser Arbeit mittels photoinduzierter Absorptionsspektroskopie (PIA) charakterisiert. Anhand einer Serie von vier Dicyanovinyl-Tertiophenen DCV2-3T (ohne Seiten- ketten, mit zwei Methyl-, zwei Butyl-, und vier Butyl-Seitenketten) werden systematisch Einflüsse der Seitenketten auf die Aggregation der Moleküle in Einzel- und Mischschichten untersucht. Besonderes Augenmerk liegt dabei auf dem Effekt der Seitenketten auf den Energie-Transfer-Mechanismus zwischen D und A. In Lösungsmittelspektren und Cyclovoltammetrie-Messungen ist fast keine Änderung durch die Seitenketten erkennbar. Im Dünnfilm hingegen besteht ein starker Einfluss auf die molekulare Anordnung, erkennbar in einer starken Variation der Absorptionsspektren, Ionisationspotentiale und Oberflächen-Topographie. PIA- Messungen zeigen weiterhin, dass im Allgemeinen die Effizienz des Energie-Transfer- Mechanismus mit zunehmender Länge der Alkyl-Ketten abnimmt. Der effizienteste Transfer besteht jedoch für die Verbindung mit Methyl-Seitenketten. In Mischschichten aus Dicyanovinyl-Quinquethiophenen (DCV2-5T) und C60 werden hier zwei Methoden zur Beeinflussung der Schichtmorphologie verfolgt. Zum einen wird die aktive Schicht auf einem geheizten Substrat abgeschieden, zum anderen werden DCV2-5T-Moleküle mit Methyl- und Butyl-Seitenketten als Donor verwendet. Das Abscheiden der aktiven Schicht auf einem geheizten Substrat (80 °C) führt zu einer verbesserten Solarzellenleistung, was auf die Bildung einer hin- reichenden Phasenseparation von D- und A-Phasen in der aktiven Schicht zurückzuführen ist. Die Phasenseparation bewirkt eine Reduktion von Rekombinationsverlusten und die Bildung geschlossener Perkolationspfade. Die morphologische Änderung korreliert mit einem Anstieg der Ladungsträger-Lebensdauer um fast eine Größenordnung von etwa 10 μs auf ≈ 80 μs. Der Anstieg kann sowohl optisch durch PIA, als auch elektrisch mittels Impedanz-Spektroskopie detektiert werden. Eine höhere Lebensdauer der Ladungsträger kann letztlich auf eine größere räumlichen Separation der positiven und negativen Ladungsträger zurückgeführt werden, induziert durch die Phasenseparation. Ein Vergleich von DCV2-5T-Molekülen mit Methyl- und Butyl-Seitenketten führt zu ähnlichen Resultaten: Solarzellen mit DCV2-5T substituiert mit Methyl- Seitenketten sind effizienter als die der butyl-substituierten Moleküle. Dies korreliert wiederum mit einer signifikant erhöhten Lebensdauer der Ladungsträger in Mischschichten der methyl-substituierten Verbindung.
67

Study in analytical glow discharge spectrometry and its application in materials science

Efimova, Varvara 28 September 2011 (has links) (PDF)
Glow Discharge Optical Emission Spectrometry (GD OES) has proved to be a versatile analytical technique for the direct analysis of solid samples. The application of a pulsed power supply to the glow discharge (GD) has a number of advantages in comparison with a continuous one and thereby broadens the analytical potential of the GD. However, because the pulsed GD (PGD) is a relatively new operation mode, the pulsing and plasma parameters as well as their influence on the analytical performance of the GD are not yet comprehensively studied. The aim of this dissertation consists in the investigation of the PGD features, which are crucial for both understanding the discharge plasma processes and analytical applications. The influence of the pulsing parameters on the PGD is ascertained and compared for direct current (dc) and radio frequency (rf) discharges. In the research attention is firstly paid on the electrical parameters of PGD, then on the sputtered crater shapes, sputtering rates and finally on the light emission. It is found that the sputtered crater shape is strongly affected by the duration of the applied pulses even when the duty cycle is fixed. The pulse length influences the intensity of the light emission as well (at constant duty cycle). Moreover this influence is different for emission lines of atoms and ions in the plasma. This phenomenon can be seen at the comparison of atomic and ionic lines of different elements. The voltage–current plots of the PGD are found to indicate heating of the discharge gas when operating at high duty cycles. Using this feature a new method for the estimation of the discharge gas temperature from the voltage-current characteristics of the PGD is developed. The calculated temperature values are compared with another temperature measurement technique. Different temperature estimation procedures have shown that the discharge gas temperature can be reduced by around 100 K when PGD is applied. The temperature measurements have also confirmed that the gas heating can be adjusted by variation of the pulsing parameters. The effect of sputtering on the Cu(In,Ga)Se2 (CIGSe) layer surface of the solar cells is described for the first time. SEM investigations of the CIGSe layer of the solar cells have shown that sputter induced effects can be reduced by variation of the pulsing parameters. With regard to the question whether dc and rf pulsed discharges behave similarly: nearly all phenomena found with dc discharges also appear in the rf case. Hence it is concluded that the pulsed rf and dc discharges are very similar in terms of the electrical properties, sputtered crater formation, light emission and temperature. It is concluded that matrix specific, as well as matrix independent quantification principles and the intensity correction developed by Arne Bengtson can be applied for the pulsed mode, if special conditions are fulfilled. CIGSe solar cell samples and thin layered electrode metallizations of SAW devices are measured and quantified with application of PGD. The proposed quantification procedures are performed at commercial GD OES devices and can be used for the analysis with application of pulsed rf discharge. The studies of the PGD performed in this dissertation are relevant for the application of the GD OES analysis in materials science. During the collaborative work with Helmholtz-Zentrum Berlin für Materialien und Energie and with the research group of Dr. Thomas Gemming at IFW Dresden the optimized pulsed GD OES measurements could be successfully applied at the investigation of thin film solar cells with CIGSe light absorbing layer and electrode matallizations of SAW devices. In case of solar cell samples pulsed GD OES depth profiling along with SIMS measurements reveal the role of the Al2O3 barrier layer in high efficiency solar cells consisting of a CIGSe/Mo/Al2O3/steel substrate layer stack (the barrier layer is to prevent the Fe diffusion into the CIGSe). The features of the CIGSe films growth are studied with help of pulsed GD OES and in situ synchrotron XRD measurements. The diffusion coefficient of Zn into the CuInS2 layer is determined for the first time from the measured GD OES depth profiles of the corresponding solar cell samples. In case of SAW samples, pulsed GD OES measurements helped to evaluate the different SAW electrode preparation procedures and to select the most suitable one. In addition pulsed GD OES depth profiling along with XPS, TEM-EDX and electrode lifetime measurements indicate the possible mechanism of power durability and lifetime improvement of the SAW devices when a small amount of Al is added to the Cu-based electrodes. / Die optische Glimmentladungsspektroskopie (engl. Glow Discharge Optical Emission Spectrometry - GD OES) hat sich als eine vielfältige und schnelle Methode für die direkte Analyse von festen Materialien erwiesen. Die Anwendung von gepulsten Glimmentladungen (GD) bietet eine Reihe von Vorteilen im Vergleich zu einer kontinuierlichen Entladung und erweitert dadurch das analytische Potential der Methode. Die praktische Anwendung von gepulsten GD erfordert jedoch ein tiefes Verständnis der Prozesse, die in der Entladung und im elektrischen System ablaufen. Der Einfluss der Puls- und Plasmaparameter auf die analytische Leistung der gepulsten GD ist bislang noch nicht umfassend erforscht worden. Die Zielstellung dieser Arbeit besteht in der Untersuchung der Eigenschaften der gepulsten GD, welche von besonderer Bedeutung sowohl für das Verständnis des Entladungsprozesses als auch für analytische Anwendungen ist. Die Auswirkungen der Pulsparameter auf die gepulste GD wurde für den Gleichstrom-(DC) und Hochfrequenz- (HF) Modus untersucht und verglichen. Die Reihenfolge der Untersuchungen wurde in dieser Arbeit wie folgt gewählt: elektrische Parameter, Sputterkraterformen, Sputterraten und Lichtemission. Die Form des Sputterkraters korreliert stark mit der Pulsdauer, selbst wenn das Tastverhältnis konstant ist. Die Pulsdauer beeinflusst nicht nur die Kraterform, sondern auch die Intensität der Emissionslinien (bei konstantem Tastverhältnis). Darüber hinaus ist dieser Einfluss unterschiedlich für Atome und Ionen. Dieses Verhalten wurde an mehreren Emissionslinien (atomar bzw. ionisch) nachgewiesen. Aus der Analyse der U-I-Kennlinien der gepulsten GD ergab sich, dass es zu einer Erhitzung des Plasmas bei höherem Tastverhältnis kommt. Dieser Effekt wurde zur Bestimmung der Plasma-Gastemperatur ausgenutzt. Die ermittelten Temperaturen wurden mit einer andere Methode verglichen. Aus der Abschätzung ergab sich, dass die Plasmatemperatur bei gepulsten GD um bis zu 100 K gesenkt werden und durch die Pulsparameter genauer eingestellt werden kann. Der Einfluss des Sputterns auf Cu(In,Ga)Se2 (CIGSe) Dünnschichten von Solarzellen wurde erstmals beschrieben. REM-Untersuchungen an GD-gesputterten CIGSe Schichten haben gezeigt, dass die Sputtereffekte durch die Variation der Pulsparameter reduziert werden können. Es konnte gezeigt werden, dass HF- und DC-Entladungen dieselben Effekte aufweisen und sich nur geringfügig voneinander unterscheiden. Daraus kann geschlussfolgert werden, dass DC- und HF-Entladungen in Bezug auf elektrische Eigenschaften, Kraterformen, Lichtemission und Temperatur sehr ähnlich sind. Die Quantifizierung der mit gepulsten GD gemessenen Tiefenprofile ergab ferner, dass die Anwendung der Quantifizierungsmethoden für den kontinuierlichen Modus unter den gegebenen Bedingungen zulässig ist. Die Tiefenprofile von Solarzellen-Schichten sowie SAW-Metallisierungen wurden anhand gepulster GD gemessen und quantifiziert. Die empfohlenen Quantifizierungsmethoden können mit kommerziellen GD OES-Geräten durchgeführt werden. Die Untersuchungen an gepulsten GD sind insbesondere relevant für GD OES-Anwendungen im Bereich der Werkstoffwissenschaft. Während der Zusammenarbeit mit dem Helmholtz-Zentrum Berlin für Materialien und Energie und der Arbeitsgruppe von Dr. Thomas Gemming (IFW Dresden) konnten optimierte, gepulste GD OES Messungen erfolgreich zur Untersuchung von Dünnschicht-Solarzellen bzw. hochleistungsbeständigen SAW-Metallisierungen angewendet werden. Für die Solarzellen haben GD OES und SIMS Messungen geholfen, die Rolle der Al2O3-Barriere in CIGSe/Mo/Al2O3 Schichtstapeln auf flexiblem Stahlsubstrat besser zu verstehen (Al2O3 soll die Diffusion der Fe-Atome in CIGSe verhindern). Die gemeinsame Untersuchung getemperter CIGSe-Schichten mit gepulster GD OES und in-situ Synchrotron-XRD ergab neue Erkenntnisse zum Schichtwachstum. Der Diffusionskoeffizient von Zn in CuInS2 wurde erstmals aus GD OES-Tiefenprofilen bestimmt. Im Fall der SAW-Metallisierungen konnte die GD OES zur Bestimmung des geeignetsten Herstellungsverfahrens einen wichtigen Beitrag leisten. Die gepulste GD OES hat neben anderen Untersuchungsmethoden wie TEM-EDX, XPS und Lebensdauermessungen die Verbesserung der Leistungsbeständigkeit von Cu-Metallisierungen durch geringen Al-Zusatz aufklären können.
68

Influence of processing conditions on morphology and performance of vacuum deposited organic solar cells

Holzmüller, Felix 11 September 2017 (has links) (PDF)
This thesis discusses vacuum deposited organic solar cells. It focuses on the investigation of new donor molecules blended with the standard electron acceptor C60. These donor-acceptor heterojunctions form the photoactive system of organic solar cells. In addition, the influence of the processing conditions on the morphology of the blend layers is investigated, as the morphology is crucial for an efficient generation of free charge carriers upon photon absorption. Bulk heterojunction solar cells with the donor DTDCTB are deposited at different substrate temperatures. We identify three substrate temperature regimes, discriminated by the behavior of the fill factor (FF ) as a function of the blend layer thickness. Devices deposited at RT have a maximum FF between 50 and 70 nm blend thickness, while devices deposited at 110 °C have a monotonically decreasing FF. At Tsub=85 °C, the devices have an S-kinked current-voltage curve. Grazing incidence wide angle X-ray scattering measurements show that this peculiar behavior of the FF is not correlated with a change in the crystallinity of the DTDCTB, which stays amorphous. Absorption measurements show that the average alignment of the molecules inside the blend also remains unchanged. Charge extraction measurements (OTRACE) reveal a mobility for the 110 °C device that is an order of magnitude higher than for the RT device. The difference in mobility can be explained by a higher trap density for the RT samples as measured by impedance spectroscopy. Despite slightly higher carrier lifetimes for the RT device obtained by transient photovoltage measurements, its mobility-lifetime product is still lower than for the 110 °C devices. Based on DTDCTB, three new donor materials are designed to have a higher thermal stability in order to achieve higher yields upon material purification using gradient sublimation. For PRTF, the thermal stability is increased demonstrated by a higher yield upon sublimation. However, all new materials have a reduced absorption as compared to DTDCTB, which limits the short current density, and the FF is more sensitive to an increase of the blend layer thickness. The highest power conversion efficiency is achieved for a PRTF:C60 solar cell with 3.8%. Interestingly, PRTF:C60 solar cells show exceptionally low nonradiative voltage losses of only 0.26 V. Another absorber molecule is the push-pull chromophore QM1. Scanning electron microscope (SEM) measurements show a growth of the molecule in nanowires on several substrates. The nanowires have lengths up to several micrometers and are several tens of nanometers wide. The formation of the nanowires is accompanied by a strong blue shift (650 meV) of the thin film absorption spectrum in comparison to the absorption in solution, which is attributed to H-aggregation of the molecules. Furthermore, the thin film absorption onset reaches up to 1100 nm, making the material a suitable candidate for a near infrared absorber in organic solar cells. For a solar cell in combination with C60, a power conversion efficiency of 1.9% was achieved with an external quantum efficiency of over 19% for the spectral range between 600 and 1000 nm. The method of “co-evaporant induced crystallization” as a means to increase the crystallinity of blend layers without increasing the substrate temperature during the deposition is investigated. Mass spectrometry (LDI-ToF-MS) measurements show that polydimethylsiloxane (PDMS), which is used as a co-evaporant, decomposes during the evaporation and only lighter oligomers evaporate. Quartz crystal microbalance (QCM) measurements prove that the detection of PDMS saturates at higher amounts of evaporated material. LDI-ToF-MS measurements show further that the determination of the volatilization temperature by QCM measurements is highly error prone. The method was applied to zinc phthalocyanine (ZnPc) :C60 solar cells, accepting the insertion of PDMS into the blend layer. Diffraction (GIXRD) measurements show a large increase in crystallinity. ZnPc:C60 solar cells produced by applying the method reveal a similar behavior as solar cells processed at a higher substrate temperature.
69

Exploring nanoscale properties of organic solar cells

Mönch, Tobias 30 November 2015 (has links) (PDF)
The demand for electrical energy is steadily increasing. Highly efficient organic solar cells based on mixed, strongly absorbing organic molecules convert sunlight into electricity and, thus, have the potential to contribute to the worlds energy production. The continuous development of new materials during the last decades lead to a swift increase of power conversion efficiencies (PCE) of organic solar cells, recently reaching 12%. Despite these breakthroughs, the usage of highly complex organic molecules blended together to form a self-organised absorber layer results in complicated morphologies that are poorly understood. However, the morphology has a tremendous impact on the photon-to-electron conversion, affecting all processes ranging from light absorption to charge carrier extraction. This dissertation studies the role of phase-separation of the self-organised thin film blend layers utilized in organic solar cells. On the molecular scale, we manipulate the phase-separation, using different molecule combinations ranging from the well-known ZnPc:C 60 blend layers to highly efficient oligothiophene:C60 blend layers. On the macroscopic scale, we shape the morphology by depositing the aforementioned blend layers on differently heated substrates (in-vacuo substrate temperature, Tsub). To characterise the manufactured blend layers, we utilize high resolution microscopy techniques such as photoconductive atomic force microscopy, different electron microscopic techniques, X-ray microscopy etc., and various established and newly developed computational simulations to rationalise the experimental findings. This multi-technique, multi-scale approach fulfils the demands of several scientific articles to analyse a wide range of length scales to understand the underlying optoelectronic processes. Varying the mixing ratio of a ZnPc:C60 blend layer from 2:1 to 6:1 at fixed in vacuo substrate temperature results in a continuous increase of surface roughness, decrease of short-circuit current, and decrease of crystallinity. Additionally performed density functional theory calculations and 3D drift-diffusion simulations explain the observed crystalline ZnPc nanorod formation by the presence of C60 in the bulk volume and the in turn lowered recombination at crystalline ZnPc nanorods. Moving to oligothiophene:C60 blend layers used in highly efficient organic solar cells deposited at elevated substrate temperatures, we find an increase of phase-separation, surface roughness, decrease of oligothiophene-C60 contacts, and reduced disorder upon increasing Tsub from RT (PCE=4.5%) to 80 °C (PCE=6.8%). At Tsub =140 °C, we observe the formation of micrometer-sized aggregates on the surface resulting in inhomogeneous light absorption and charge carrier extraction, which in turn massively lowers the power conversion efficiency to 1.9%. Subtly changing the molecular structure of the oligothiophene molecule by attaching two additional methyl side chains affects the thin film growth, which is also dependent on the substrate type. In conclusion, the utilized highly sensitive characterisation methods are suitable to study the impact of the morphology on the device performance of all kinds of organic electronic devices, as we demonstrate for organic blend layers. At the prototypical ZnPc:C60 blend, we discovered a way to grow ZnPc nanorods from the blend layer. These nanorods are highly crystalline and facilitate a lowered charge carrier recombination which is highly desirable in organic solar cells. The obtained results at oligothiophene: C60 blends clearly demonstrate the universality of the multi-technique approach for an in-depth understanding of the fragile interplay between phase-separation and phase-connectivity in efficient organic solar cells. Overall, we can conclude that both molecular structure and external processing parameters affect the morphology in manifold ways and, thus, need to be considered already at the synthesis of new materials.
70

Numerical simulation and optimisation of organic light emitting diodes and photovoltaic cells

Kozlowski, Fryderyk 26 November 2005 (has links)
A numerical model and results for the quantitative simulation of multilayer organic light emitting diode (OLED) and organic solar cell (OSC) are presented. In the model, effects like bipolar charge carrier drift and diffusion with field-dependent mobilities, trapping, dopants, indirect and direct bimolecular recombination, singlet Frenkel exciton diffusion, normal decay and quenching effects are taken into account. For an adequate description of multilayer devices with energetic barriers at interfaces between two adjacent organic layers, thermally assisted charge carrier hopping through the interface, interface recombination, and formation of interface charge transfer (CT) states have been introduced in the model. For the simulation of OSC, the generation of carrier pairs in the mixed layer or at the interface is additionally implemented. The light absorption profile is calculated from optical simulations and used as an input for the electrical simulation. The model is based on three elements: the Poisson equation, the rate equations for charge carriers and the rate equations for singlet Frenkel excitons. These equations are simultaeously solved by spatial and temporal discretisation using the appropriate boundary conditions and electrical parameters. The solution is found when a steady state is reached, as indicated by a constant value of current density. The simulation provides a detailed look into the distribution of electric field and concentration of free and trapped carriers at a particular applied voltage. For organic light emitting diodes, the numerical model helps to analyze the problems of different structures and provides deeper insight into the relevant physical mechanisms involved in device operation. Moreover, it is possible to identify technological problems for certain sets of devices. For instance, we could show that ? in contrast to literature reports - the contact between Alq3 and LiF/Al did not show ohmic behaviour for the series of devices. The role of an additional organic blocking layer between HTL and EML was presented. The explanation for the higher creation efficiency for singlet excitons in the three-layer structure is found in the separation of free holes and electrons accumulating close to the internal interface 1-Naphdata/Alq3. The numerical calculation has demonstrated the importance of controlled doping of the organic materials, which is a way to obtain efficient light emitting diodes with low operating voltage. The experimental results has been reproduced by numerical simulation for a series of OLEDs with different thicknesses of the hole transport layer and emitting layer and for doped emitting layers. The advantages and drawbacks of solar cells based on flat heterojunctions and bulk heterojunctions are analyzed. From the simulations, it can be understood why bulk-heterojunctions typically yield higher photocurrents while flat heterojunctions typically feature higher fill factors. In p-i-n ?structures, p and n are doped wide gap materials and i is a photoactive donor-acceptor blend layer using, e.g,. zinc phthalocyanine as a donor and C60 as an acceptor component. It is found that by introducing trap states, the simulation is able to reproduce the linear dependence of short circuit currents on the light intensity. The apparent light-induced shunt resistance often observed in organic solar cells can also be explained by losses due to trapping and indirect recombination of photogenerated carriers, which we consider a crucial point of our work. However, these two effects, the linear scaling of the photocurrent with light intensity and the apparent photoshunt, could also be reproduced when field-dependent geminate recombination is assumed to play a dominant role. First results that show a temperature independent short circuit photocurrent favour the model based on trap-mediated indirect recombination.

Page generated in 0.0833 seconds