• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 26
  • 23
  • 10
  • 8
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 293
  • 159
  • 90
  • 84
  • 74
  • 56
  • 54
  • 53
  • 48
  • 43
  • 40
  • 38
  • 36
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Holographic studies of thermal gauge theories with flavour

Thomson, Rowan January 2007 (has links)
The AdS/CFT correspondence and its extensions to more general gauge/gravity dualities have provided a powerful framework for the study of strongly coupled gauge theories. This thesis explores properties of a large class of thermal strongly coupled gauge theories using the gravity dual. In order to bring the holographic framework closer to Quantum Chromodynamics (QCD), we study theories with matter in the fundamental representation. In particular, we focus on the holographic dual of SU(Nc) supersymmetric Yang-Mills theory coupled to Nf<<Nc flavours of fundamental matter at finite temperature, which is realised as Nf Dq-brane probes in the near horizon (black hole) geometry of Nc black Dp-branes. We explore many aspects of these Dp/Dq brane systems, often focussing on the D3/D7 brane system which is dual to a four dimensional gauge theory. We study the thermodynamics of the Dq-brane probes in the black hole geometry. At low temperature, the branes sit outside the black hole and the meson spectrum is discrete and possesses a mass gap. As the temperature increases, the branes approach a critical solution. Eventually, they fall into the horizon and a phase transition occurs. At large Nc and large 't Hooft coupling, we show that this phase transition is always first order. We calculate the free energy, entropy and energy densities, as well as the speed of sound in these systems. We compute the meson spectrum for brane embeddings outside the horizon and find that tachyonic modes appear where this phase is expected to be unstable from thermodynamic considerations. We study the system at non-zero baryon density nb and find that there is a line of phase transitions for small nb, terminating at a critical point with finite nb. We demonstrate that, to leading order in Nf/Nc, the viscosity to entropy density ratio in these theories saturates the conjectured universal bound. Finally, we compute spectral functions and diffusion constants for fundamental matter in the high temperature phase of the D3/D7 theory.
62

Interplay of charge density modulations and superconductivity

Sadowski, Jason Wayne 15 April 2011 (has links)
Recent studies of the transition metal dichalcogenide niobium diselenide have led to debate in the scientific community regarding the mechanism of the charge density wave (CDW) instability in this material. Moreover, whether or not CDW boosts or competes with superconductivity (SC) is still unknown, as there are experimental measurements which supports both scenarios. Motivated by these measurements we study the interplay of charge density modulations and superconductivity in the context of the Bogoliubov de-Gennes (BdG) equations formulated on a tight-binding lattice. As the BdG equations require large numerical demand, software which utilizes parallel algorithms have been developed to solve these equations directly and numerically. Calculations were performed on a large-scale Beowulf-class PC cluster at the University of Saskatchewan.<p> We first study the effects of inhomogeneity on nanoscale superconductors due to the presence of surfaces or a single impurity deposited in the sample. It is illustrated that CDW can coexist with SC in a finite-size s-wave superconductor. Our calculations show that a weak impurity potential can lead to significant suppression of the superconducting order parameter, more so than a strong impurity. In particular, in a nanoscale d-wave superconductor with strong electron-phonon coupling, the scattering by a weakly attractive impurity can nearly kill superconductivity over the entire sample.<p> Calculations for periodic systems also show that CDW can coexist with s-wave superconductivity. In order to identify the cause of the CDW instability, the BdG equations have been generalized to include the next-nearest neighbour hopping integral. It is shown that the CDW state is strongly affected by the magnitude of the next-nearest neighbour hopping, while superconductivity is not. The difference between the CDW and SC states is a result of the anomalous, or off-diagonal, coupling between particle and hole components of quasiparticle excitations. The Fermi surface is changed as next-nearest neighbour hopping is varied; in particular, the perfect nesting and coincidence of the nesting vectors and the vectors connecting van Hove singularities (vHs) for zero next-nearest neighbor hopping is destroyed, and vHs move away from the Fermi energy. It is found that within our one-band tight-binding model with isotropic s-wave superconductivity, CDW and SC can coexist only for vanishing nearest neighbor hopping and for non-zero hopping, the homogeneous SC state always has the lowest ground-state energy. Furthermore, we find in our model that as the magnitude of the next-nearest neighbor hopping parameter increases, the main cause of the divergence in the dielectric response accompanying the CDW transition changes from nesting to the vHs mechanism proposed by Rice and Scott. It is still an open question as to the origin of CDW and its interplay with SC in multiple-band, anisotropic superconductors such as niobium diselenide, for which fundamental theory is lacking. The work presented in this thesis demonstrates the possible coexistence of charge density waves and superconductivity, and provides insight into the mechanism of electronic instability causing charge density waves.
63

Convergece Analysis of the Gradient-Projection Method

Chow, Chung-Huo 09 July 2012 (has links)
We consider the constrained convex minimization problem: min_x∈C f(x) we will present gradient projection method which generates a sequence x^k according to the formula x^(k+1) = P_c(x^k − £\_k∇f(x^k)), k= 0, 1, ¡P ¡P ¡P , our ideal is rewritten the formula as a xed point algorithm: x^(k+1) = T_(£\k)x^k, k = 0, 1, ¡P ¡P ¡P is used to solve the minimization problem. In this paper, we present the gradient projection method(GPM) and different choices of the stepsize to discuss the convergence of gradient projection method which converge to a solution of the concerned problem.
64

Schwarz Problem For Complex Partial Differential Equations

Aksoy, Umit 01 December 2006 (has links) (PDF)
This study consists of four chapters. In the first chapter we give some historical background of the problem, basic definitions and properties. Basic integral operators of complex analysis and and Schwarz problem for model equations are presented in Chapter 2. Chapter 3 is devoted to the investigation of the properties of a class of strongly singular integral operators. In the last chapter we consider the Schwarz boundary value problem for the general partial complex differential equations of higher order.
65

The role of inter-plane interaction in the electronic structure of high Tc cuprates

Kim, Timur K. 10 April 2004 (has links) (PDF)
This thesis represents a systematic study of electronic structure of the modulation-free Pb-doped Bi2212 superconducting cuprates with respect to interlayer coupling done by using the angle-resolved photoemission spectroscopy (ARPES), which is a leading technique in the experimental investigation of the single particle excitations in solids. The results presented in this work indicate a very different origin for the observed complex spectra lineshape. Specifically, the peak-dip-hump lineshape can be easily understood in terms of the superposition of spectral features due to bilayer band splitting, namely the splitting of the CuO2 plane derived electronic structure in bonding and antibonding bands due to the interlayer coupling of CuO2 bilayer blocks within the unit cell of Bi2212. By performing experiments at synchrotron beamlines where the energy of the incoming photons can be tuned over a very broad range, the detailed matrix elements energy dependence for both bonding and antibonding bands was determined. This gave the opportunity to study the electronic properties these two bands separately. For the first time, it was proved that the superconducting gap has the same value and symmetry for both bands. Furthermore, having recognized and sorted out the bilayer splitting effects, it became possible to identify more subtle effects hidden in the details of the ARPES lineshapes. On underdoped samples an &amp;quot;intrinsic&amp;quot; peak-dip-hump structure due to the interaction between electrons and a bosonic mode was observed. Studying the doping, temperature, and momentum dependence of the photoemission spectra it was established that: the mode has a characteristic energy of 38-40 meV and causes strong renormalization of the electronic structure only in the superconducting state; the electron-mode coupling is maximal around the (?à,0) point in momentum space and is strongly doping dependent (being greatly enhanced in the underdoped regime). From the above, it was concluded that the bosonic mode must correspond to the sharp magnetic resonance mode observed in inelastic neutron scattering experiments, and that this coupling is relevant to superconductivity and the pairing mechanism in the cuprates.
66

Semi-Stable Deformation Rings in Hodge-Tate Weights (0,1,2)

Park, Chol January 2013 (has links)
In this dissertation, we study semi-stable representations of G(Q(p)) and their mod p-reductions, which is a part of the problem in which we construct deformation spaces whose characteristic 0 closed points are the semi-stable lifts with Hodge-Tate weights (0, 1, 2) of a fixed absolutely irreducible residual representation ρ : G(Q(p)) → GL₃(F(p)). We first classify the isomorphism classes of semi-stable representations of G(Q(p)) with regular Hodge-Tate weights, by classifying admissible filtered (phi,N)-modules with Hodge-Tate weights (0, r, s) for 0 < r < s. We also construct a Galois stable lattice in some irreducible semi-stable representations with Hodge-Tate weights (0, 1, 2), by constructing strongly divisible modules, which is an analogue of Galois stable lattices on the filtered (ɸ, N)-module side. We compute the reductions mod p of the corresponding Galois representations to the strongly divisible modules we have constructed, by computing Breuil modules, which is, roughly speaking, mod p-reduction of strongly divisible modules. We also determine which Breuil modules corresponds to irreducible mod p representations of G(Q(p)).
67

Auklėtojos funkcijos, dirbant su labai žymios kompleksinės negalės ugdytiniais, vaikų ir jaunimo pensionate / Functions of an educator working with pupils with strongly noticeable disability in children and youth boarding schools

Ivanauskaitė, Renata 22 June 2005 (has links)
In these latter years a lot of countries try to call people’s attention to education of the disabled. Special attention is paid to education of students with noticeable disability. Pupils with strongly noticeable disability are integrated into special classes of general education as well as educated in education centers, special boarding schools, specialized foster homes or children and youth boarding schools. An educator plays a very important part in the system of education. The attitude of a headmaster towards their functions is very important still very often opinion of a headmaster and an educator is quite different. It shows the existing problem between educators and headmasters. Nowadays we lack ways of solving this problem. It’s difficult to understand why educators and headmasters try to get round and not to solve this problem. One of the most important functions of every educator is taking care of individual’s education and maturity. Other functions are very important as well. They are: helping and taking care of pupils health and safety, looking for participants and pedagogical briefing. The main problem of the research study consists of one component – it is educators’ and headmasters’ attitude towards functions performed by educators. I tried to review activities done by educators teaching students with strongly noticeable disability and specificity of their activities and functions. I also tried to understand the priorities given... [to full text]
68

The Effect of Disorder on Strongly Correlated Electrons

FARHOODFAR, AVID 31 August 2011 (has links)
This thesis is devoted to a study of the effect of disorder on strongly correlated electrons. For non-interacting electrons, Anderson localization occurs if the amount of disorder is sufficient. For disorder-free systems, a Mott metal-insulator transition may occur if the electron-electron interactions are strong enough. The question we ask in this thesis is what happens when both disorder and interactions are present. We study the Anderson-Hubbard model, which is the simplest model to include both interactions and disorder, using a Gutzwiller variational wave function approach. We then study Anderson localization of electrons from the response of the Anderson-Hubbard Hamiltonian to an external magnetic field. An Aharonov-Bohm flux induces a persistent current in mesoscopic rings. Strong interactions result in two competing tendencies: they tend to suppress the current because of strong correlations, and they also screen the disorder potential and making the system more homogenous. We find that, for strongly interacting electrons, the localization length may be large, even though the current is suppressed by strong correlations. This unexpected result highlights how strongly correlated materials can be quiet di erent from weakly correlated ones. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2011-08-31 09:51:47.155
69

Design of an Inverse Photoemission Spectrometer for the Study of Strongly Correlated Materials

McMahon, Christopher January 2012 (has links)
The design and construction of a state-of-the-art ultra-high vacuum spectrometer for the performance of angle-resolved inverse photoemission spectroscopy is presented. Detailed descriptions of its most important components are included, especially the Geiger-Muller ultraviolet photodetectors. By building on recent developments in the literature, we expect our spectrometer to achieve resolution comparable or superior to that of other prominent groups, and in general be one of the foremost apparatus for studying the momentum dependence of the unoccupied states in strongly correlated materials. Summaries of the theory of angle-resolved inverse photoemission spectroscopy and the basics of ultra-high vacuum science are also included.
70

Charge degrees of freedom on the kagome lattice / Ladungsfreiheitsgrade auf dem Kagome Gitter

O'Brien, Aroon 22 September 2011 (has links) (PDF)
Within condensed matter physics, systems with strong electronic correlations give rise to fascinating phenomena which characteristically require a physical description beyond a one-electron theory, such as high temperature superconductivity, or Mott metal-insulator transitions. In this thesis, a class of strongly correlated electron systems is considered. These systems exhibit fractionally charged excitations with charge +e/2 or -e/2 in two dimensions (2D) and three dimensions (3D), a consequence of both strong correlations and the geometrical frustration of the interactions on the underlying lattices. Such geometrically frustrated systems are typically characterized by a high density of low-lying excitations, leading to various interesting physical effects. This thesis constitutes a study of a model of spinless fermions on the geometrically frustrated kagome lattice. Focus is given in particular to the regime in which nearest-neighbour repulsions V are large in comparison with hopping t between neighbouring sites, the regime in which excitations with fractional charge occur. In the classical limit t = 0, the geometric frustration results in a macroscopically large ground-state degeneracy. This degeneracy is lifted by quantum fluctuations. A low-energy effective Hamiltonian is derived for the spinless fermion model for the case of 1/3 filling in the regime where |t| << V . In this limit, the effective Hamiltonian is given by ring-exchange of order ~ t^3/V^2, lifting the degeneracy. The effective model is shown to be equivalent to a corresponding hard-core bosonic model due to a gauge invariance which removes the fermionic sign problem. The model is furthermore mapped directly to a Quantum Dimer model on the hexagonal lattice. Through the mapping it is determined that the kagome lattice model exhibits plaquette order in the ground state and also that fractional charges within the model are linearly confined. Subsequently a doped version of the effective model is studied, for the case where exactly one spinless fermion is added or subtracted from the system at 1/3 filling. The sign of the newly introduced hopping term is shown to be removable due to a gauge invariance for the case of hole doping. This gauge invariance is a direct result of the bipartite nature of the hole hopping and is confirmed numerically in spectral density calculations. For further understanding of the low-energy physics, a derivation of the model gauge field theory is presented and discussed in relation to the confining quantum electrodynamic in two dimensions. Exact diagonalization calculations illustrate the nature of the fractional charge confinement in terms of the string tension between a bound pair of defects. The calculations employ topological symmetries that exist for the manifold of ground-state configurations. Dynamical calculations of the spectral densities are considered for the full spinless fermion Hamiltonian and compared in the strongly correlated regime with the doped effective Hamiltonian. Calculations for the effective Hamiltonian are then presented for the strongly correlated regime where |t| << V . In the limit g << |t|, the fractional charges are shown to be effectively free in the context of the finite clusters studied. Prominent features of the spectral densities at the Gamma point for the hole and particle contributions are attributed to approximate eigenfunctions of the spinless fermion Hamiltonian in this limit. This is confirmed through an analytical derivation. The case of g ~ t is then considered, as in this case the confinement of the fractional charges is observable in the spectral densities calculated for finite clusters. The bound states for the effectively confined defect pair are qualitatively estimated through the solution of the time-independent Schroedinger equation for a potential which scales linearly with g. The double-peaked feature of spectral density calculations over a range of g values can thus be interpreted as a signature of the confinement of the fractionally charged defect pair. Furthermore, the metal-insulator transition for the effective Hamiltonian is studied for both t > 0 and t < 0. Exact diagonalization calculations are found to be consistent with the predictions of the effective model. Further calculations confirm that the sign of t is rendered inconsequential due to the gauge invariance for g in the regime |t| << V . The charge-order melting metal-insulator transition is studied through density-matrix renormalization group calculations. The opening of the energy gap is found to differ for the two signs of t, reflecting the difference in the band structure at the Fermi level in each case. The qualitative nature of transition in each case is discussed. As a step towards a realization of the model in experiment, density-density correlation functions are introduced and such a calculation is shown for the plaquette phase for the effective model Hamiltonian at 1/3 filling in the absence of defects. Finally, the open problem of statistics of the fractional charges is discussed.

Page generated in 0.0281 seconds