Spelling suggestions: "subject:"spintronics"" "subject:"pintronics""
391 |
Exploring spin in novel materials and systemsFang, Lei 21 March 2011 (has links)
No description available.
|
392 |
First Principles Study of Double Perovskites and Group III-V CompoundsMishra, Rohan 30 August 2012 (has links)
No description available.
|
393 |
THEORY OF CORRELATION TIMES IN CHIRAL ANTIFERROMAGNETS: TOWARDS ULTRA-FAST PROBABILISTIC COMPUTATIONSagnik Banerjee (17976782) 04 December 2024 (has links)
<p dir="ltr">Antiferromagnetic spintronics promises next-generation information processing devices with ultra-fast speeds and ultra-low power consumption. Inspired by the recent demonstration of signatures of Tunnel Magnetoresistance (TMR) in non-colinear chiral antiferromagnets of the Mn<sub>3</sub>X family, we study the thermal stability of such magnets in both low and high barrier limits. A stochastic Landau-Lifshitz-Gilbert (s-LLG) based numerical assessment of the dynamics reveals that strong exchange fields in Mn<sub>3</sub>Sn could lead to thermally-driven rapid fluctuations of the order parameter, viz., octupole moment. However, distinct Random Telegraph Noise (RTN)-like signals distinguish the high barrier limit from the low barrier limit - suggesting different physical phenomena in the two regimes. To that end, the correlation time for thermal fluctuations has been explored analytically following an approach inspired by Langer's theory in the high barrier limit and dephasing mechanisms in the low barrier limit. It has been shown that the dynamics in chiral antiferromagnetic nanoparticles in both regimes are an order of magnitude faster than easy plane ferromagnetic particles. The thermal instability of chiral antiferromagnets could lead to picosecond-scale random number generation in probabilistic bits -- paving the path toward ultra-fast probabilistic computation. </p>
|
394 |
Growth of lattice-matched hybrid semiconductor-ferromagnetic trilayers using solid-phase epitaxy. / Towards a spin-selective Schottky barrier tunnel transistor.Gaucher, Samuel 08 April 2021 (has links)
Diese Arbeit befasst sich mit dem Wachstum von Dünnschichtstrukturen, die zur Herstellung eines Spin-selektiven Schottky-Barrier-Tunneltransistors (SS-SBTT) erforderlich sind. Das Bauelement basiert auf dem Transport von Ladungsträgern durch eine dünne halbleitende (SC) Schicht, die zwei ferromagnetische (FM) Kontakte trennt. Daher müssen hochqualitative und gitterangepasste vertikale FM/SC/FM-Trilayer gezüchtet werden, was aufgrund der inkompatiblen Kristallisationsenergien zwischen SC und Metallen eine experimentelle Herausforderung darstellt. Das Problem wurde mit einem Festphasenepitaxie-Ansatz gelöst, bei dem eine dünne amorphe Ge-Schicht (4-8 nm) durch Ausglühen über Fe3Si auf GaAs(001)-Substraten kristallisiert wird. Langsame Glühgeschwindigkeiten bis zu einer Temperatur von 260°C konnten ein neues gitterangepasstes Polymorph von FeGe2 erzeugen, über das ein zweites Fe3Si mittels Molekularstrahlepitaxie gezüchtet werden könnte. SQUID-Magnetometermessungen zeigen, dass die dreischichtigen Proben in antiparallele Magnetisierungszustände versetzt werden können. Vertikale Spin-Ventil-Bauelemente, die mit verschiedenen Trilayern hergestellt wurden, wurden verwendet, um zu demonstrieren, dass der Ladungstransport über die Heteroübergänge spinselektiv ist und bei Raumtemperatur einen Magnetowiderstand von höchstens 0,3% aufweist. Der Effekt nimmt bei niedrigen Temperaturen ab, was mit einem ferromagnetischen Übergang in der FeGe2-Schicht korreliert. Durch TEM- und XRD-Experimente konnte festgestellt werden, dass das neue FeGe2-Polymorph die Raumgruppe P4mm aufweist und bis zu 17% Si-Atome als Ersatz für Ge-Stellen enthält. Die Isolierung von FeGe2 war möglich, indem das Verhältnis von Fe-, Si- und Ge-Atomen so eingestellt wurde, dass die richtige Stöchiometrie bei vollständiger Durchmischung erreicht wurde. Anhand von FeGe2-Dünnschichten wurde ein zunehmender spezifischer Widerstand bei niedriger Temperatur und ein semi-metallischer Charakter beobachtet. / This thesis discusses the growth of thin film structures required to fabricate a Spin-Selective Schottky Barrier Tunnel transistor (SS-SBTT). The device relies on charge carriers being transported through a thin semiconducting (SC) layer separating two ferromagnetic (FM) contacts. Thus, high quality and lattice-matched FM/SC/FM vertical trilayers must be grown, which is experimentally challenging due to incompatible crystallization energies between SC and metals. The problem was solved using a solid-phase epitaxy approach, whereby a thin amorphous layer of Ge (4-8 nm) is crystallized by annealing over Fe3Si on GaAs(001) substrates. Slow annealing rates up to a temperature of 260°C could produce a lattice-matched Ge-rich compound, over which a second Fe3Si could be grown my molecular-beam epitaxy. The compound obtained during annealing is a new layered polymorph of FeGe2. SQUID magnetometry measurements indicate that the trilayer samples can be placed in states of antiparallel magnetization. Vertical spin valve devices created using various trilayers were used to demonstrate that charge transport is spin-selective across the heterojunctions, showing a magnetoresistance of at most 0.3% at room temperature. The effect decreases at low temperature, correlating with a ferromagnetic transition in the FeGe2 layer. TEM and XRD experiments could determine that the new FeGe2 polymorph has a space group P4mm, containing up to 17% Si atoms substituting Ge sites. Isolating FeGe2 was possible by tuning the proportion Fe, Si and Ge atoms required to obtain the right stoichiometry upon full intermixing. Hall bars fabricated on FeGe2 thin films were used to observe an increasing resistivity at low temperature and semimetallic character.
|
395 |
Configurational and Magnetic Interactions in Multicomponent SystemsAlling, Björn January 2010 (has links)
This thesis is a theoretical study of configurational and magnetic interactions in multicomponent solids. These interactions are the projections onto the configurational and magnetic degrees of freedom of the underlying electronic quantum mechanical system, and can be used to model, explain and predict the properties of materials. For example, the interactions govern temperature induced configurational and magnetic order-disorder transitions in Heusler alloys and ternary nitrides. In particular three perspectives are studied. The first is how the interactions can be derived from first-principles calculations at relevant physical conditions. The second is their consequences, like the critical temperatures for disordering, obtained with e.g. Monte Carlo simulations. The third is their origin in terms of the underlying electronic structure of the materials. Intrinsic defects in the half-Heusler system NiMnSb are studied and it is found that low-energy defects do not destroy the important half-metallic property at low concentrations. Deliberate doping of NiMnSb with 3d-metals is considered and it is found that replacing some Ni with extra Mn or Cr creates new strong magnetic interactions which could be beneficial for applications at elevated temperature. A self-consistent scheme to include the effects of thermal expansion and one-electron excitations in the calculation of the magnetic critical temperature is introduced and applied to a study of Ni1−xCuxMnSb. A supercell implementation of the disordered local moments approach is suggested and benchmarked for the treatment of paramagnetic CrN as a disordered magnetic phase. It is found that the orthorhombic-to-cubic phase transition in this nitride can be understood as a first-order magnetic order-disorder transition. The ferromagnetism in Ti1−xCrxN solid solutions, an unusual property in nitrides, is explained in terms of a charge transfer induced change in the Cr-Cr magnetic interactions. Cubic Ti1−xAlxN solid solutions displays a complex and concentration dependent phase separation tendency. A unified cluster expansion method is presented that can be used to simulate the configurational thermodynamics of this system. It is shown that short range clustering do influence the free energy of mixing but only slightly change the isostructural phase diagram as compared to mean-field estimates.
|
396 |
Recombinaison dépendante du spin dans les semiconducteurs nitrures dilués / Spin dependent recombination in dilute nitride semiconductorsZhao, Fan 07 July 2010 (has links)
Ce travail de thèse est une contribution à l'étude des propriétés de spin dans les semiconducteurs par spectroscopie de photoluminescence et par photoconductivité en vue d’applications possibles dans le domaine de l’électronique du spin.Nous avons analysé les propriétés de spin des électrons de conduction dans les matériaux semiconducteurs nitrures dilués, massif et puits quantiques (GaAsN, GaAsN/GaAs). Nous avons étudié le mécanisme de recombinaison dépendante du spin des électrons de conduction sur les centres paramagnétiques induits par l’introduction d’azote dans GaAs. Nous avons mis en évidence l’effet de « filtrage » de spin des électrons de conduction que ce mécanisme peut induire ; en particulier, nous avons mené des études détaillées en fonction de la concentration d’azote, de la puissance excitatrice, d’un champ magnétique externe et, pour les hétérostructures, de l’épaisseur des puits quantiques. L’origine chimique des centres paramagnétiques a été, de plus, identifiée par des études de résonance paramagnétique détectée optiquement (ODMR).Nous avons également complété ces études purement optiques sur la recombinaison dépendante du spin, par des expériences de photoconductivité en vue d’applications possibles liées à l’électronique du spin. Nous avons montré que la photoconductivité des matériaux nitrures dilués peut être contrôlée par la polarisation de la lumière incidente. Un détecteur électrique de la polarisation de la lumière à base de GaAsN a été ainsi fabriqué et testé.Ces résultats ont été également interprétés et simulés grâce à un système d’équations dynamiques pouvant rendre compte à la fois des résultats de photoluminescence et de transport / This thesis work is a contribution to the investigation of the spin properties of semiconductors by photoluminescence and photoconductivity spectroscopy with the aim of future applications in the spintronic field. We have studied the conduction band electron spin properties of dilute nitride semiconductors in epilayers and quantum wells (GaAsN, GaAsN/GaAs). In particular, we have investigated the spin dependent recombination of conduction band electrons on deep paramagnetic centers induced by the introduction of nitrogen into GaAs. We have also evidenced the “spin filtering” effect made possible by this spin dependent recombination mechanism. More precisely, we have carried out a systematic study of the spin filtering effect as a function of the nitrogen concentration, excitation power, external magnetic field and, for the hetero-structures, as well as a function of the quantum well thickness. The chemical origin of the deep paramagnetic centers has been also determined by optically detected magnetic resonance (ODMR). We have completed these all-optical studies on the spin dependent recombination by photoconductivity experiments in order to demonstrate a “proof of concept” system for spintronic applications. We have shown that the photoconductivity in dilute nitride semiconductors can be controlled by the polarization of the incident light: an electrical detector of the light polarization has therefore been built. These results have been as well modeled thanks to a rate equation system able to reproduced both the photoluminescence and photoconductivity experimental results
|
397 |
APPLICATIONS OF 4-STATE NANOMAGNETIC LOGIC USING MULTIFERROIC NANOMAGNETS POSSESSING BIAXIAL MAGNETOCRYSTALLINE ANISOTROPY AND EXPERIMENTS ON 2-STATE MULTIFERROIC NANOMAGNETIC LOGICD'Souza, Noel 01 January 2014 (has links)
Nanomagnetic logic, incorporating logic bits in the magnetization orientations of single-domain nanomagnets, has garnered attention as an alternative to transistor-based logic due to its non-volatility and unprecedented energy-efficiency. The energy efficiency of this scheme is determined by the method used to flip the magnetization orientations of the nanomagnets in response to one or more inputs and produce the desired output. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque inhibit the promised energy-efficiency. Another technique offering superior energy efficiency, “straintronics”, involves the application of a voltage to a piezoelectric layer to generate a strain which is transferred to an elastically coupled magnetrostrictive layer, causing magnetization rotation. The functionality of this scheme can be enhanced further by introducing magnetocrystalline anisotropy in the magnetostrictive layer, thereby generating four stable magnetization states (instead of the two stable directions produced by shape anisotropy in ellipsoidal nanomagnets). Numerical simulations were performed to implement a low-power universal logic gate (NOR) using such 4-state magnetostrictive/piezoelectric nanomagnets (Ni/PZT) by clocking the piezoelectric layer with a small electrostatic potential (~0.2 V) to switch the magnetization of the magnetic layer. Unidirectional and reliable logic propagation in this system was also demonstrated theoretically. Besides doubling the logic density (4-state versus 2-state) for logic applications, these four-state nanomagnets can be exploited for higher order applications such as image reconstruction and recognition in the presence of noise, associative memory and neuromorphic computing. Experimental work in strain-based switching has been limited to magnets that are multi-domain or magnets where strain moves domain walls. In this work, we also demonstrate strain-based switching in 2-state single-domain ellipsoidal magnetostrictive nanomagnets of lateral dimensions ~200 nm fabricated on a piezoelectric substrate (PMN-PT) and studied using Magnetic Force Microscopy (MFM). A nanomagnetic Boolean NOT gate and unidirectional bit information propagation through a finite chain of dipole-coupled nanomagnets are also shown through strain-based "clocking". This is the first experimental demonstration of strain-based switching in nanomagnets and clocking of nanomagnetic logic (Boolean NOT gate), as well as logic propagation in an array of nanomagnets.
|
398 |
Etude de la diffusion réactive entre Mn et Ge à l'échelle nanométrique pour des applications en spintronique / Study of reactive diffusion between Mn and Ge at the nanoscale for spintronic applicationsAbbes, Omar 28 February 2013 (has links)
Le couplage des propriétés ferromagnétiques et semiconductrices représente une perspective prometteuse, afin de réaliser des technologies qui exploitent le spin des électrons. Ceci permettra de stocker et traiter des bits informatiques de façon instantanée dans le même dispositif, plutôt que dans des dispositifs séparés (mémoire et processeur). La Spintronique pourrait alors révolutionner la technologie de l'information. Un candidat potentiel pour la fabrication d'hétérostructures métal ferromagnétique/semiconducteur pour des applications en Spintronique, est le système Mn-Ge. Ce système qui est compatible avec la technologie CMOS, présente une phase intéressante pour la Spintronique qui est Mn5Ge3, avec une possibilité d'épitaxie sur le Ge(111). Afin d'intégrer cette phase dans des procédés de fabrication, nous étudions la diffusion réactive à l'état solide entre un film de Mn et un substrat de Ge (comme dans le cas de la formation des siliciures dans la technologie CMOS). L'accent a été mis sur la séquence de formation de phases lors de la réaction entre un film nanométrique de Mn et le Ge, l'influence de l'interface sur cette réaction, et sur la diffusion du Mn dans le Ge. L'incorporation du carbone dans des films minces de Mn5Ge3 a montré une augmentation notable de la température de Curie : nous présentons alors l'effet du carbone sur la réaction Mn-Ge, et sa redistribution dans les couches minces MnxGey. / Coupling ferromagnetic and semi-conducting properties represents a pathway toward producing technologies that exploit the spin of electrons. That would allow store and process computer bits instantly in a same device, rather than separate devices (memory and CPU). The Spintronics could then revolutionize the information technology. A potential candidate for the fabrication of heterostructures ferromagnetic metal / semiconductor for Spintronics applications is the Mn-Ge system. This system is compatible with CMOS technology, and presents an interesting phase for Spintronics which is Mn5Ge3 phase, which is able to be grown epitaxially on Ge(111). To integrate this phase in the manufacturing process, we study the solid state reactive diffusion between a thin Mn film and Ge substrate, to form a germanide upon the Ge substrate (as in the case of the formation of silicides in CMOS technology). Emphasis was placed on the sequence of phase formation during the reaction between a 50 nm thick Mn film and Ge, the influence of the interface on the reaction, and the diffusion of Mn in Ge. Incorporation of carbon in thin Mn5Ge3 films showed a significant increase in the Curie temperature, we then present the effect of carbon on the reaction Mn-Ge and its redistribution in thin MnxGey films.
|
399 |
Synchronization of spin trasnsfer nano-oscillators / Synchronisation de nano-oscillateurs à transfert de spinHamadeh, Abbass 03 October 2014 (has links)
Les nano-Oscillateurs à transfert de spin (STNOs) sont des dispositifs capables d'émettre une onde hyperfréquence lorsqu'ils sont pompés par un courant polarisé grâce au couple de transfert de spin. Bien qu'ils offrent de nombreux avantages (agilité spectrale, intégrabilité, etc.) pour les applications, leur puissance d'émission et leur pureté spectrale sont en général faibles. Une stratégie pour améliorer ces propriétés est de synchroniser plusieurs oscillateurs entre eux. Une première étape est de comprendre la synchronisation d'un STNO unique à une source externe. Pour cela, nous avons étudié une vanne de spin Cu60|NiFe15|Cu10|NiFe4| Au25 (épaisseurs en nm) de section circulaire de 200 nm. Dans l'état saturé perpendiculaire (champ appliqué > 0.8 T), nous avons déterminé la nature du mode qui auto-Oscille et son couplage à une source externe grâce à un microscope de force par résonance magnétique (MRFM). Seul un champ micro-Onde uniforme permet de synchroniser le mode oscillant de la couche fine car il possède la bonne symétrie spatiale, au contraire du courant micro-Onde traversant l'échantillon. Ce même échantillon a ensuite été étudié sous faible champ perpendiculaire, les deux couches magnétiques étant alors dans l'état vortex. Dans ce cas, il est possible d'exciter un mode de grande cohérence (F/ ∆F >15000) avec une largeur de raie inférieure à 100 kHz. En analysant le contenu harmonique du spectre, nous avons déterminé que le couplage non-Linéaire amplitude-Phase du mode excité est quasi nul, ce qui explique la grande pureté spectrale observée, et qu'en parallèle, la fréquence d'oscillation reste ajustable sur une grande gamme grâce au champ d'Oersted créé par le courant injecté. De plus, la synchronisation de ce mode à une source de champ micro-Onde est très robuste, la largeur de raie mesurée diminuant de plus de cinq ordres de grandeur par rapport au régime autonome. Nous concluons de cette étude que le couplage magnéto-Dipolaire entre STNOs à base de vortex est très prometteur pour obtenir une synchronisation mutuelle, le champ dipolaire rayonné par un STNO sur ses voisins jouant alors le rôle de la source micro-Onde. Nous sommes donc passés à l'étape suivante, à savoir la mesure expérimentale de deux STNOs similaires séparés latéralement de 100 nm. En jouant sur les différentes configurations de polarités des vortex, nous avons réussi à observer la synchronisation mutuelle de ces deux oscillateurs. / Spin transfer nano-Oscillators (STNOs) are nanoscale devices capable of generating high frequency microwave signals through spin momentum transfer. Although they offer decisive advantages compared to existing technology (spectral agility, integrability, etc.), their emitted power and spectral purity are quite poor. In view of their applications, a promising strategy to improve the coherence and increase the emitted microwave power of these devices is to mutually synchronize several of them. A first step is to understand the synchronization of a single STNO to an external source. For this, we have studied a circular nanopillar of diameter 200~nm patterned from a Cu60|Py15|Cu10|Py4|Au25 stack, where thicknesses are in nm. In the saturated state (bias magnetic field > 0.8 T), we have identified the auto-Oscillating mode and its coupling to an external source by using a magnetic resonance force microscope (MRFM). Only the uniform microwave field applied perpendicularly to the bias field is efficient to synchronize the STNO because it shares the spatial symmetry of the auto-Oscillation mode, in contrast to the microwave current passing through the device. The same sample was then studied under low perpendicular magnetic field, with the two magnetic layers in the vortex state. In this case, it is possible to excite a highly coherent mode (F/∆F>15000) with a linewidth below 100 kHz. By analyzing the harmonic content of the spectrum, we have determined that the non-Linear amplitude-Phase coupling of the excited mode is almost vanishing, which explains the high spectral purity observed. Moreover, the oscillation frequency can still be widely tuned thanks to the Oersted field created by the dc current. We have also shown that the synchronization of this mode to a microwave field source is very robust, the generation linewidth decreasing by more than five orders of magnitude compared to the autonomous regime. From these findings we conclude that the magneto-Dipolar interaction is promising to achieve mutual coupling of vortex based STNOs, the dipolar field from a neighboring oscillator playing the role of the microwave source. We have thus experimentally measured a system composed of two STNOs laterally separated by 100 nm. By varying the different configurations of vortex polarities, we have observed the mutual synchronization of these two oscillators.
|
400 |
"Propriedades magnéticas e de spin em semicondutores do grupo III-V" / "Spin and magnetic properties of the III-V group semiconductors"Duarte, Celso de Araujo 19 June 2006 (has links)
Neste trabalho, apresentamos o resultado de nossas investigações em amostras de poços quânticos parabólicos (PQW) de AlGaAs crescidas em substratos de GaAs por MBE (Molecular Beam Epitaxy). Nossos estudos se concentram nas implicações da variação do fator g de Landé ao longo da estrutura dos PQW, a qual ocorre em virtude da dependência dessa grandeza com respeito ao conteúdo de Al na liga AlGaAs. Essas implicações são analisadas através de medidas de transporte eletrônico (medidas de Hall e do efeito Shubnikov-de Haas). As medidas de Subnikov-de Haas a temperaturas da ordem de dezenas a centenas de milikelvin com variação do ângulo de inclinação se mostram um eficiente método para a determinação do fator g. Distinguimos não só o fator g determinado pelas propriedades da liga, como também uma contribuição oriunda de efeitos de muitos corpos (contribuição de troca). Por outro lado, as medidas de Hall nos revelam um comportamento anômalo, que mostramos não ter origem no conhecido "efeito Hall anômalo" presente em materiais ferromagnéticos, nem em efeitos de ocupação de múltiplas sub-bandas. Atribuímos o fenômeno a um efeito "válvula de spin", conseqüente da variação espacial do fator g. Nossas observações nos permitem a idealização de um transistor "válvula de spin", prescindindo do emprego de materiais magnéticos. / We present the results of our investigations concerning MBE grown AlGaAs/GaAs parabolic quantum well (PQW) samples. We focused on the variation of the Landé g factor along the structure of the PQWs, which occur as a consquence of its dependence on the Al content on the alloy AlGaAs. The implications are studied by Hall and Shubnikov-de Haas measurements. Shubnikov-de Haas measurements at temperatures of the order of tenths to hundreds of milikelvin with variation of the tilt angle are shown to be an efficient method for the determination of the g factor. We could distinguish not only the alloy g factor, but its many body contribution (exchange contribution). On the other hand, Hall measurements exhibit an unusual behavior, which we prooved it has no relation neither to the well known "anomalous Hall effect", a characteristic of ferromagnetic materials, nor to a multi subband occupation effect. We atribute such behavior to a "spin valve effect", caused by the spatial variation of the g factor. Our observations allow us to idealize a "spin valve" transistor, without any ferromagnetic material in its structure.
|
Page generated in 0.0614 seconds