• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • Tagged with
  • 25
  • 18
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Solcellspotential för Uppsalahem till år 2025

Bohlin, Johannes, Strandberg, Daniel, Piven, Yegor January 2019 (has links)
Denna rapport undersöker bostadsbolaget Uppsalahems möjligheter att investera i solceller. Syftet med rapporten är att uppskatta Uppsalahems solcellspotential fram till år 2025 utifrån ett lönsamhetsperspektiv och besvara i vilken utsträckning Uppsalahem kan bidra till målet om 100MW installerad solenergieffekt till år 2030. Taken som utvärderas uppskattas med hjälp av en simulering baserad på LiDAR-data och en solcellsmodell konstrueras utifrån denna data. Solcellsmodellen valideras med andra kända beräkningsmodeller och en investerings lönsamhet uppskattas för olika scenarier baserat på Uppsalahems juridiska och ekonomiska förutsättningar vad gäller försäljning och inköp av el. Enligt lönsamhetsberäkningarna uppskattas 16 av 516 solcellssystem vara lönsamma i grundsscenariot som förmodas vara det mest sannolikascenariot att inträffa. Många solcellssystem är väldigt nära på att vara lönsamma i grundsscenariot och beroende på scenariot uppskattas upp till 300 solcellssystem vara lönsamma. Om solcellspotentialen uppskattas utan hänsyn till lönsamhet, estimeras Uppsalahem enligt solcellsmodellen kunna bygga solcellssystem som tillsammans har en installerad effekt på drygt 16MW, vilket är en relativt grov uppskattning med hög osäkerhet.
12

Integrering av solkraft vid ö-drift

Edberg, Fredrik January 2020 (has links)
Försvarsmakten deltar aktivt i internationella insatser tillsammans med flera organisationer, såväl Nordatlantiska fördragsorganisationen (NATO) som Förenta nationerna (FN), med olika inriktningar och mål såsom humanitära och fredsbevarande insatser. Arbetsplatsen för soldater och officerare befinner sig allt som oftast på en avlägsen plats där utbudet av elektricitet ofta är begränsad. Detta medför att Försvarsmakten antingen får förlita sig på en annan nations strömförsörjning och ansluta sig till den, alternativt bistå med utrustning för att generera elektricitet för eget bruk. För att Försvarsmakten ska kunna upprätthålla operativ förmåga för sina internationella förband krävs idag en viss säkerhet när det kommer till tillgång på bränsle till generatorerna som genererar elektricitet till förläggningen. Bränsle är en bristvara och vanligtvis svåråtkomlig i de områden där Försvarsmakten verkar. Därmed blir energieffektivisering allt mer viktig även för Försvarsmakten. Dagens utrustning och systemlösning är robust och tillförlitlig, men oerhört kostsam när det kommer till förbrukning av bränsle. I detta arbete har en fallstudie genomförts med inriktningen att avgöra om befintlig utrustning kan kompletteras med en solkraftsanläggning för att reducera den årliga förbrukningen av bränsle vid generering av elektricitet. Insatsområdet som valts är Mali och förläggningen Camp Nobel, där begränsningen gjorts att solkraftsanläggningen får motsvara maximalt 4 % av förläggningens totala area. Beräkningarna utgår ifrån det befintliga systemets acceptansgräns och arbetet innefattar även en beräkningsmodell för att avgöra hur effektiv en solkraftsanläggning kan vara, vid givna förhållanden, på den platsen Försvarsmakten verkar. Resultatet visar att vid givna förhållanden kan en komplettering med solkraftsanläggning minska åtgången av bränsle för generering av elektricitet med upp till 11.09 % per år. Men den avgörande faktorn för lönsamheten är förläggningens storlek och den bedömda tiden Försvarsmakten förväntas verka i området.
13

Support Structure and Expanding Mechanisms for a Photovoltaics Installation on a Wave Power Float / Stödstruktur och utvecklingsmekanismer för en solpanelsinstallation på ett vågkraftverk

Gregorsson, Martin, Lindén, Jonathan January 2023 (has links)
This report presents a master's thesis conducted within the machine design track at KTH Royal Institute of Technology. The research work was undertaken in collaboration with Novige AB, who commissioned the project. Novige AB is in the development and testing phases of a wave energy converter (WEC) of which exhibits a large area of unutilized potential. This led to the purpose of this thesis, conceptualizing a support structure and expanding mechanism for solar panels to be mounted on the float of the WEC. Since no previous work related to the subject had been conducted, the objectives were to explore different solutions and present a detailed final concept, including initial finite element calculations from expected load cases. The work consisted of several concept phases to ensure a thorough design process and to be able to accurately evaluate each concept. The outcome of the project yielded a conceptual design, featuring stackable solar panel modules. Each module consisted of four panels arranged horizontally and three panels vertically, resulting in a total of 288 solar panels, when incorporating eight modules on each float. The cumulative potential maximum power output of the configuration was estimated to be approximately 115 kW. When harsh conditions would be detected, the outer modules would retract under the fixed center module. To support the outer modules, a telescope beam was incorporated, spanning the outermost points of the structure, while roller guides were utilized at the inner end. Moreover, the movement of the outer modules was facilitated by a chain mechanism, housed within a U-profile. Most components in the design were proposed to be manufactured using steel, supplemented with protective measures such as paint or coating to ensure durability in the oceanic environment. / Denna rapport presenterar ett mastersarbete som utförts inom maskinkonstruktionsspåret vid KTH Kungliga Tekniska Högskolan. Arbetet genomfördes i samarbete med Novige AB, som beställde projektet. Novige AB befinner sig i utvecklings- och testfaserna av ett vågkraftverk (WEC) som har en stor outnyttjad yta med potential. Detta ledde till syftet med detta arbete, att konceptualisering en stödstruktur och en expanderingsmekanism för solpaneler som ska monteras på flotten av WEC. Eftersom ingen tidigare forskning hade utförts på området var målet att utforska olika lösningar och presentera ett detaljerat slutkoncept, inklusive initiala beräkningar med FEM under förväntade lastningsfall. Arbetet bestod av flera konceptuella faser för att säkerställa en noggrann designprocess och för att kunna utvärdera varje koncept på ett genomgående sätt. Projektet resulterade i en konceptuell design med stapelbara solpanelesmoduler. Varje modul höll 12 solpaneler, fyra horisontellt och tre vertikalt med 3 moduler per struktur. Varje WEC kunde bära totalt 8 strukturer vilket ger 288 solpaneler per WEC. Den sammanlagda potentiella effekten för konfigurationen uppskattades till cirka 115 kW. Vid svåra väderförhållanden, skulle de yttre modulerna dras tillbaka under den fasta mittmodulen för att minska vindfånget. För att stödja de yttre modulerna inkluderades en teleskopisk balk som bär de yttersta punkterna på modulen, medan rullstöd användes i den inre delen. Dessutom utfördes rörelsen hos de yttre modulerna av en kedja-kuggmekanism som placerades inuti en U-profil. De flesta komponenter i designen föreslogs tillverkas av stål, kompletterat med skyddsåtgärder såsom färg eller beläggning för att minimera risken för korrosion i den marina miljön.
14

Hållbar energi till mobila hem vintertid : Ett koncept för hållbar energiutvinning, utvald med analytisk metodik / Sustainable energy for recreational vehicles during winter season : A product development process with an analytical concept selection

Deljerud, Hampus January 2021 (has links)
Detta projekt har utförts som examinerande moment i kursen: examensarbete för högskoleingenjörsexamen i innovationsteknik och design, MSGC12, 22,5 hp. Projektet inleddes och utfördes av Hampus Deljerud med hjälp av Invencon AB. Handledare på universitetet var Monica Jakobsson, och examinator i kursen var professor Leo de Vin. Ett problem har identifierats att ägare av fritidsfordon har svårt att tillgodose sitt behov av hushållsel under vintern. Under projektet har en rad marknadsundersökningar genomförts där behovet och existerande lösningar har undersökts. Enkäter och andra undersökningsmetoder resulterade i att över hundra respondenter tog sin tid och visade intresse för att svara på frågor och delta i omröstningar. När problemet hade fastställts gjordes en projektplan för att klargöra mål, avgränsningar, milstolpar och deadlines. Detta kompletterades även med riskanalyser i försök att eliminera eventuella fallgropar.  Utifrån litteraturstudier och marknadsundersökningar sammanställdes alla krav i en kravspecifikation. Kravspecifikationen användes för att se till att alla nya koncept uppfyllde alla krav. Idégenereringar utfördes digitalt med hjälp av tre olika grupper över videosamtal. Alla deltagare fick möjlighet att dela sina tankar och idéer direkt över nätet via Google drive. Tjugoen koncept togs fram och sållades ned till fem potentiella lösningar som tillgodosåg de krav som ställdes i kravspecifikationen.   Ett Exceldokument togs fram där väderdata från SMHI användes i en beräkningskalkyl för att hitta den bästa lösningen på grundproblemet. Den bästa lösningen visade sig vara en kombination av energisystem där en del av systemet består av ett hopfällbart vindkraftverk. Vindkraftverkets fällmekanism tar hjälp av generatorn i kraftverket och vajrar. Genom tillämpning av existerande mekanik i dagens vindkraftverk görs konstruktionen med färre delar och resulterar i en lösning som bedöms vara gynnsam ur ett ekonomiskt perspektiv.
15

Dimensionering av ett verktygslöst profilsystem för solpaneler / Dimensioning of a tool free profile system for solar panels

Franzén, Sebastian, Ramstedt, Martin January 2016 (has links)
Arbetet dimensionerar ett panelsystem för att motstå yttre påfrestningar som snö och vind, samtidigt som att det ska erbjuda oförstörande av- och påmontering. Hållfasthetsberäkningar har utförts med hjälp av statiska balkfall. Dimensionering av spår, snäppfunktion och låsningar i profilsystemet har utförts. Konstruktionsritningar har utförts, baserade på dimensionering och standarder. Med hjälp av detta arbete går det att tillverka detta system, åtminstone i ett prototypstadie. / This work dimensions a panel system to withstand external loads such as snow and wind, while it will offer non-destructive removing and assembly. Strength calculations have been performed using static beam cases. The design of the track, the snap-fit assembly and locks in the profile system has been changed. Construction drawings have been made, based on the calculated dimensions and required ISO-standards. With the existing work, it is possible to manufacture this system, at least in a prototype stage.
16

Energieffektivisering och energibalansberäkningar samt förbättrings förslag på nyproducerade lägenheter.

Sheibani, Amjad January 2017 (has links)
Syftet: Med arbetet är att utreda en fastighets klimatskal och energiförbrukning med hjälp av energibalansberäkningar. Målet: med rapporten är att upplysa hur fastighetens energiförbrukning kan beskrivas utifrån transmission och ventialtionsberäkningar. Avgränsning: avgränsning till att beräkna energibalanser till en fastighet som består av 46 lägenheter och nästan alla beräkningar är manuella, där energiförbrukningen beräknas. Detta ger en bra överblick över vad som behövs förbättras i dessa lägenheter. Teori: Information om fatigheten samlades in vid ett platsbesök där både in- och utsida undersöktes samt via samtal med företaget PEPA som byggde fastigheten. En ytterligare undersökning gjordes där information om området, byggår, tidigare års energideklarationer och energiberäkningar insamlades samt vilka energibesparingsåtgärder som gjorts i dagsläget. Med hjälp av litteratur, webbaserade källor och artiklar har arbetat granskat och bearbetat till ett sakligt slutresultat. Metod: En studie av litteratur undersökning i ämnet har utförts för att hitta relevant och nödvändig information inom området. För att undersöka fastighetens energianvändning, uppvärmning och konstruktion så har ett flertal fastighetsbesök gjorts. Utförande: Har undersöks fastighetens energiförbrukning och med hjälp av energibalansförbrukningen upplysas fastighetens elanvändning, fjärrvärme, tappvarmvatten, transmissionsförluster och ventilationsförluster etc. Denna studie har gjorts för att utreda investeringskostnader för solceller på fasader och på taket på en byggnad. Dessutom har studien utförs för att se om dessa bidrar till att minska fastighetens årskostnader och energiförbrukning under ett år. Resultat: I resultatdelen visas transmissionsförluster med ett värde på 330 MWh/år och köldbryggor som är 20 % av totala transmissionsförluster. Medan ventilationsförluster är 270 MWh, där luftläckage är 379 W/C. Sammanställningen av U-värde för transmissionsförluster är 0,35 W/m2. C och boverkets krav 0,4 W/m2.C, detta innebär att U-värde uppfyller boverkets krav. Värmeenergi behovet till fastigheten är 647 MWh, medan värmeeffektbehov är 228 kW, där energianvändningen och gränsvärde är 103 kWh/m2.år Diskussion: Syftet med arbetet var att studera och titta närmare på vilka energieffektiviserande åtgärder som finns till huset och vilka åtgärder som kan ge ett bra resultat, för att minska energi förbrukningen och ge besparing. Undersökningen har utförts genom manuella beräkningar, via samtal med personal från HSB på plats i Östersund och Sundsvall. Undersökningen har även utförts genom att samla in alla byggnadsritningar, genom kurslitteratur, Boverket, ISO standard samt genom diskussioner med företag som PEAB som har bidragit med viktig information. Ett schablonblad som erhölls av HSB har används vid beräkningar som exempelvis till dörrar, fönster, ytterdörrar, balkonger samt köldbryggor Slutsats: Transmissionsberäkningarna visar att värmegenomgångskoefficienten har ett rimligt värde, vilket är bra i jämförelse med boverkets krav på 0,4 W/m²·K. Vidare visas det i rapporten att ventilationen som används i fastigheten är bra, då FTX system används och värmeåtervinning sker. En annan åtgärd i rapporten, är en beräkning som visar en sänkning av inomhus temperaturen och är på så sätt lönsam. Den sista åtgärden som har utförts är snålspolande kranar som visar ett bra reslutat på en besparing året runt. Solcellernas beräkningar visar två olika resultat, de som är belägna på taket har en livslängd på 12 år och är mer rimlig än de som är på fasaden som har livslängd på 30 år. / The purpose of the work is to investigate real estate climate scale and energy consumption using energy balance calculations. The goal of the report is to disclose how the energy consumption of the building can be described by transmission, air leakage and ventilation calculations. And where you make an energy balance calculations to the real estate. The work delimited to calculate energy balances for a house consisting of 46 apartments and almost all calculations are manual calculations where energy consumption is calculated which gives a good overview of what is needed to improve in apartments. Information about the real estate was collected at a site visit where both inside and outside were investigated as well as conversations with the company PEPA that built the property. A further survey has been made where information about the area, year of construction, previous year's energy declarations and energy calculations was collected, as well as what energy saving measures have been taken today. With the help of literature, web-based sources and articles have been reviewed and processed into a true final result. Method: A study of literature research on the subject has been conducted to find relevant and necessary information in the field. To investigate the energy use, heating and construction of the property, several property visits have been made. This study has been conducted to investigate investment costs for solar on facades and on roofs of a building. In addition, the study has been conducted to see if these contribute to reducing the property's annual costs and energy consumption over an entire year. Results: Transmission losses are 330 MWh and cold bridges”köldbryggor” which are 20% of total transmission losses. While ventilation losses are 270 MWh, where air leakage is 379 W / C. Compilation of U value for transmission losses is 0.35 W/m2.C and energy agency requirements 0.4 W / m2.C, which means that the U value meets the requirements of the building. Heat energy the need for the property is 647 MWh, while the heat power requirement is 228 kW and energy consumption and limit value is 103 kWh / m2, year.   Discussion: The purpose of the work was to study and look into what energy efficiency measures are available to the house and what measures can provide a good result, to reduce energy consumption and save savings. The survey has been carried out through manual calculations, via talks with HSB staff in place in Östersund and Sundsvall. The survey has also been carried out by collecting all building drawings, through literature and the Boverket, ISO standard and through discussions with companies such as PEAB that have contributed with important information. Conclusion: The transmission calculations show that the heat transfer coefficient is a reasonable value, which is a good in comparison with the requirements of 0.4 W / m². K. Furthermore, the report shows that the ventilation used in the property is good when using FTX systems and heat recovery takes place. Another measure calculation performed in the report is a decrease in indoor temperature, which proves to be profitable. The last measure that has been carried out in the report is the fast-moving cranes that show a good deal of savings all year round. Sun cells calculations show two different results the first one sun cells those located on the roof have a life span of 12 years and are more reasonable while the another one those on the facade that have a life span of 30 years.
17

Påverkningsfaktorer samt anledning vid implementering av solpaneler; är processen solklar?

Steinum, Hanna, Wibeck, Jane January 2018 (has links)
Purpose:The study’s aim is to shed light upon the reasons for implementation and factors that affect the implementation process of solar panels for companies. The purpose was to investigate what influences the implementation of new technology; what the reasons are and which factors influence the implementation. To be able to answer the purpose two research questions have been formulated:  What is the reason for companies to choose to implement solar panels? What factors influence the implementation process solar panels for companies? Method:The study was conducted by a literature study that laid the foundation for the theory and research questions. To be able to fulfil the aim of the research a case-study with a single-case-design has been carried out were three companies have been studied. The empirical data was collected through interviews and document studies. The research questions have been answered in the analysis in collaboration with the theory and the empirical findings which lead to the findings of the research.   Findings:The results of the study show that marketing is a significant reason to why companies choose to implement solar panels together with the reason to be more sustainable. The influences that navigate the implementation are the pilot study, the supplier, the technology fit and the company’s collaboration and communication with the supplier. These factors have influenced the result of the implementation and how successfulness of the outcome. The focus does not lay on the economic incentive for the companies in this type of implementation but one can discuss the value of marketing.    Implications: The study’s theoretical implication is described by why companies choose to implement solar panels. The practical implication that this study provides is the determination of what navigates the implementation of solar panels. This has been done by studying which factors that influenced the implementation of solar panels for companies and which then resulted in the important influencing factors.   Limitations: The reasons to why companies choose to implement sustainable new technology can be a sensitive subject due to the risk of being accused of “green washing”. This has made it important to emphasise anonymity of the companies to ensure that the answers from the interviews are as reliable as possible. It has been obvious during the interviews that some of the respondents have lacked the knowledge needed.
18

Montagekvalité av solcellsinstallationer i Mellansverige : En utvärdering av hållfasthet för installerade solcellsanläggningar

Nyman, Joar January 2020 (has links)
Antal installerade solcellsanläggningar har ökat drastiskt de senaste åren i Sverige, och utsikten för ökad mängd solel i Sverige är mycket god, med prognoser på kraftig tillväxt av installerade solcellsanläggningar de kommande åren. Detta med bakgrund att utvecklingen av solcellspaneler har gjort att priset har sjunkit, samt politiska beslut har gjort det lönsamt att investera i solcellsanläggningar i Sverige. Dessa förutsättningar har lagt grunden för en ny växande bransch, solcellsinstallationer. Risken vid en ny och snabbt växande bransch är att kunskapen inom ämnet för de som är verksamma inom branschen kan vara bristfällig samt oseriösa företag kan lockas av att tjäna snabba pengar på en lukrativ marknad. Efter en omfattande litteraturstudie visades att någon större kvalitésundersökning av solcellsinstallationer i Sverige, med avseende på hållfasthet ej har gjorts tidigare. Detta motiverade att denna undersökning var av hög relevans. Syftet med denna studie var att ta reda på om solcellsanläggningar monteras tillräckligt hållfast i Gävle-Dalaregionen med avseende på snö- och vindlast. Fjorton anläggningar har besökts för att samla in data. Data har sedan utvärderats i tre kategorier per anläggning. För att en anläggning skall bedömas som en godkänd skall alla dessa tre kategorier vara godkända. Bedömningen av solcellsanläggningarna gjordes i de tre kategorierna: 1. montagesystemets antal infästningar, 2. mått mellan infästningarna, 3. placering av solcellspanelerna i förhållande till montagesystemet. Resultatet visade att ingen av dessa anläggningar var godkända i samtliga tre kategorier. Vissa anläggningar var godkända i två av tre kategorier, medan två anläggningar var ej godkänd i någon kategori. Vid en summering av bedömningsresultatet för alla anläggningar i de tre montagekategorierna, visades att ca 20% ej gick att fastställa (pga. bristande information) ca 40% var godkända och ca 40% var ej godkända. Bedömningar har gjorts utifrån beräkningsprogram och anvisningar tillhandahållna av tillverkarna av de montagesystem och solcellspaneler som har använts i anläggningarna. Att ingen anläggning var godkänd i samtliga tre kategorier som undersöktes indikerar att solcellsmontage på tegeltak byggs ej tillräckligt hållfast i Gävle-Dalaregionen. Detta kan dock inte generaliseras för solcellsanläggningar på tegeltak i hela Sverige då mängden undersökta anläggningar var relativt liten och endast fördelade på två län i landet. Då det antas att installatörer avser att bygga korrekta anläggningar visar denna studie att kunskap om solcellsmontage med avseende på hållfasthet är bristfällig. Detta kan vara en följd av den stora efterfrågan på solcellsinstallationer, som kan medföra att stort fokus ligger på att installera anläggningar snabbt, och inhämtning av kunskap ej blir prioriterat. / The number of installed PV-systems (Photovoltaic systems) has increased rapidly in Sweden the last years, and the forecast for even more installations shows an increase for the coming years. Due to the price for PV-panels har dropped and political decisions for subventions of PV-systems has made it more profitable to invest in PV-installations in Sweden. These reasons have paved the road for a new growing branch, PV-installations. The risk of a new profitable, fast growing branch is that there might be short of knowledge for new installers, and the possibility that dishonest companies just want to take the advantage of the situation to make quick money, which can lead to installations poorly made.   After a search of published literature in strength of mounting for PV-panels there the result was that this is a rather unexplored subject, which motivated this investigation.   The aim of this study was to find out if PV-panels on tiled roofs were installed correct due to the snow load and wind load in the region Dalarna and Gävleborg in Sweden.   Fourteen PV-systems has been studied and evaluated. When the evaluation of the PV-systems were made the following criteria were considered: number of fixing attached to the roof of the mounting, distance between mounting fixings and how the PV-panels were installed relative the construction of the mounting. A PV-system had to be installed correctly for all three criterias to be considered approved. The result of this work shows that none of the evaluated systems were installed correctly. Some systems were approved in two of the criteria, while two systems were not approved in any of the criteria. The evaluation was made due to calculation programs and instructions from the manufacturers of mounting and PV-panels.   The fact that none of the PV-systems were approved for all three criteria implies that the installations of PV-systems are not made strong enough. This result is not stated for all installations in Sweden because the number of studied PV-systems were not big enough, and the area of the studied installations were rather small. Basis of snow load and wind load variates quite much in Sweden depending on region. It is assumed that designers and constructors attempt to install PV-systems correct, therefor shows this work that there’s a lack of knowledge for construct installations strong enough. This may be a result of the fast increase of PV-installations, where the priority lays in installing many PV-systems, not in education and search of knowledge.
19

Konceptutveckling av justerbart solcellstak för fritidsbåtar : Ett utvecklingsprojekt med syfte att öka laddningskapaciteten för elektriska fritidsbåtar / Concept development of adjustable photovoltaic sunroof for leisure boats

Friberg, Sebastian January 2021 (has links)
Denna rapport redovisar processen och resultatet av ett examensarbete som utgör en del av examinationen för högskoleingejörsexamen i innovationsteknik och design vid Karlstads universitet. Projektet är gjort på uppdrag av Glava Energy Center för Bowters räkning med uppdraget att ta fram lösningar som kan utöka laddningskapaciteten för elektriska fritidsbåtar. Examensarbetet utfördes vårterminen 2021 och omfattar 22.5 högskolepoäng. Projektet är uppbyggt kring fem faser, planering, discover, define, develop och deliver där syftet är att först identifiera rätt problem för att sedan kunna komma fram till rätt lösning. Det finns flera sätt att angripa detta projekt, speciellt om man väljer att fokusera på varför laddningskapaciteten behöver utökas från första början, vissa av dessa lösningar blir tyvärr också irrelevanta på grund av faktorer som berör kostnader eller tekniska aspekter. Detta arbete har därför identifierat och utvecklat lösningar som genom att installera fler solceller kan utöka laddningskapaciteten. På båten finns det flera ställen att installera solceller på, men det är svårt att bortse från att en av de bättre platserna ur effektsynpunkt är att placera solceller på något typ av tak där de inte blir skuggade, men vad tycker egentligen användarna om det? En användarintervju utfördes som gav svar på detta. Användarna kan tänka sig att ett tak är en bra sak att ha när det bli riktigt varmt eller man bara vill njuta av lite skugga som omväxling men att man förmodligen är ute med båten för att just få njuta av solen. Ett tak som går att fälla undan eller justera på något annat sätt skulle kunna vara en lösning på det problemet. En mängd olika taklösningar samt icke taklösningar har undersökts men efter användandet av olika kända sållningsmetoder stod det klart att arbetet skulle gå vidare med en taklösning som är delvis justerbar, alternativt helt fast. Detta har lett fram till att tre koncept tagits fram som alla bidrar med en utökad laddningskapacitet. Koncept Glidande stomme och Skjutbart tak bygger på en enkel konstruktion som tillåter en respektive två standard solpaneler att forma ett tak över båten. De olika koncepten kan justeras till olika positioner för att på det sättet kunna erbjuda användarna en variation av skugga och sol utefter tycke och smak. Koncept Origami flasher bygger som namnet hintar om på ett vikmönster från den traditionella konstformen origami. Detta koncept är lite mer experimentellt men ger i teorin ett väldigt stort skydd från solen i utfällt läge samt stor yta för montering av solceller, samtidigt som det i hopfällt läge täcker absolut minst yta av dessa tre koncept vilket är fördelaktigt för de användare som vill njuta av solen. / This thesis presents the process and it’s results from a concept development project. The thesis is part of the examination for a Bachelor of Science in Innovation Technology and Design at Karlstad University. The project was commissioned by Glava Energy Center on behalf of Bowter with the task of developing solutions that can increase the charging capacity for electric leisure boats. The thesis was written during spring 2021 and comprises 22.5 credits. The project is built around five phases, planning, discover, define, develop and deliver. The purpose is to first identify the right problem in order to be able to produce the right solution. There are several ways to approach this project, especially if you choose to focus on why the charging capacity needs to be increased in the first place, some of these solutions unfortunately also become irrelevant due to factors affecting costs or technical aspects. This work has therefore identified and developed solutions which, by installing more solar cells, can increase the charging capacity. There is several places on the boat that are suitable for install solar cells, but it is difficult to ignore that, from a power point of view, the best place to instal solar cells is on some sort of roof. But what does the user really think about it? A pre-study, including a intervju with users was conducted that provided answers to this question. The user can imagine that a roof is a good thing to have when it gets really hot or when you just want to enjoy a little shade for a change, but that the real objective with the usage of the boat probably is to enjoy the sun. A roof that can be folded away or adjusted in some other way could be a solution to that problem. A variety of roof solutions and non-roof solutions have been investigated. After the use of various known screening methods it was decided that the work would continue with a roof solution that is partially adjustable, or completely solid. The project have after that chosen to present three concepts that contribute to an increased charging capacity by help of a partially adjustable roof. Concept Glidande stomme and Skjutbart tak is based on a fairly simple construction that allows one respectively two standard solar panels to form a roof over the boat. The different concepts can be adjusted to different positions in order to offer users a variety of shade according to taste and needs. Concept Origami flasher, as the name suggests, is based on a folding pattern from the traditional art of origami. This concept is a bit more experimental but provides, in theory, second largest protection from the sun in unfolded  position. Meanwhile, in collapsed position, the Origami flasher concept covers the least area of ​​these three concepts, which is advantageous for those users who want enjoy the sun.
20

Installation av solceller för KTH / Installation of solar cells for KTH

Soumi, Jad Edward January 2023 (has links)
Detta arbete fokuserar på användningen av solpaneler för att producera den energi som behövs för KTH-byggnaden i Södertälje och minska dess miljöpåverkan. Problembeskrivningen betonar vikten av att minska energiförbrukningen och använda förnybara energikällor för att täcka det kvarvarande energibehovet för byggnader som KTH i Södertälje. Syftet och målet med arbetet är att undersöka mängden el och energi som används på KTH-byggnaden och föreslå en hållbar lösning med solpaneler för att producera den energi som behövs. Genomförandet av studien inkluderar beräkningar och tekniska detaljer. Informationen om energiförbrukningen på KTH Södertälje samlas in från Miljökontoret, och beräkningar av solinstrång och panelbehov utförs. För att välja lämpliga solpaneler jämförs olika alternativ från Svea Solar baserat på tekniska specifikationer och pris. Beräkningar utförs för att bestämma antalet solpaneler som krävs för att täcka byggnadens elförbrukning, och placeringen av solpanelerna diskuteras. Resultatet innebar att 92 solpaneler installerades på KTH-byggnaden för att främja hållbar energiproduktion. Solpanelerna placerades vågrätt på taket för att utnyttja takytan optimalt och undvika skuggning. Med en vinkel på 20 grader kunde solpanelerna dra nytta av solens infallsvinkel och maximera energiproduktionen. Beräkningar visade att solpanelerna förväntades producera cirka 5 875 kWh el per månad, vilket skulle spara KTH cirka 4 282 kr per månad under 2023. Kostnaden för installationen var 414 000 kr och återbetalningstiden beräknades vara cirka 8,1 år. / This work focuses on the use of solar panels to produce the energy needed for the KTH building in Södertälje and reduce its environmental impact. The problem statement emphasizes the importance of reducing energy consumption and using renewable energy sources to cover the remaining energy needs of buildings such as KTH in Södertälje. The purpose and goal of the work is to investigate the amount of electricity and energy used at the KTH building and propose a sustainable solution with solar panels to produce the energy needed. The implementation of the study includes calculations and technical details. The information on energy consumption at KTH Södertälje is collected from the Environmental Office, and calculations of solar energy and panel requirements are carried out. To choose suitable solar panels, different options from Svea Solar are compared based on technical specifications and price. Calculations are performed to determine the number of solar panels required to cover the building's electricity consumption, and the placement of the solar panels is discussed. The result meant that 92 solar panels were installed on the KTH building to promote sustainable energy production. The solar panels were placed horizontally on the roof to make optimal use of the roof surface and avoid shading. With an angle of 20 degrees, the solar panels were able to take advantage of the sun's angle of incidence and maximize energy production. Calculations showed that the solar panels were expected to produce approximately 5,875 kWh of electricity per month, which would save KTH approximately SEK 4,282 per month in 2023. The cost of the installation was SEK 414,000 and the payback period were estimated to be approximately 8.1 years.

Page generated in 0.1476 seconds