• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 17
  • Tagged with
  • 40
  • 40
  • 17
  • 15
  • 15
  • 12
  • 12
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problèmes aux limites et problèmes asymptotiques dans l'étude des systèmes hyperboliques

Coulombel, Jean-Francois 01 April 2008 (has links) (PDF)
Ce mémoire est consacré à l'étude des systèmes hyperboliques de lois de conservation et se compose de deux parties indépendantes. Dans une première partie, nous étudions des problèmes aux limites ne vérifiant qu'une condition de stabilité faible. Cette partie est motivée par l'étude d'ondes en mécanique des fluides compressibles comme les ondes de choc ou les nappes de tourbillon. Sous des hypothèses générales, nous définissons la notion de problème faiblement stable et montrons que de tels problèmes sont bien-posés au sens de Hadamard. L'originalité de notre travail consiste à autoriser une perte de régularité entre les seconds membres des équations et les solutions, les hypothèses ne portant que sur les symboles principaux des équations. Notre analyse commence par les problèmes linéaires, ces premiers résultats servant à traiter des problèmes non-linéaires intervenant dans la théorie des ondes de choc ou des discontinuités de contact. Dans une seconde partie, nous abordons l'étude des systèmes hyperboliques en présence de termes dissipatifs. Nos résultats couvrent tout d'abord des systèmes hyperboliques avec relaxation. Nous montrons l'existence globale de solutions régulières et justifions le comportement asymptotique de ces solutions lorsque le coefficient de relaxation devient infiniment grand. En particulier, nos résultats valident la construction de schémas numériques dits de relaxation pour les équations d'Euler. Nous étudions enfin un modèle d'hydrodynamique radiative où le terme de dissipation prend la forme d'un opérateur non-local. Nous montrons pour ce modèle l'existence et la stabilité asymptotique de profils de choc. Nous développons également une procédure numérique permettant de calculer ces profils.
2

Simulation numérique des écoulements multiphasiques compressibles <br />avec ou sans changement de phase. Application à l'interaction laser-plasma

Perrier, Vincent 10 July 2007 (has links) (PDF)
Ce travail porte sur la modélisation et la simulation d'écoulements compressibles. Par une démarche d'homogénéisation, on commence par dériver un modéle d'écoulements diphasiques à sept équations. Les termes de fluctuation restants sont modélisés par des termes de relaxation. Dans le cas où ces coefficients de relaxation tendent vers l'infini, ce qui correspond à des écoulements très bien mélangés, on obtient par un développement asymptotique un modèle à cinq équations qui est strictement hyperbolique, mais non-conservatif. La discrétisation de ce modèle est obtenue par un développement asymptotique d'un schéma numérique pour le système à sept équations. Le schéma obtenu est implémenté, validé sur des cas analytiques, et comparé dans le cas de chocs multiphasiques à des résultats expérimentaux. <br /><br />On s'intéresse ensuite à la modélisation du changement de phase avec deux équations d'état. Un principe d'optimisation de l'entropie de mélange mène à distinguer trois zones: une zone où le liquide pur est le plus stable, une autre zone où le gaz pur est le plus stable, et, enfin, une zone où un mélange à l'équilibre des pressions, températures et potentiels thermodynamiques est stable. On donne alors des conditions sur le couplage des deux équations d'état pour que l'équation d'état de mélange soit convexe, et pour que le système soit hyperbolique. Afin de prendre en compte le changement de phase, on introduit dans la solution du problème de Riemann une onde de vaporisation modélisée comme une onde de déflagration. On montre ensuite que la fermeture habituelle, la fermeture de Chapman-Jouguet, est inadéquate en général, et on donne une fermeture correcte dans le cas où les deux phases sont des gaz parfaits. Enfin, la solution du problème de Riemann est implémentée dans un code multiphasique, et validée sur des cas analytiques. Dans ce même code, on met en place un modèle de dépôt laser et de conduction thermique non linéaire afin de modéliser les phénomènes physiques intervenant dans l'ablation laser. Les résultats obtenus sont comparables à ceux obtenus avec des lois d'échelle. <br /><br />Le dernier chapitre, complètement indépendant, porte sur la recherche de correcteurs en homogénéisation stochastique dans le cas de processus à queue lourde.
3

Représentation Microlocale de Solutions de Systèmes Hyperboliques, Application à l'Imagerie, et Contributions au Contrôle et aux Problèmes Inverses pour des Equations Paraboliques

Le Rousseau, Jérôme 30 November 2007 (has links) (PDF)
Dans une première partie, nous considérons des problèmes de Cauchy pour des équations et systèmes hyperboliques du premier ordre. Nous donnons une représentation de l'opérateur solution comme produit infini d'opérateurs intégraux de Fourier à phase complexe. Nous démontrons la convergence de cette représentation dans les espaces de Sobolev, ainsi que celle du front d'onde. Pour les systèmes, nous traitons les cas symétriques et symétrisables. La représentation proposée conduit naturellement à des schémas numériques pour la résolution des problèmes de Cauchy. Nous présentons des applications de cette méthode dans le domaine de l'imagerie sismique. Dans ce cadre, grâce à des approximations microlocales nous obtenons des schémas efficaces. D'autres applications de l'analyse microlocale à la sismologie sont présentées.<br />Dans une seconde partie, nous étudions la contrôlabilité aux trajectoires pour des équations paraboliques linéaires et semi-linéaires. Nous nous intéressons plus particulièrement au cas d'opérateurs sous forme divergentielle où le coefficient de la partie principale est non continu. Nous prouvons tout d'abord une inégalité de Carleman, en dimension un d'espace, pour un coefficient $C^1$ par morceaux. Par un passage à la limite dans l'inégalité de Carleman, ce résultat est étendu au cas d'un coefficient $BV$. Avec ces résultats, nous prouvons la contrôlabilité de ces équations paraboliques en dimension un d'espace sans faire d'hypothèse de compatibilité entre la région de contrôle et les signes des sauts du coefficient discontinu. De plus, nous exhibons un cas en dimension supérieure pour lequel la même conclusion est obtenue. Finalement, nous utilisons une inégalité de Carleman afin d'identifier le coefficient discontinu à partir de mesures faites sur la solution.
4

Contributions à la simulation, à la modélisation et au contrôle des écoulements fluides

Tran, Quang Huy 03 September 2008 (has links) (PDF)
Ce mémoire d'Habilitation à Diriger des Recherches regroupe certains travaux réalisés dans le cadre de deux applications à l'IFP : TACITE (écoulements polyphasiques dans les conduites pétrolières) et IFP-C3D (écoulements réactifs dans les moteurs à combustion). Bien que ces deux applications présentent des caractéristiques très différentes, les techniques mathématiques mises en oeuvres sont semblables, voire complémentaires.<br /><br />Dans la première partie, on montre dans quelle mesure les méthodes dites de "relaxation" permettent de rendre plus robustes les simulations numériques de TACITE. La relaxation garantit en effet la positivité de certaines de certaines variables physiquement importantes, alors que le système de départ n'est pas toujours hyperbolique en raison de la complexité des lois de fermeture utilisées. On montre aussi dans quelle mesure les méthodes dites de "multi-résolution" et de "pas de temps locaux" permettent de rendre plus rapides ces simulations, le tout dans un contexte d'intégration temporelle mixte, c'est-à-dire implicite par rapport aux ondes acoustiques rapides et explicite par rapport aux ondes cinématiques lentes.<br /><br />Dans la deuxième partie, on examine certains modèles alternatifs à celui de la première partie. L'intérêt de ces modèles de rechange est d'être plus opérationnels sur certaines configurations spécifiques, au sens où ils facilitent l'analyse mathématique, en tant que système dynamique, d'un phénomène crucial appelé "severe-slugging". Ils suggèrent également des lois de commande judicieuses pour éliminer le severe-slugging via une boucle rétroactive dont l'effacité est prouvée sur le papier et sur maquette expérimentale.<br /><br />Dans la troisième partie, on propose un schéma d'advection multi-dimenstionnelle pour la phase convective de IFP-C3D. La particularité de ce schéma, conçu à partir des schémas de type Iserles-Roe en 1-D, est une très grande précision associée à un principe de monotonie. Compact en espace et à plusieurs niveaux en temps, il permet de bien traiter le transport des variables situées aux noeuds du maillage, en combinaison avec une procédure de réparation de la masse inspirée de Shashkov.
5

Modélisation mathématique et résolution numérique de problèmes de fluides à plusieurs constituants.

Lagoutière, Frédéric 07 December 2000 (has links) (PDF)
Ce travail concerne les fluides eulériens compressibles constitués de plusieurs espèces, qui peuvent être mélangées ou séparées par des interfaces. Le mémoire est composé de trois parties. La première partie est consacrée à la résolution numérique de problèmes modèles : équation d'advection, équation de Burgers, équations d'Euler, en dimensions un et deux. L'accent est mis sur la précision des méthodes (en particulier pour des données initiales discontinues), et des algorithmes non dissipatifs sont développés. Ils sont basés sur un décentrage aval des flux (de type volumes finis) sous des contraintes de stabilité. La seconde partie traite de la modélisation mathématique des mélanges de fluides. Nous y construisons et analysons une classe de modèles entropiques, symétrisables, hyperboliques, non forcément conservatifs. Ce sont des modèles à plusieurs températures et plusieurs pressions. Dans la troisième partie, nous utilisons les idées introduites dans la première partie (décentrage aval et schémas non dissipatifs) pour la résolution numérique des problèmes aux dérivées partielles construits dans la deuxième partie. Nous présentons des résultats numériques en dimensions un et deux.
6

Couplage interfacial instationnaire de modèles diphasiques

Hurisse, Oivier 16 October 2006 (has links) (PDF)
Le circuit primaire d'une centrale nucléaire est composé d'un ensemble d'éléments très différents (cuve, coeur, réseau de conduite ...). A chacun de ces éléments correspond actuellement un ou plusieurs codes de calcul spécifiques basés sur des systèmes d'équations aux dérivées partielles spécifiques. Afin de permettre la simulation des écoulements diphasiques dans l'ensemble du circuit primaire, il faut envisager de coupler ces différents codes. L'approche proposée dans ce travail de thèse est de coupler les codes grâce à un échange d'information interfaciale instationnaire. Des flux numériques sont calculés au niveau des interfaces de couplage et servent de conditions aux limites à chacun des codes. Les méthodes permettant le calcul des flux de couplage sont dérivées du formalisme de Greenberg-Leroux proposé dans le cadre du décentrement des termes sources des systèmes hyperboliques non-homogènes stationnaires, et font intervenir un modèle d'interface. Trois cas de couplage ont été examinés : (i) le couplage du système des équations d'Euler en dimension un et deux ; (ii) le couplage de deux modèles diphasiques homogènes distincts ; (iii) le couplage d'un modèle homogène à quatre équations et du modèle bi-fluide standard.
7

Contrôle de systèmes hyperboliques par analyse Lyapunov / Control of Hyperbolic Systems by Lyapunov Analysis

Lamare, Pierre-Olivier 28 September 2015 (has links)
Dans cette thèse nous avons étudié différents aspects pour le contrôle de systèmes hyperboliques.Tout d'abord, nous nous sommes intéressés à des systèmes hyperboliques à commutations. Cela signifie qu'il existe une interaction entre une dynamique continue et une dynamique discrète. Autrement dit, il existe différents modes dans lesquels peut évoluer la dynamique continue: ces modes sont dictés par la dynamique discrète. Ce changement de mode peut être contrôlé (dans le cas d'une boucle fermée), ou non-contrôlé (dans le cas d'une boucle ouverte). Nous nous sommes intéressés au premier cas. Par une analyse Lyapunov nous avons construit trois règles de commutations capables de stabiliser le système. Nous avons montré comment modifier deux d'entre elles pour obtenir des propriétés de robustesse et de stabilité entrée-état. Ces règles de commutations ont été testées numériquement.Ensuite, nous avons considéré la génération de trajectoire pour des systèmes hyperboliques linéaires 2x2 par backstepping. L'étape suivante a été de considérer une action Proportionnelle-Intégrale pour stabiliser la solution du système autour de la trajectoire de référence. Pour cela nous avons construit une fonction Lyapunov non-diagonale. Nous avons montré que l'action intégrale est capable de rejeter des erreurs distribuées et frontières.Enfin, nous avons considéré des aspects numériques pour l'analyse Lyapunov. Les conditions pour la stabilité et la conception de contrôleurs obtenues par des fonctions de Lyapunov quadratiques font intervenir une infinité d'inégalités matricielles. Nous avons montré que cette complexité peut être réduite en considérant une sur-approximation polytopique de ces contraintes.Les résultats obtenus ont été illustrés par des exemples académiques et des systèmes dynamiques physiques (comme les équations de Saint-Venant et les équations de Aw-Rascle-Zhang). / In this thesis we have considered different aspects for the control of hyperbolic systems.First, we have studied switched hyperbolic systems. They contain an interaction between a continuous and a discrete dynamics. Thus, the continuous dynamics may evolve in different modes: these modes are imposed by the discrete dynamics. The change in the mode may be controlled (in case of a closed-loop system), or may be uncontrolled (in case of an open-loop system). We have focused our interest on the former case. We procedeed with a Lyapunov analysis, and construct three switching rules. We have shown how to modify them to get robustness and ISS properties. We have shown their effectiveness with numerical tests.Then, we have considered the trajectory generation problem for 2x2 linear hyperbolic systems. We have solved it with backstepping. Then, we have considered the tracking problem with a Proportionnal-Integral controller. We have shown that it stabilizes the error system around the reference trajectory with a new non-diagonal Lyapunov function. The integral action has been shown to be able to reject in-domain, as well as boundary disturbances.Finally, we have considered numerical aspects for the Lyapunov analysis. The conditions for the stability and design of controllers by quadratic Lyapunov functions involve an infinity of matrix inequalities. We have shown how to reduce this complexity by polytopic embeddings of the constraints.Many obtained results have been illustrated by academic examples and physically relevant dynamical systems (as Shallow-Water equations and Aw-Rascle-Zhang equations).
8

Event-based control of networks modeled by a class of infinite dimensional systems / Contrôle événementiel des réseaux modélisés par une classe de système de dimension infinie

Espitia Hoyos, Nicolás 22 September 2017 (has links)
Cette thèse propose des contributions sur la commande événementielle pour des réseaux modélisés par une classe des systèmes de dimension infinie. Premièrement nous nous focalisons sur la modélisation et contrôle frontière des réseaux qui sont décrits par des systèmes hyperboliques de lois de conservation. En nous inspirant de modèles macroscopiques dans le cadre des réseaux de communications, nous traitons des systèmes couplés EDP-EDO, dont les noeuds (les serveurs) sont modélisés par des EDO non-linéaires alors que des lignes de transmission sont décrites par des systèmes hyperboliques lorsque des retards peuvent être pris en compte. Pour le système linéarisé resultant, autour d'un point d'équilibre optimal, on effectue aussi bien une analyse de stabilité "Input-to-state stable" que de la synthèse du contrôle pour le gain asymptotique grâce à une analyse de fonction de Lyapunov et une formulation LMI.Ensuite, nous considérons des aspects théoriques de la commande évènementielle aux frontières pour les systèmes hyperboliques. D'un côté, avec cette stratégie de contrôle, nous ciblons la réduction de la consommation d' énergie en traitant les contraintes de communication et de calcul. D' autre part, nous utilisons cette stratégie comme une manière rigoureuse pour échantillonner temporellement lorsqu' on a besoin de mettre en oeuvre les contrôleurs continus sur une plateforme numérique. Une étude mathématique sur l'existence et l' unicité des solutions ainsi que sur les aspects de stabilité est réalisée. / This thesis provides contributions on event-based control of networks model by a class of infinite dimensional systems. We first focus on the modeling and boundary control of networks described by hyperbolic systems of conservation laws. Highly inspired by macroscopic models in communication networks, we deal with a coupled PDE-ODE, where the nodes (servers) are modeled by nonlinear ODEs whereas transmission lines are described by hyperbolic equations when communication delays may be taken into account. For the resulting linearized system around an optimal equilibrium point, Input-to state stability (ISS) analysis as well as asymptotic gain control synthesis are carried out by means of Lyapunov techniques and LMI formulation.We then address some theoretical aspects of event-based boundary control of hyperbolic systems. One one hand, with this computer control strategy, we intend to reduce energy consumption when dealing with communication and computational constraints. On the other hand, we use this strategy as a rigorous way of sampling in time when implementation of continuous time controllers on a digital platform is required. A mathematical study regarding well-posedness of the solutions as well as stability issues is conducted.
9

Nouvelles méthodes numériques pour les écoulements en eaux peu profondes

Beljadid, Abdelaziz January 2015 (has links)
Dans ce projet de recherche, on s’intéresse au développement et à l’évaluation de nouvelles méthodes numériques pour les écoulements peu profonds. De nouvelles techniques de discrétisation spatiales et temporelles des équations sont proposées. Une partie de la thèse est dédiée au développement d’une méthode des volumes finis explicite d’ordre élevé et d’une famille de schémas semi-implicites qui sont efficaces pour la modélisation des processus lents et rapides dans les écoulements océaniques et atmosphériques. La deuxième partie du projet de recherche concerne la construction d’un schéma numérique efficace sans solveur de Riemann pour les écoulements peu profonds avec une topographie variable sur un maillage non structuré. Dans cette partie de la thèse, une nouvelle approche est proposée pour l'analyse de stabilité des schémas numériques non structurés pour les équations en eaux peu profondes. Dans la troisième partie de la thèse, deux schémas de volumes finis sont développés pour les lois de conservation sur des surfaces courbes qui ont un large potentiel d’être appliqués aux écoulements peu profonds sur la sphère. Dans ces cas, les schémas numériques sont développés en adoptant la démarche suivie par Stanley Osher. Cette démarche consiste à utiliser des systèmes hyperboliques simples qui génèrent des phénomènes d'ondes complexes et des solutions qui ont différentes structures. Ces solutions sont très efficaces pour tester les méthodes numériques. Dans notre cas, nous avons utilisé les équations de Burgers qui ont joué un rôle très important dans le développement des schémas numériques à capture de chocs en mécanique des fluides. Dans le premier article, une nouvelle méthode des volumes finis décentrée explicite est proposée pour le système de Saint-Venant avec un terme source qui comprend le paramètre de Coriolis en utilisant un maillage non structuré. La plupart des schémas numériques décentrés, efficaces pour les ondes rapides (ondes de gravité), conduisent à un niveau d'amortissement élevé pour les ondes lentes (ondes de Rossby). La méthode proposée donne de bons résultats à la fois pour les ondes de gravité et les ondes de Rossby. Les techniques proposées sont suffisantes pour supprimer le bruit numérique des ondes courtes sans amortissement des ondes longues, telles que les ondes de Rossby qui sont essentielles dans le transport de l’énergie dans les océans et l'atmosphère. Dans le cas où le système comprend une large gamme de fréquences des ondes, ce qui est le cas des écoulements atmosphériques, il est important d’utiliser des méthodes semi-implicites afin d’opter pour un pas de temps optimal. La méthode semi-implicite semi-lagrangienne à deux niveaux (SETTLS) proposée par Hortal (2002) a une région de stabilité absolue indépendante du nombre de Courant-Friedrichs-Lewy (CFL). La plupart des modèles de prévision numérique atmosphérique utilisent cette méthode comme schéma temporel. Cependant, la méthode SETTLS peut générer des oscillations pour le traitement du terme non linéaire surtout pour le cas des solutions qui ont un caractère oscillatoire. Pour remédier à ce problème, dans le deuxième article, nous avons proposé une nouvelle classe de schémas semi-implicites semi-lagrangiens potentiellement applicables aux modèles atmosphériques. Cette classe de schémas numériques présente plusieurs avantages de stabilité, de précision et de convergence. De bons résultats sont obtenus en comparaison à d'autres schémas semi-implicites semi-lagrangiens et méthodes semi-implicites de type prédicteur-correcteur. Dans le troisième article, un nouveau schéma équilibre partiellement centré est développé pour la résolution numérique des équations de Saint-Venant avec une topographie variable sur un maillage non structuré. Cette méthode est stable et simple puisqu'elle ne fait pas appel à la résolution du problème de Riemann. La méthode proposée est précise pour le cas des solutions discontinues et peut être appliquée aux écoulements peu profonds avec une topographie variable et une géométrie complexe où l'utilisation des maillages non structurés est avantageuse. Motivé par de nombreuses applications en dynamique des fluides, dans le projet de thèse on s’intéresse également au développement de méthodes numériques dans le cas des surfaces courbes. L'objectif est de concevoir des méthodes numériques robustes et efficaces pour le cas des solutions discontinues et qui préservent la structure fondamentale des équations, notamment les propriétés liées à la géométrie. Pour développer ces méthodes, l'approche suivie par Stanley Osher est adoptée et les équations de Burgers sont utilisées vu leur importance pour le développement des schémas numériques à capture de chocs. Dans le quatrième article, une méthode des volumes finis satisfaisant la compatibilité géométrique est développée pour les lois de conservation sur la sphère. Cette méthode est basée sur la résolution du problème de Riemann généralisé et l'approche du «splitting» directionnel en latitude et en longitude sur la sphère. Les dimensions géométriques sont considérées de manière analytique et la forme discrète du schéma numérique proposé respecte la propriété de compatibilité géométrique. La méthode proposée est stable et précise pour le cas des solutions discontinues de grands chocs et amplitudes en comparaison avec des schémas numériques très connus. Une nouvelle classification des flux est proposée en introduisant les notions de flux feuilletés et de flux génériques. Le comportement asymptotique des solutions est étudié en fonction de la nature du flux et les propriétés des solutions discontinues sont analysées. Les résultats démontrent la capacité et le potentiel de la méthode proposée pour la résolution des lois de conservation sur la sphère dans le cas des solutions discontinues. Ce schéma numérique pourrait être étendu au cas des équations de Saint-Venant sur la sphère. Dans le cinquième article, on propose un schéma numérique efficace respectant la propriété de compatibilité géométrique pour les lois de conservation sur la sphère. La méthode proposée présente plusieurs avantages, notamment de bons résultats dans le cas des solutions discontinues avec des chocs d’amplitudes moyennes, une faible dissipation numérique et une simplicité puisqu'elle ne fait pas appel à la résolution du problème de Riemann. Cette méthode pourrait être étendue au cas des équations de Saint-Venant sur la sphère. Dans le sixième article, une nouvelle approche est proposée pour analyser la stabilité des schémas numériques appliqués aux écoulements peu profonds. Cette méthode utilise la notion du pseudo spectre des matrices. La méthode proposée est efficace en comparaison avec les méthodes couramment utilisées telles que la stabilité asymptotique et la stabilité de Lax-Richtmyer. Cette approche est utile pour le choix du type de maillage, des emplacements appropriés des variables primitives (hauteur et vitesses), et de la méthode de discrétisation la plus stable.
10

Méthodes variationnelles et hyperboliques appliquées aux systèmes mécaniques sous contrainte / Variational and hyperbolic methods applied to constained mechanical systems

Mifsud, Clément 10 November 2016 (has links)
Dans cette thèse, nous nous intéressons aux équations aux dérivées partielles hyperboliques sous contraintes ; plus particulièrement aux problèmes provenant de la mécanique de la plasticité parfaite. Un bref historique de l'origine mécanique des problèmes de la plasticité parfaite ainsi que des résultats précédemment obtenus sont décrits dans le Chapitre 1. Dans le Chapitre 2, nous concentrons notre attention sur les systèmes hyperboliques avec conditions de bord. Nous développons une théorie faible pour ces problèmes et expliquons dans un cas simplifié le caractère bien posé de cette théorie. Puis, nous introduisons de manière similaire la notion de solution faible pour des systèmes hyperboliques avec condition de bord soumis à une contrainte. Nous nous dédions, dans le chapitre 3, à l'étude d'un modèle simplifié de la dynamique de la plasticité parfaite. Nous confrontons l'approche introduite au chapitre précédent avec celle, plus classique, provenant du calcul des variations qui permet d'obtenir l'existence et l'unicité des solutions pour ce modèle. Cela nous permet de mettre en évidence une nouvelle interaction entre les conditions de bord et les contraintes ainsi que d'aboutir à un théorème de régularité des solutions. Dans le chapitre 4, nous nous intéressons à l'approximation numérique des systèmes hyperboliques sous contraintes grâce à des schémas de type volumes finis. Cela nous permet d'obtenir un résultat de convergence pour les problèmes sans bord et d'illustrer numériquement les interactions entre les conditions de bord et les contraintes sur l'exemple du chapitre 3. / In this thesis, we consider constrained hyperbolic partial differential equations and more precisely mechanical problems coming from perfect plasticity. The goal of this thesis is to study these problems thanks to different approaches, to analyze the interactions between these different points of view and to confront these various analyzes to get new results. A brief review of the mechanical origin of perfect plasticity problems and also of the previous results on these topics are described in Chapter 1. In Chapter 2, we focus our attention on hyperbolic systems with boundary conditions. First, we develop a weak theory for these problems and explain, in a simplified case, why this theory is well-posed. Then, we introduce similarly a notion of weak solutions for constrained hyperbolic systems with boundary conditions. Chapter 3 is devoted to the study of the simplified model of dynamical perfect plasticity. We confront the approach introduced in the previous chapter with the one, more standard, coming from calculus of variations that allows us to obtain existence and uniqueness of the solutions for this model. It allows us to bring to light a new interaction between the boundary conditions and the constraints and to get a short-time regularity theorem. Lastly, in Chapter 4, we are interested in the numerical approximation of constrained hyperbolic systems thanks to finite volume schemes. This work allows us to get a convergence result for problems without boundary condition and to show numerically the link between boundary conditions and constraints on the example of the previous chapter.

Page generated in 0.0528 seconds