Spelling suggestions: "subject:"fuites"" "subject:"cuites""
131 |
Interactions humain-machine dans un système cyber-physique pour suite chirurgicale. / Human-computer interactions in a cyber-physical system for the surgical suiteRambourg, Juliette 17 December 2018 (has links)
La gestion des suites chirurgicales joue un rôle central pour permettre aux hôpitaux d’offrir l’accès aux soins à des coûts raisonnables. L'informatisation et l'automatisation sont des évolutions conventionnelles pour améliorer l’efficacité. Toutefois, un soutien inadapté ne peut améliorer l'activité de gestion et peut nuire à son action. Notre hypothèse est que des fonctionnalités interactives, utilisables, flexibles et adaptée aux spécificités des activités locales peuvent créer un environnement de travail dans lequel le personnel médical est capable de réagir à des événements inattendus et de s’approprier la technologie. Nos contributions comprennent en une analyse de l'activité de l'équipe chirurgicale, basée sur des entretiens, observations, une revue de la littérature et une analogie avec l'aviation civile. Nous avons participé à la construction d'un modèle mathématique du flux chirurgical et d'une visualisation de ce modèle. Nous avons identifié les exigences et principes de conception nécessaires au développement, à l'intégration et à l'appropriation d'un outil pour soutenir la gestion du flux chirurgical. Nous avons conçu des interactions multi-utilisateurs sur une grande surface et développé un prototype de tableau blanc électronique, OnBoard, qui démontre l'intégration des spécifications et des défis techniques. OnBoard appartient à un système cyber-physique comprenant des capteurs dans les salles d'opération. Enfin, nous avons déployé et évalué OnBoard dans une suite chirurgicale. L'expérience de OnBoard suggère que la conception des interactions est primordiale pour offrir un environnement collaboratif efficace au personnel médical. / Surgical suite management plays a key role in the endeavor of hospitals: patients’ health at sustainable cost. Computerization and automation of processes are conventional solutions to support resource management and efficiency. However, unsuitable support might not improve the management activity, and can even be detrimental to it. Our hypothesis is that usable and flexible interactivity tuned to local particularities can create a working environment in which the medical staff can cope with unexpected surgery events and appropriate the technology. Our contributions comprise an analysis of the activity of the surgical team, based on interviews, observations, review of the literature and an analogy with civil aviation. We participated in the construction of a mathematical model of the surgical workflow and a visualization of the mathematical model. We conducted an experimentation to identify bottlenecks of workflow inefficiencies and delays. We identified scenarios, requirements and design principles necessary to the development, integration and acceptation of a tool to support surgical workflow activities. We designed multi-users interactions on a large surface and made a prototype of electronic whiteboard, OnBoard, for the surgical suite which demonstrates the integration of the specifications and technical challenges. OnBoard belongs to a larger cyber physical system including activity sensors in every operating room of the surgical suite. Finally, we deployed the prototype in a surgical suite and evaluated it. The OnBoard experience suggests that the design of interactions is paramount to provide the medical staff an efficient collaborative environment.
|
132 |
Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini / Some contributions at the study of Laurent series with coefficients in a finite fieldFiricel, Alina 08 December 2010 (has links)
Cette thèse se situe à l'interface de trois grands domaines : la combinatoire des mots, la théorie des automates et la théorie des nombres. Plus précisément, nous montrons comment des outils provenant de la combinatoire des mots et de la théorie des automates interviennent dans l'étude de problèmes arithmétiques concernant les séries formelles à coefficients dans un corps fini.Le point de départ de cette thèse est un célèbre théorème de Christol qui caractérise les séries de Laurent algébriques sur le corps F_q(T), l'entier q désignant une puissance d'un nombre premier p, en termes d'automates finis et dont l'énoncé est : « Une série de Laurent à coefficients dans le corps fini F_q est algébrique si et seulement si la suite de ses coefficients est engendrée par un p-automate fini ». Ce résultat, qui révèle dans un certain sens la simplicité de ces séries de Laurent, a donné naissance à des travaux importants parmi lesquels de nombreuses applications et généralisations.L'objet principal de cette thèse est, dans un premier temps, d'exploiter la simplicité de séries de Laurent algébriques à coefficients dans un corps fini afin d'obtenir des résultats diophantiens, puis d'essayer d'étendre cette étude à des fonctions transcendantes arithmétiquement intéressantes. Nous nous concentrons tout d'abord sur une classe de séries de Laurent algébriques particulières qui généralisent la fameuse cubique de Baum et Sweet. Le résultat principal obtenu pour ces dernières est une description explicite de leur développement en fraction continue, généralisant ainsi certains travaux de Mills et Robbins. Rappelons que le développement en fraction continue permet généralement d'obtenir des informations très précises sur l'approximation rationnelle ; les meilleures approximations étant obtenues directement à partir de la suite des quotients partiels. Malheureusement, il est souvent très difficile d'obtenir le développement en fraction continue d'une série de Laurent algébrique, que celle-ci soit donné par une équation algébrique ou par son développement en série de Laurent. La deuxième étude que nous présentons dans cette thèse fournit une information diophantienne à priori moins précise que la description du développement en fraction continue, mais qui a le mérite de concerner toutes les séries de Laurent algébriques (à coefficients dans un corps fini). L'idée principale est d'utiliser l'automaticité de la suite des coefficients de ces séries de Laurent afin d'obtenir une borne générale pour leur exposant d'irrationalité. Malgré la généralité de ce résultat, la borne obtenue n'est pas toujours satisfaisante. Dans certains cas, elle peut s'avérer plus mauvaise que celle provenant de l'inégalité de Mahler. Cependant, dans de nombreuses situations, il est possible d'utiliser notre approche pour fournir, au mieux, la valeur exacte de l'exposant d'irrationalité, sinon des encadrements très précis de ce dernier.Dans un dernier travail nous nous plaçons dans un cadre plus général que celui des séries de Laurent algébriques, à savoir celui des séries de Laurent dont la suite des coefficients a une « basse complexité ». Nous montrons que cet ensemble englobe quelques fonctions remarquables, comme les séries algébriques et l'inverse de l'analogue du nombre \pi dans le module de Carlitz. Il possède, par ailleurs, des propriétés de stabilité intéressantes : entre autres, il s'agit d'un espace vectoriel sur le corps des fractions rationnelles à coefficients dans un corps fini (ce qui, d'un point de vue arithmétique, fournit un critère d'indépendance linéaire), il est de plus laissé invariant par diverses opérations classiques comme le produit de Hadamard / This thesis looks at the interplay of three important domains: combinatorics on words, theory of finite-state automata and number theory. More precisely, we show how tools coming from combinatorics on words and theory of finite-state automata intervene in the study of arithmetical problems concerning the Laurent series with coefficients in a finite field.The starting point of this thesis is a famous theorem of Christol which characterizes algebraic Laurent series over the field F_q(T), q being a power of the prime number p, in terms of finite-state automata and whose statement is the following : “A Laurent series with coefficients in a finite field F_q is algebraic over F_q(T) if and only if the sequence of its coefficients is p-automatic”.This result, which reveals, somehow, the simplicity of these Laurent series, has given rise to important works including numerous applications and generalizations. The theory of finite-state automata and the combinatorics on words naturally occur in number theory and, sometimes, prove themselves to be indispensable in establishing certain important results in this domain.The main purpose of this thesis is, foremost, to exploit the simplicity of the algebraic Laurent series with coefficients in a finite field in order to obtain some Diophantine results, then to try to extend this study to some interesting transcendental functions. First, we focus on a particular set of algebraic Laurent series that generalize the famous cubic introduced by Baum and Sweet. The main result we obtain concerning these Laurent series gives the explicit description of its continued fraction expansion, generalizing therefore some articles of Mills and Robbins.Unfortunately, it is often very difficult to find the continued fraction representation of a Laurent series, whether it is given by an algebraic equation or by its Laurent series expansion. The second study that we present in this thesis provides a Diophantine information which, although a priori less complete than the continued fraction expansion, has the advantage to characterize any algebraic Laurent series. The main idea is to use some the automaticity of the sequence of coefficients of these Laurent series in order to obtain a general bound for their irrationality exponent. In the last part of this thesis we focus on a more general class of Laurent series, namely the one of Laurent series of “low” complexity. We prove that this set includes some interesting functions, as for example the algebraic series or the inverse of the analogue of the real number \pi. We also show that this set satisfy some nice closure properties : in particular, it is a vector space over the field over F_q(T).
|
133 |
Accélération de la convergence de méthodes numériques parallèles pour résoudre des systèmes d’équations différentielles linéaires et transitoires non linéaires / Convergence acceleration of parallel numerical methods to solve nonlinear time-dependent and linear systems of differential equationsBerenguer, Laurent 13 October 2014 (has links)
La résolution des équations différentielles (EDP/EDO/EDA) est au cœur de la simulation de phénomènes physiques. L'accroissement de la taille et de la complexité des modèles nécessite la mise en œuvre de méthodes de résolution robustes et performantes en termes de temps de calcul. L'objectif de cette thèse est de proposer des méthodes pour accélérer la résolution des équations différentielles par des méthodes de décomposition de domaine. On considère d'abord les méthodes de décomposition de domaine de Schwarz pour la résolution de grands systèmes linéaires issus de la discrétisation d'EDP. Afin d'accélérer la convergence de la méthode de Schwarz, on propose une approximation de l'opérateur de propagation d'erreur. Cette approximation respectera la structure de l'opérateur exact, ce qui conduira à une réduction très significative des temps de calcul sur le problème des écoulements dans les milieux poreux hétérogènes. La deuxième contribution concerne la résolution de la suite de systèmes linéaires provenant de l'intégration en temps de problèmes non linéaires. On propose deux approches en utilisant le fait que la matrice jacobienne ne varie que peu d'un système à l'autre. Premièrement, on applique la mise à jour de Broyden au préconditionneur RAS (Restricted Additive Schwarz) au lieu de recalculer les factorisations LU. La deuxième approche consiste à dédier des processeurs a la mise à jour partielle et asynchrone du préconditionneur RAS. Des résultats numériques sur le problème de la cavité entrainée et sur un problème de réactiondiffusion montrent qu'une accélération super linéaire peut être obtenue. La dernière contribution a pour objet la résolution simultanée des problèmes non linéaires de pas de temps consécutifs. On étudie le cas où la méthode de Broyden est utilisée pour résoudre ces problèmes non linéaires. Dans ce cas, la mise à jour de Broyden peut être propagée d'un pas de temps à l'autre. La parallélisation à travers les pas de temps est également appliquée a la recherche d'une solution initiale consistante pour les équations différentielles algébriques / Solving differential equations (PDEs/ODEs/DAEs) is central to the simulation of physical phenomena. The increase in size and complexity of the models requires the design of methods that are robust and efficient in terms of computational time. The aim of this thesis is to design methods that accelerate the solution of differential equations by domain decomposition methods. We first consider Schwarz domain decomposition methods to solve large-scale linear systems arising from the discretization of PDEs. In order to accelerate the convergence of the Schwarz method, we propose an approximation of the error propagation operator. This approximation preserves the structure of the exact operator. A significant reduction of computational time is obtained for the groundwater flow problem in highly heterogeneous media. The second contribution concerns solving the sequence of linear systems arising from the time-integration of nonlinear problems. We propose two approaches, taking advantage of the fact that the Jacobian matrix does not change dramatically from one system to another. First, we apply Broyden’s update to the Restricted Additive Schwarz (RAS) preconditioner instead of recomputing the local LU factorizations. The second approach consists of dedicating processors to the asynchronous and partial update of the RAS preconditioner. Numerical results for the lid-driven cavity problem, and for a reaction-diffusion problem show that a super-linear speedup may be achieved. The last contribution concerns the simultaneous solution of nonlinear problems associated to consecutive time steps. We study the case where the Broyden method is used to solve these nonlinear problems. In that case, Broyden’s update of the Jacobian matrix may also be propagated from one time step to another. The parallelization through the time steps is also applied to the problem of finding a consistent initial guess for differential-algebraic equations
|
134 |
Contribution à l'étude des opérateurs dans des espaces de suites et applications à l'optimisation et aux systèmes différentielsFares, Ali 23 June 2009 (has links) (PDF)
Dans cette thèse on s'intéresse aux matrices infinies considérées comme des opérateurs linéaires dans des espaces de suites. On est ainsi conduit à l'étude des matrices de transformations et à la résolution de systèmes linéaires infinis ayant une infinité dénombrable d'équations et une infinité dénombrable d'inconnues. On donne des applications à la résolution de systèmes différentiels infinis où interviennent des matrices infinies remarquables. Ensuite, on s'intéresse à la résolution d'équations d'espaces de suites (EES) qui sont déterminées par une identité dont chaque terme est une somme ou un produit d'espaces de suites de type s_a et s _{\phi(x)} où \phi est une application de U^+ dans lui même et x est la suite inconnue. La résolution de telles équations consiste à déterminer l'ensemble de toutes les suites x qui satisfont l'équation. Puis, on étudie le spectre de l'opérateur de différence d'ordre un \Delta dans de nouveaux espaces de suites et on considère enfin des applications directes de la théorie des matrices infinies à des problèmes d'optimisation où on présente des résultats donnés par B. de Malafosse et A. Yassine pour déterminer le nombre de chemins comportant N arcs et reliant deux points quelconques dans le plan à l'aide d'une matrice booléenne infinie de Toeplitz.
|
135 |
Information incomplète et regret interne en prédiction de suites individuellesStoltz, Gilles 27 May 2005 (has links) (PDF)
Le domaine de recherche dans lequel s'inscrit ce travail de thèse est la théorie de la prédiction des suites individuelles. Cette dernière considère les problèmes d'apprentissage séquentiel pour lesquels on ne peut ou ne veut pas modéliser le problème de manière stochastique, et fournit des stratégies de prédiction très robustes. Elle englobe aussi bien des problèmes issus de la communauté du machine learning que de celle de la théorie des jeux répétés, et ces derniers sont traités avec des méthodes statistiques, incluant par exemple les techniques de concentration de la mesure ou de l'estimation adaptative. Les résultats obtenus aboutissent, entre autres, à des stratégies de minimisation des regrets externe et interne dans les jeux à information incomplète, notamment les jeux répétés avec signaux. Ces stratégies s'appliquent au problème d'ajustement séquentiel des prix de vente, ou d'allocation séquentielle de bande passante. Le regret interne est ensuite plus spécifiquement étudié, d'abord dans le cadre de l'investissement séquentiel dans le marché boursier, pour lequel des simulations sur des données historiques sont proposées, puis pour l'apprentissage des équilibres corrélés des jeux infinis à ensembles de stratégies convexes et compacts.
|
136 |
Analyse d'Algorithmes Stochastiques Appliqués à la FinanceLaruelle, Sophie 12 December 2011 (has links) (PDF)
Cette thèse porte sur l'analyse d'algorithmes stochastiques et leur application en Finance notamment et est composée de deux parties. Dans la première partie, nous présentons un résultat de convergence pour des algorithmes stochastiques où les innovations vérifient une hypothèse de moyennisation avec une certaine vitesse. Nous l'appliquons ensuite à différents types d'innovations (suites i.i.d., suites à discrépance faible, chaînes de Markov homogènes, fonctionnelles de processus \alpha-mélangeant) et nous l'illustrons à l'aide d'exemples motivés principalement par la Finance. Nous établissons ensuite un résultat de vitesse ''universelle'' de convergence dans le cadre d'innovations équiréparties dans [0,1]^q et nous confrontons nos résultats à ceux obtenus dans le cadre i.i.d.. La seconde partie est consacrée aux applications. Nous présentons d'abord un problème d'allocation optimale appliqué au cas d'un nouveau type de place de trading: les {\em dark pools}. Ces places proposent un prix d'achat (ou de vente) certain, mais n'assurent pas le volume délivré. Le but est alors d'exécuter le maximum de la quantité souhaitée sur ces places. Ceci mène à la construction d'un algorithme stochastique sous contraintes à l'aide du Lagrangien que nous étudions dans les cadres d'innovations i.i.d. et moyennisantes. Le chapitre suivant présente un algorithme d'optimisation pour trouver la meilleure distance de placement d'ordres limites: il s'agit de minimiser le coût d'exécution d'une quantité donnée. Ceci mène à la construction d'un algorithme stochastique sous contraintes avec projection. Pour assurer l'existence et l'unicité de l'équilibre, des critères suffisants sur certains paramètres du modèle sont obtenus à l'aide d'un principe de monotonie opposée pour les diffusions unidimensionnelles. Le chapitre suivant porte sur l'implicitation et la calibration de paramètres dans des modèles financiers. La première technique mène à un algorithme de recherche de zéro et la seconde à une méthode de gradient stochastique. Nous illustrons ces deux techniques par des exemples d'applications sur 3 modèles: le modèle de Black-Scholes, le modèle de Merton et le modèle pseudo-CEV. Enfin le dernier chapitre porte sur l'application des algorithmes stochastiques dans le cadre de modèles d'urnes aléatoires utilisés en essais cliniques. A l'aide des méthodes de l'EDO et de l'EDS, nous retrouvons les résultats de consistance (convergence p.s.) et de normalité asymptotique (TCL) de Bai et Hu mais sous des hypothèses plus faibles sur les matrices génératrices. Nous étudions aussi un modèle ''multi-bras'' pour lequel nous retrouvons le résultat de convergence p.s. et nous montrons un nouveau résultat de normalité asymptotique par simple application du TCL pour les algorithmes stochastiques.
|
137 |
No Free Lunch et recherche de solutions structurantes en colorationMartin, Jean-Noel 09 December 2010 (has links) (PDF)
Nous présentons d'abord les théorèmes du No Free Lunch en nous basant sur le papier de D.H. Wolpert et W.G. Macready (version IEEE 1997) mais aussi les multiples réactions que ces résultats ont provoquées dans la communauté de l'optimisation. Convaincus dès lors de l'intérêt d'une approche globale des problèmes et de la nécessité de la recherche de propriétés générales - et spécialement des invariances par symétries -, nous tentons ensuite de mettre en oeuvre cette méthode dans le cadre de la coloration de graphes simples et non orientés. Ce champ est retenu en raison de son intérêt propre, mais aussi pour son caractère de modèle fécond dans de multiples problèmes d'optimisation. Nous faisons émerger la notion de décomposition d'un graphe en cliques maximales et celle de suites constructives qui permettent de reconstruire un graphe à partir de ses composants élémentaires (primary cliques), véritables équivalents des nombres premiers pour les entiers naturels. Nous produisons un algorithme principal et en étudions deux cas singuliers; ensemble ils fournissent une partition de l'ensemble des colorations valides du graphe étudié. Par suite nous retrouvons le polynôme chromatique de manière formelle, indépendamment du nombre de couleurs disponibles. Nous établissons une correspondance de Galois entre colorations valides et sous-graphes engendrés par des familles emboîtées de cliques maximales pourvu qu'elles soient des décompositions complètes de sous-graphes croissants du graphe total.
|
138 |
Motifs de Tate mixtes et éclatements à la MacPherson-Procesi ; Une application aux valeurs zêta multiples motiviquesSoudères, Ismaël 07 December 2009 (has links) (PDF)
Dans cette thèse, on étudie liens étroits qui existent entre les valeurs zêta multiples et la géométrie des espaces de modules de courbes en genre 0. En particulier, on y montre comment les deux produits de mélanges (shuffle et stuffle) des valeurs zêta multiples reflètent le comportement de certaines applications d'oubli entre espaces de modules courbes. Un des objectifs de mon travail a été de comprendre comment ces produits de mélange existent dans le cadre des motifs de Tate mixtes attachés aux espaces de module de courbes. On rappellera, dans un premier temps, les définitions et les propriétés des deux produits de mélange. Ensuite, on fera le lien avec la géométrie des espaces de modules de courbes. Puis, après quelques rappels sur les motifs encadrés, on montrera comment effectuer le passage aux motifs de Tate mixtes pour le produit shuffle dans le cadre des valeurs zêta multiples motiviques de Goncharov et Manin. Enfin, le dernier chapitre est consacré au stuffle motivique. Après avoir adapté un théorème de Y. Hu sur les successions d'éclatements à la situation des motifs de Tate mixtes, on construira une famille de variétés. À partir de là, on définira une nouvelles versions des valeurs zêta multiples motiviques. Pour parvenir à cette construction, on étudiera, entre autres, l'intersection d'hypersurfaces particulières et la structure de Hodge mixte de certains groupes de cohomologie relative. On obtient alors une forme de relation stuffle pour les motifs de Tate mixtes encadrés ces nouvelles valeur zêta motiviques dont on déduit les relations de stuffle pour les MZV motiviques de Goncharov et Manin.
|
139 |
Technology integration in music : Exploration, preparation, and realization /Ramirez, Richard Bowen. Ramirez, Richard Bowen. Ramirez, Richard Bowen. Ramirez, Richard Bowen. Ramirez, Richard Bowen. January 1998 (has links)
Thesis (M.M.)--East Carolina University, 1998. / Submitted to the faculty of the School of Music. Includes bibliographical references (leaf 13).
|
140 |
Using data mining to increase controllability and observability in functional verificationFarkash, Monica C. 10 February 2015 (has links)
Hardware verification currently takes more than 50% of the whole verification time. There is a sustained effort to improve the efficiency of the verification process, which in the past helped deliver a large variety of supporting tools. The past years though did not see any major technology change that would bring the improvements that the process really needs (H. Foster 2013) (Wilson Research Group 2012). The existing approach to verification does not provide that type of qualitative jump anymore. This work is introducing a new tactic, providing a modern alternative to the existing approach to the verification problem. The novel approach I use in this research has the potential of significantly improve the process, way beyond incremental changes. It starts with acknowledging the huge amounts of data that follows the hardware development process from inception to the final product and in considering the data not as a quantitative by-product but as a qualitative supply of information on which we can develop a smarter verification. The approach is based on data already generated throughout the process currently used by verification engineers to zoom into the details of different verification aspects. By using existing machine learning approaches we can zoom out and use the same data to extract information, to gain knowledge that we can use to guide the verification process. This approach allows an apparent lack of accuracy introduced by data discovery, to achieve the overall goal. The latest advancements in machine learning and data mining offer a base of a new understanding and usage of the data that is being passed through the process. This work takes several practical problems for which the classical verification process reached a roadblock, and shows how the new approach can provide a jump in productivity and efficiency of the verification process. It focuses on four different aspects of verification to prove the power of this new approach:
reducing effort redundancy, guiding verification to areas that need it first, decreasing time to diagnose, and designing tests for coverage efficiency. / text
|
Page generated in 0.0659 seconds