• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 37
  • 15
  • 13
  • 13
  • 13
  • 13
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 175
  • 53
  • 34
  • 24
  • 23
  • 20
  • 20
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Graduation recital compositions

Wallace, Frank James January 1990 (has links)
[no abstract included] / Arts, Faculty of / Music, School of / Graduate
112

Sur certains espaces topologiques de suites et leurs applications

Robert, Jacques 20 September 1966 (has links) (PDF)
.
113

An Analysis of Arnold Schoenberg's Suite for Piano, Op. 25

Mayhew, Thomas E. (Thomas Elmo) 08 1900 (has links)
It now seems necessary to follow the further development of Schoenberg and his first pupils, Berg and Webern. "Starting from their twin conceptions of the dethronement of tonality and the free use of the former 'discords', they produced a series of pieces of which the foremost characteristics were their extreme expressiveness and their extraordinary brevity."
114

Invariants spectraux en homologie de Floer lagrangienne

Leclercq, Rémi January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
115

Étude sur la conjecture de Fuglede et les suites oscillantes

Shi, Ruxi 26 June 2018 (has links)
Dans cette thèse, nous résolvons la conjecture de Fuglede sur le corps des nombres p-adiques, et étudions certaines propriétés aléatoires des suites liées à la conjecture de Sarnak, ainsi que leur propriétés oscillantes. Dans la première partie, nous prouvons d'abord la conjecture de Fuglede pour des ensembles ouverts compacts dans Q_p. Celle-ci indique qu'un ensemble ouvert compact dans Q_p est un ensemble spectral si et seulement s'il pave Q_p par translation. Il est également prouvé qu'un ensemble ouvert compact est un ensemble spectral (ou une tuile) si et seulement s'il est p-homogène. Nous caractérisons les ensembles spectraux dans Z / p^n Z ( p>1 premier, n>0 entier) par la propriété de pavage et aussi par leur homogénéité. Finalement, nous montrons la conjecture de Fuglede dans Q_p sans la restriction d'être ouvert compact en montrant que tout ensemble spectral ou toute tuile doivent être ouvert et compact à un ensemble de mesure nulle près. Dans la seconde partie, nous donnons d'abord plusieurs définitions équivalentes d'une suite oscillante en termes de disjonction de différents systèmes dynamiques sur des tores. Ensuite, nous définissons la propriété de Chowla et la propriété de Sarnak pour des suites numériques prenant des valeurs 0 ou des nombres complexes de module 1. Nous prouvons que la propriété de Chowla implique la propriété de Sarnak. Il est également prouvé que pour Lebesgue presque tout b> 1, la suite (e^{2 pi b^n})_{n in N} partage la propriété de Chowla et est par conséquent orthogonale à tout système dynamique topologique d'entropie nulle. Nous discutons également si les échantillons d'une suite aléatoire donnée ont presque sûrement la propriété de Chowla. Nous construisons certaines suites aléatoires dépendantes ayant presque sûrement la propriété de Chowla / In this thesis, we solve Fuglede's conjecture on the field of p-adic numbers, and study some randomness and the oscillating properties of sequences related to Sarnak's conjecture. In the first part, we first prove Fuglede's conjecture for compact open sets in the field Q_p which states that a compact open set in Q_p is a spectral set if and only if it tiles Q_p by translation. It is also proved that a compact open set is a spectral set (or a tile) if and only if it is p-homogeneous. We characterize spectral sets in Z/p^n Z (p>1 prime, n>0 integer) by tiling property and also by homogeneity. Finally, we prove Fuglede's conjecture in Q_p without the assumption of compact open sets and also show that the spectral sets (or tiles) are the sets which differ by null sets from compact open sets. In the second part, we first give several equivalent definitions of oscillating sequences in terms of their disjointness from different dynamical systems on tori. Then we define Chowla property and Sarnak property for numerical sequences taking values 0 or complex numbers of modulus 1. We prove that Chowla property implies Sarnak property. It is also proved that for Lebesgue almost every b>1, the sequence (e^{2 pi b^n})_{n in N} shares Chowla property and consequently is orthogonal to all topological dynamical systems of zero entropy. We also discuss whether the samples of a given random sequence have almost surely Chowla property. Some dependent random sequences having almost surely Chowla property are constructed
116

Application du quotient de Rayleigh au calcul des valeurs propres d'opérateurs différentiels par la méthode des différences finies

Ghemires, Touria 28 June 1979 (has links) (PDF)
.
117

REPRESENTATIONS DE GROUPES TOPOLOGIQUES ET ETUDE SPECTRALE D'OPERATEURS DE DECALAGE UNILATERAUX ET BILATERAUX

Dubernet, Sébastien 15 December 2005 (has links) (PDF)
Dans un premier temps, nous étudions la continuité d'une <br />représentation $\theta$ du groupe topologique $G$ dans une algèbre de Banach $A$ en fonction du comportement de $\limsup_{u \rightarrow 1}\| \theta(u)-I \|$, où $1$ désigne l'élément unité de $G$ et $I$ celui de $A$. Nous obtenons aussi des résultats de continuité automatique pour une large catégorie de représentations de groupes. <br /><br />Nous étudions ensuite, dans des cas concrets le spectre de l'opérateur $S_M: E/M \rightarrow E/M$ défini par $S(f+M)=Sf +M$, c'est-à-dire la compression de $S$ à $E/M$ où $E$ est un espace de Banach, $S:E \rightarrow E$ un opérateur borné et $M$ un sous-espace vectoriel fermé invariant par $S$, c'est-à-dire vérifiant $S(M) \subset M$. D'abord nous nous plaçons dans des espaces de Banach $E$ de fonctions analytiques sur le disque unité pour lesquels le shift usuel $S:z \mapsto zf$ et le shift arrière $T: f \mapsto \frac{f-f(0)}{z}$ ont leur spectre égal au cercle unité et vérifient la condition de non-quasianalyticité. Nous montrons que si $f \in M$ admet une extension analytique à $\D \cup D(\zeta,r)$, avec $|\zeta|=1$, $f(\zeta)\neq 0$, alors $\zeta \notin Spec(S_M)$. Nous appliquons ce résultat à l'espace de Hardy pondéré $H_{\sigma_{\alpha}}(\D)$, avec $\sigma_{\alpha}(n)=e^{-n^{\alpha}}$, $n \geq 0$, $\alpha \in (\frac{1}{2},1)$.<br /><br />Enfin nous étudions une situation quasianalytique, celle des espaces $l^2(w,\Z)$ à poids "$\log$-impairs". Soit $L$ un arc fermé non vide du cercle unité; nous montrons que la construction de Y.Domar de sous-espaces invariants par translations pour les espaces $l^2(w,\Z)$ vérifiant une condition naturelle de régularité, permet d'obtenir des sous-espaces $M_L$ tels que $Spec (S_{M_L})=L$, où $S: (u_n)_{n \in \Z} \mapsto (u_{n-1})_{n \in \Z}$ désigne le shift bilatéral usuel sur $l^2(w,\Z)$.
118

Sur les cohomologies des variétés de Griffiths-Schmid du groupe SU(2,2).

Charbord, Benjamin 04 March 2010 (has links) (PDF)
Dans cette thèse, on s'intéresse, sous deux aspects différents, à la cohomologie des variétés de Griffiths-Schmid attachées à une forme anisotrope du groupe SU(2,2). Ces variétés ont l'avantage, au contraire des variétés de Shimura, de parfois faire apparaître dans leur cohomologie des limites dégénérées de séries discrètes. La première partie étudie ce phénomène dans le cas des limites totalement dégénérées. On prouve que les classes attachées à ces représentations peuvent s'exprimer comme cup-produits d'autres classes attachées à des séries discrètes. La seconde partie étudie les liens entre deux différentes variétés de Griffiths-Schmid obtenues à partir de deux structures complexes. L'une est celle considérée dans la première partie, et l'autre est fibrée holomorphiquement sur une variété de Shimura. On prouve l'existence d'une application bijective entre certains espaces de cohomologie, en s'appuyant sur une interprétation en termes de fonctions holomorphes de la cohomologie de Dolbeault. Ce résultat est généralisé dans l'annexe aux cas des groupes SU(n,n) et SU(n+1,n).
119

Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini

Firicel, Alina 08 December 2010 (has links) (PDF)
Cette thèse se situe à l'interface de trois grands domaines : la combinatoire des mots, la théorie des automates et la théorie des nombres. Plus précisément, nous montrons comment des outils provenant de la combinatoire des mots et de la théorie des automates interviennent dans l'étude de problèmes arithmétiques concernant les séries formelles à coefficients dans un corps fini.Le point de départ de cette thèse est un célèbre théorème de Christol qui caractérise les séries de Laurent algébriques sur le corps F_q(T), l'entier q désignant une puissance d'un nombre premier p, en termes d'automates finis et dont l'énoncé est : " Une série de Laurent à coefficients dans le corps fini F_q est algébrique si et seulement si la suite de ses coefficients est engendrée par un p-automate fini ". Ce résultat, qui révèle dans un certain sens la simplicité de ces séries de Laurent, a donné naissance à des travaux importants parmi lesquels de nombreuses applications et généralisations.L'objet principal de cette thèse est, dans un premier temps, d'exploiter la simplicité de séries de Laurent algébriques à coefficients dans un corps fini afin d'obtenir des résultats diophantiens, puis d'essayer d'étendre cette étude à des fonctions transcendantes arithmétiquement intéressantes. Nous nous concentrons tout d'abord sur une classe de séries de Laurent algébriques particulières qui généralisent la fameuse cubique de Baum et Sweet. Le résultat principal obtenu pour ces dernières est une description explicite de leur développement en fraction continue, généralisant ainsi certains travaux de Mills et Robbins. Rappelons que le développement en fraction continue permet généralement d'obtenir des informations très précises sur l'approximation rationnelle ; les meilleures approximations étant obtenues directement à partir de la suite des quotients partiels. Malheureusement, il est souvent très difficile d'obtenir le développement en fraction continue d'une série de Laurent algébrique, que celle-ci soit donné par une équation algébrique ou par son développement en série de Laurent. La deuxième étude que nous présentons dans cette thèse fournit une information diophantienne à priori moins précise que la description du développement en fraction continue, mais qui a le mérite de concerner toutes les séries de Laurent algébriques (à coefficients dans un corps fini). L'idée principale est d'utiliser l'automaticité de la suite des coefficients de ces séries de Laurent afin d'obtenir une borne générale pour leur exposant d'irrationalité. Malgré la généralité de ce résultat, la borne obtenue n'est pas toujours satisfaisante. Dans certains cas, elle peut s'avérer plus mauvaise que celle provenant de l'inégalité de Mahler. Cependant, dans de nombreuses situations, il est possible d'utiliser notre approche pour fournir, au mieux, la valeur exacte de l'exposant d'irrationalité, sinon des encadrements très précis de ce dernier.Dans un dernier travail nous nous plaçons dans un cadre plus général que celui des séries de Laurent algébriques, à savoir celui des séries de Laurent dont la suite des coefficients a une " basse complexité ". Nous montrons que cet ensemble englobe quelques fonctions remarquables, comme les séries algébriques et l'inverse de l'analogue du nombre \pi dans le module de Carlitz. Il possède, par ailleurs, des propriétés de stabilité intéressantes : entre autres, il s'agit d'un espace vectoriel sur le corps des fractions rationnelles à coefficients dans un corps fini (ce qui, d'un point de vue arithmétique, fournit un critère d'indépendance linéaire), il est de plus laissé invariant par diverses opérations classiques comme le produit de Hadamard
120

A Conformance And Interoperability Test Suite For Turkey

Sinaci, Ali Anil 01 June 2009 (has links) (PDF)
Conformance to standards and interoperability is a major challenge of today`s applications in all domains. Several standards have been developed and some are still under development to address the various layers in the interoperability stack. Conformance and interoperability testing involves checking whether the applications conform to the standards so that they can interoperate with other conformant systems. Only through testing, correct information exchange among applications can be guaranteed. National Health Information System (NHIS) of Turkey aims to provide a nation-wide infrastructure for sharing Electronic Health Records (EHRs). In order to guarantee the interoperability, the Ministry of Health (MoH), Turkey, developed an Implementation/Integration/Interoperability Profile based on HL7 standards. TestBATN - Testing Business Process, Application, Transport and Network Layers - is a domain and standards independent set of tools which can be used to test all of the layers of the interoperability stack, namely, the Communication Layer, Document Content Layer and the Business Process Layer. In this thesis work, the requirements for conformance and interoperability testing of the NHIS are analyzed, a testing approach is designated, test cases for several NHIS services are developed and deployed and a test execution control and monitoring environment within TestBATN is designed and implemented through the identified testing requirements. The work presented in this thesis is part of the TestBATN system supported by the T&Uuml / BiTAK TEYDEB Project No: 7070191 in addition by the Ministry of Health, Turkey.

Page generated in 0.0726 seconds