Spelling suggestions: "subject:"duystème dde schrödinger"" "subject:"duystème dde chrödinger""
1 |
Méthodes asymptotiques et numériques pour le transport quantique résonnantFaraj, Ali 04 December 2008 (has links) (PDF)
Le travail de cette thèse se place dans un contexte de modélisation et de simulation numérique du transport d'électrons dans un nano-composant. Ce transport est décrit en mécanique quantique à l'aide de systèmes de Schrödinger-Poisson. La majeure partie du travail se concentre sur le cas de la diode à effet tunnel résonnant (RTD) dont les puits quantiques donnent lieu à des résonances de l'Hamiltonien mis en jeu.<br />Dans une première partie, nous proposons des méthodes numériques pour la simulation de RTD. Pour résoudre le problème de Shrödinger-Poisson -- en une variable d'espace et en domaine non borné -- qui correspond, nous proposons une méthode de référence valide pour un maillage fin en fréquence autour des résonances. Le travail est motivé par l'écriture d'un algorithme permettant de retrouver les résultats de la méthode de référence en s'affranchissant de la contrainte de raffinement en fréquence qui rend les temps de calcul excessifs. Nous proposons une méthode consistant en la décomposition des fonctions d'onde en une partie non résonnante et une partie résonnante, la dernière nécessitant un calcul précis du mode résonnant et de la valeur de la résonance. En régime stationnaire, la totalité de l'information résonnante est captée sans avoir à raffiner le maillage en fréquence. La principale nouveauté a été d'adapter cette méthode en régime instationnaire.<br />Dans une deuxième partie, nous comparons notre algorithme de référence à l'algorithme de Bonnaillie-Noël, Nier et Patel basé sur un modèle réduit obtenu en réalisant la limite semi-classique h tend vers 0 et intéressant par son temps de calcul. En régime stationnaire, la comparaison a permis de vérifier l'existence de certaines branches de la courbe courant/tension de la RTD prévues par le modèle réduit. Dans le cas de deux puits, nous avons utilisé notre algorithme instationnaire dans une région de la différence de potentiel où un croisement des énergies résonnantes associées à chaque puits se produit donnant une évidence numérique de l'occurrence de phénomènes de battement de la charge d'un puits à l'autre.<br />En vue d'obtenir des modèles réduits similaires à celui étudié dans la deuxième partie, on réalise, dans une troisième partie, l'étude asymptotique d'un système de Schrödinger-Poisson stationnaire considéré sur un domaine borné inclus dans R^d, d<=3, avec un potentiel extérieur décrivant un puits quantique. L'Hamiltonien du système est composé de contributions -- le puits du potentiel extérieur plus un terme non linéaire répulsif -- qui s'étendent sur des échelles de longueurs différentes dont le rapport est donné en fonction du paramètre semi-classique h destiné à tendre vers 0. Avec une fonction de distribution en énergie qui force les particules à rester dans le puits quantique, la limite h tend vers 0 dans le système non linéaire conduit à différents comportements asymptotiques dont l'analyse nécessite une renormalisation spectrale et dépendant de la dimension d'espace d=1, 2 ou 3.
|
2 |
Modélisation mathématique et numérique du transport de gaz quantique dans des situations de fort confinementDelebecque, Fanny 03 December 2009 (has links) (PDF)
Cette thèse en mathématiques appliquées à la nanoélectronique aborde le problème de la simulation mathématique et numérique du transport de gaz d'électrons confinés dans certaines directions de l'espace. A l'échelle de la nanoélectronique, les phénomènes ondulatoires liés au transport des électrons ne peuvent plus être négligés et la description classique du transport électronique doit laisser place à une approche quantique. La modélisation de tels phénomènes nécessite la résolution de systèmes couplés de type Schrödinger-Poisson, coûteux numériquement. Cette thèse s'appuie donc sur le confinement fortement anisotrope des électrons dans de telles structures pour obtenir des modèles asymptotiques à dimensionnalité réduite, via une analyse asymptotique "fort confinement". La principale difficulté mathématique provient ici des oscillations rapides dues au confinement. Des méthodes telles que la moyennisation en temps long sont décrites pour y remédier. On s'intéresse dans cette approche à plusieurs situations de confinement différentes. Ainsi, on présente deux modèles asymptotiques pour la modélisation du transport d'électrons confinés sur un plan, ainsi qu'un modèle de confinement sur un plan d'un gaz d'électrons soumis à un champ magnétique fort uniforme. Enfin, on propose un modèle asymptotique mathématique ainsi que des simulations numériques dans le cas du transport d'électrons confinés dans un nanofil quantique. Celles-ci sont obtenues par des méthodes numériques basées sur l'idée de la réduction de dimensionnalité qui font appel notamment à une méthode de décomposition en sous-bandes.
|
3 |
Modélisation mathématique du transport diffusif de charges partiellement quantiques.Vauchelet, Nicolas 24 November 2006 (has links) (PDF)
Le travail de la thèse concerne la modélisation et l'analyse <br />mathématique du transport d'électrons confinés dans une nanostructure<br />dans le but d'implémenter des simulations numériques. Dans de tels<br />dispositifs nanométriques, les ordres de grandeurs ne jouent pas le<br />même rôle dans chaque direction. Les électrons peuvent être<br />extrêmement confinés dans une ou plusieurs directions. Un modèle <br />quantique est nécessaire pour décrire le confinement. Dans la<br />direction non confinée, le transport est supposé de nature classique. <br />Nous proposons alors un système couplé quantique/classique. <br />Les collisions intervenant lors du transport induisent un régime<br />diffusif des porteurs de charges. Le modèle diffusif est obtenu grâce<br />à une limite de diffusion d'un modèle cinétique. L'analyse<br />mathématique de cette limite de diffusion et du modèle diffusif couplé<br />sont présentées. Une simulation numérique du transport dans un<br />nanotransistor est obtenue avec ce modèle.
|
4 |
Construction of dynamics with strongly interacting for non-linear dispersive PDE (Partial differential equation). / Construction de dynamiques à fortes interactions d'EDP (Équations aux dérivées partielles) non linéaires dispersivesNguyen, Tien Vinh 26 June 2019 (has links)
Cette thèse est consacrée à l’étude des propriétés dynamiques des solutions de type soliton d'équations aux dérivées partielles (EDP) dispersives non linéaires. `A travers des exemples-type de telles équations, l'équation de Schrödinger non-linéaire (NLS), l'équation de Korteweg-de Vries généralisée (gKdV) et le système de Schrödinger, on traite du comportement des solutions convergeant en temps grand vers des sommes de solitons (multi-solitons). Dans un premier temps, nous montrons que dans une configuration symétrique, avec des interactions fortes, le comportement de séparation des solitons logarithmique en temps est universel à la fois dans le cas sous-critique et sur-critique pour (NLS). Ensuite, en adaptant les techniques précédentes à l'équation (gKdV), nous prouvons un résultat similaire de l'existence de multi-solitons avec distance relative logarithmique; pour (gKdV), les solitons sont répulsifs dans le cas sous-critique et attractifs dans le cas sur-critique. Finalement, nous identifions un nouveau régime de distance logarithmique où les solitons sont non-symétriques pour le système de Schrödinger non-intégrable; une telle solution n'existe pas dans le cas intégrable pour le système et pour (NLS). / This thesis deals with long time dynamics of soliton solutions for nonlinear dispersive partial differential equation (PDE). Through typical examples of such equations, the nonlinear Schrödinger equation (NLS), the generalized Korteweg-de Vries equation (gKdV) and the coupled system of Schrödinger, we study the behavior of solutions, when time goes to infinity, towards sums of solitons (multi-solitons). First, we show that in the symmetric setting, with strong interactions, the behavior of logarithmic separation in time between solitons is universal in both subcritical and supercritical case. Next, adapting previous techniques to (gKdV) equation, we prove a similar result of existence of multi-solitons with logarithmic relative distance; for (gKdV), the solitons are repulsive in the subcritical case and attractive in the supercritical case. Finally, we identify a new logarithmic regime where the solitons are non-symmetric for the non-integrable coupled system of Schrödinger; such solution does not exist in the integrable case for the system and for (NLS).
|
Page generated in 0.0593 seconds