• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1481
  • 344
  • 136
  • 4
  • 1
  • 1
  • Tagged with
  • 1947
  • 824
  • 523
  • 371
  • 296
  • 275
  • 208
  • 197
  • 172
  • 162
  • 152
  • 146
  • 143
  • 129
  • 129
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Prédiction de la conductance thermique d’interface silicium métal : utilisation de la dynamique moléculaire / Interfacial thermal conductance prediction of silicon-metal systems : a molecular dynamics study

Cruz, Carolina Abs Da 13 October 2011 (has links)
L’intérêt pour les propriétés thermiques de matériaux nanostructurés est croissant. Ces matériaux sont conçus pour être inclus dans les dispositifs micro-électroniques et les systèmes micro électromécaniques (MEMS) dont le comportement et la fiabilité dépendent fortement de l’évacuation de la chaleur générée. Les matériaux multicouches diélectrique/métal sont de bons candidats pour la conversion thermoélectrique et leur utilisation est envisagée pour diminuer les températures maximales dans les systèmes microélectroniques. La diminution de l’épaisseur des couches permet de diminuer la conductivité thermique, conduisant à un plus grand facteur de mérite de conversion thermoélectrique. Cette diminution est due à la diminution de la conductivité thermique intrinsèque de chaque couche lorsque leur épaisseur décroit jusqu’à des dimensions du même ordre de grandeur que le libre parcours moyen des porteurs de chaleur et à l’influence croissante de la conductance d’interface. La prédiction de la conductivité thermique de tels systèmes passe donc par une simulation fiable du transfert de chaleur aux interfaces. La dynamique moléculaire (DM) est un outil particulièrement bien adapté à ce type d’études. Cependant les résultats des simulations dépendent fortement des potentiels interatomiques utilisés. La comparaison des propriétés prédites à l’aide des différents potentiels interatomiques avec les valeurs expérimentales permet de valider les potentiels pour prédire les propriétés concernées. Dans le premier chapitre, les fonctions mathématiques et les paramètres utilisés dans les potentiels interatomiques sont explicités. Dans le deuxième chapitre, l’objectif est de proposer une méthodologie pour sélectionner les potentiels les plus appropriés pour les études de transfert de chaleur. Cette méthodologie est illustrée pour le Si qui est le semi-conducteur le plus utilisé au sein de dispositifs microélectroniques et MEMS ainsi que pour l’Au, l’Ag et le Cu qui sont les métaux les plus souvent considérés. La conductivité thermique du Si massif est calculée, en utilisant la dynamique moléculaire hors d’équilibre (DMNE) avec trois potentiels parmi les cinq évalués précédemment pour valider cette évaluation. Le système diélectrique/métal qui a été le plus étudié avec la dynamique moléculaire mais également de manière expérimentale jusqu’à présent est certainement le système Si/Au. Les films de Cu et Ag sur des substrats de Si orienté sont les principales combinaisons dans les circuits intégrés de grande échelle. Une paramétrisation du potentiel de type MEAM est développée pour calculer les interactions Si/Au, Si/Ag et Si/Cu dans la troisième partie de ce travail. Les potentiels croisés sont utilisés pour prédire la conductance d’interface et développer les courbes de densité d’états pour les interfaces Si/Au Si/Ag et Si/Cu. / Interest in thermal properties of nanostructuredmaterials is growing. These materials are designed to be included in microelectronic devices and micro electromechanical systems (MEMS) whose behavior and reliability depend strongly on the dissipation of generated heat. Multilayer materials dielectric/metal are good candidates for thermoelectric conversion and their use is considered to reduce the maximum temperatures in microelectronic systems. The decrease in the thickness of the layers reduces the thermal conductivity, leading to a larger figure of merit of thermoelectric conversion. This decreasing is due to the decrease of intrinsic thermal conductivity of each layer when the thickness decreases to the dimensions of the same order of magnitude as the mean free path of heat carriers and bigger influence of the interface conductance. Predicting the thermal conductivity of such systems therefore requires a reliable simulation of heat transfer at interfaces. Molecular dynamics is a tool particularly well suited to this type of study. However the simulation results depend strongly on interatomic potentials used. The comparison of properties predicted using different interatomic potentials with experimental results validates the potential for predicting the properties concerned. In the first chapter, the mathematical functions and parameters used in the interatomic potentials are explained. In the second chapter, the objective is to propose a methodology to select the most appropriate potential for studying heat transfer. This methodology is illustrated for Si, the semiconductor most used in microelectronic devices and MEMS as well as for Au, Ag and Cu which are the metals most often seen. The thermal conductivity of bulk Si is calculated using the nonequilibrium molecular dynamics with three potential among the five previously evaluated to confirm this assessment. The system dielectric/metal that has been most studied with molecular dynamics but also experimentally is certainly the system Si/Au. The Cu and Ag films on oriented Si substrates are in the main combinations of large-scale integrated circuits. A parametrisation of MEAM cross-potential is developed to calculate interactions Si/Au, Si/Ag and Si/Cu in the third part of this work. The cross-potentials are used to predict the interfacial thermal conductance and to predict the density of states curves for the interfaces Si/Au Si/Ag and Si/Cu.
102

Polymérisation cationique photo-thermique de résines époxydes / Photo- and thermal cationic polymerization of epoxides

Marechal, David 22 October 2013 (has links)
Le groupe Mäder s’est lancé depuis quelques années dans une nouvelle thématique, la polymérisation « dual-cure ». Il s’agit d’un processus photo-thermique couplant réactivité photochimique et thermique. Cette thématique vise des applications pour lesquelles le produit est épais et/ou fortement chargé. La photopolymérisation étant limitée en profondeur, le processus thermique permet de compléter la polymérisation au coeur de l’échantillon ou encore dans les zones non accessibles par la technologie UV/LED. Cette thématique a fait l’œuvre d’une première thèse (2007-2010) menée par le doctorant Adrien Criqui au sein du Département de Photochimie Général (DPG). Au cours de cette thèse, la polymérisation radicalaire photo-thermique à partir d’aldéhydes a été étudiée. Des résultats concluant ont été obtenus donnant naissance à une technologie innovante notamment avec des applications sous air. Dès lors, il s’est posé la question de savoir si les aldéhydes pouvaient être utilisés dans la polymérisation cationique photo-thermique. La première année de thèse a donc commencé par l’étude du potentiel des aldéhydes dans la polymérisation cationique photo-thermique de résine époxydes. Les aldéhydes ont montrés qu’ils sont de bons photosensibilisateurs de la photopolymérisation cationique amorcée par un sel d’iodonium. Certaines structures aldéhydes couplées à un sel d’iodonium ont conduit à une polymérisation thermique. Les vitesses de polymérisation sont néanmoins trop lentes pour pouvoir être exploitées. La voie des aldéhydes a donc été abandonnée suite à ces résultats. Malgré ceci, ce sujet a fait l’œuvre d’une étude mécanistique qui a permit de conclure que le couple sel d’iodonium/aldéhyde réagit selon un mécanisme redox au courant duquel l’auto-oxydation de l’aldéhyde est indispensable. La réduction du photoamorceur par le radical issu de l’auto-oxydation de l’aldéhyde permet d’amorcer la polymérisation cationique. Par la suite, une importante bibliographie sur la polymérisation cationique des époxydes a été réalisée, le but étant de rechercher de nouveaux systèmes amorceurs. Plusieurs systèmes ont alors été retenus à savoir, les acides de Lewis et de Brönsted ainsi que les espèces cationiques. Les acides de Lewis étudiés n’ont pas apportés de résultats satisfaisants et ont donc été abandonnés. Parmi les acides de Brönsted, les acides sulfoniques ont été sélectionné. Des résultats mitigés ont été obtenus. En effet, soit la polymérisation s’est montrée trop rapide et non contrôlable soit trop lente. Le mécanisme de polymérisation amorcé par ces espèces ne semble pas adapté aux résines époxydes. La synthèse d’une structure appropriée a été envisagée mais pour des raisons stratégiques a été par la suite abandonnée. Plusieurs structures d’espèces cationiques ont été étudiées, à la fois des espèces commerciales (ex : triphénylcarbénium, …) ainsi que des espèces synthétisées au laboratoire (ex : xanthénium, …). Les travaux effectués sur ces systèmes amorceurs ont montrés qu’un amorçage indirect avec formation de l’amorceur in situ était une voie à privilégier.A partir de ce constat, deux technologies ont été étudiées. La première, à caractère purement académique, concerne une voie redox. Un système déjà publié basé sur le système sel d’iodonium/sel de cuivre/acétoïne a été ré-évalué. Les résultats obtenus ne correspondant pas au mécanisme publié, une étude mécanistique a été réalisée afin de proposer un nouveau mécanisme réactionnel. Le mécanisme de réaction est basé sur une réaction de décomposition, probablement par complexation, du sel d’iodonium par un sel de cuivre. Le produit de décomposition formé étant sensible à l’hydrolyse, il est possible d’accélérer la vitesse de polymérisation par la présence d’un composé hydroxylé type acétoïne. [...] / In the past few years, The Mäder Group has launched a new theme, " dual- cure " polymerization and process. This process is a coupling between photochemical and thermal reactivity. This theme is designed for applications where the product is thick and/or loaded with fillers. The photopolymerization is limited in depth and then the thermal process is used to complete the polymerization of the sample or in the non-irradiated areas. This theme has been the work of a first PhD (2007-2010) conducted by the student Adrien Criqui in the “Département de Photochimie Générale (DPG)”. In this PhD, the photo- and thermal radical polymerization with aldehydes was studied. Results have given birth to an innovative technology, particularly with applications under air. Therefore, it wonder if aldehydes could be used in the photo- and thermal cationic polymerization.The first year of PhD has begun with the study of the potential of aldehydes in the photo- and thermal cationic polymerization of epoxy resin. Aldehydes have shown that they are good photosensitizers of the cationic photopolymerization initiated by an iodonium salt. Some aldehydes coupled with an iodonium salt led to thermal polymerization. However rates of polymerization are too slow to be exploited. The way of aldehydes has been aborted due to these results. Despite this, this topic has been the work of a mechanistic study that led to the conclusion that the iodonium/aldehyde salt couple reacts according to a redox mechanism in which the auto-oxidation of the aldehyde is essential. The reduction of the photoinitiator by the radical derived from the auto- oxidation of the aldehyde aollow to initiate cationic polymerization.Subsequently, an extensive bibliography on the cationic polymerization of epoxides was carried out with the aim to find new initiator systems. Therefore, several systems have been selected i.e., Lewis and Brösted acids, and cationic species. Lewis acids studied gave no satisfactory results and were therefore given up. Among the Bronsted acids, sulfonic acids were selected. Mixed results were obtained. Sometimes the polymerization has been too fast and sometimes too slow. The polymerization mechanism initiated by these species does not seem suitable for epoxy resins. The synthesis of a suitable sulfonic acid was considered but for strategic reasons was later dropped. Several structures of cationic species have been also studied, both commercial species (eg: triphenylcarbenium , ... ) as well as synthesized species (eg: xanthénium ...). Work on these initiator systems convinced to use an indirect method to initiate polymerization.From this, two technologies have been studied. The first, relates to a redox pathway. A published system based on iodonium salt/copper salt/acetoïne combination has been re-evaluated. Results do not match the published mechanism. A new mechanistic has been proposed. The reaction mechanism is based on a decomposition reaction, presumably by complexation, of the iodonium salt with a copper salt. The decomposition product formed is susceptible to hydrolysis. Rates of polymerization have been accelerated the by the presence of a hydroxy compound like acetoïne. From the knowledges, ways of controlling the rate of polymerization (eg: complexing metal salt) and a new initiator system have been proposed. The second technology relates to a bi-component consisting of a photoinitiator/thermal initiator and a co- initiator. The reaction between the initiator and co-initiator allows initiating the polymerization. The polymerization rate can be controlled from the structure of initiator and co-initiator. The initiator is also a photoinitiator, the photo- and thermal nature is ensured. Two classes of co-initiators have been studied from a fundamental point of view (hydroperoxides and vinyl ether). It has been shown that hydroperoxides reduce initiator by an electron transfer. [...]
103

Etude du comportement au vieillissement des interfaces thermiques pour modules électroniques de puissance dédiés à des applications transports / Study of the aging behavior of thermal interfaces for power electronic modules dedicated to transportation applications.

Ousten, Jean-Pierre 21 June 2013 (has links)
Dans le cadre des applications transports, et plus particulièrement de "l’avion plus électrique", avec une demande toujours plus présente de réduction d’encombrement et de poids, la tendance est à l’intégration de plus en plus poussée des convertisseurs statiques. L’augmentation de leur densité de puissance et celle des contraintes thermiques, induites par l’environnement dans lequel ces structures sont localisées, deviennent de plus en plus critiques. La gestion thermique de ces dispositifs est assurée par des systèmes de refroidissement sur lesquels sont montés les composants semi-conducteurs via un matériau d’interface thermique. Une gestion performante sera obtenue par la diminution de la résistance thermique globale entre les éléments dissipatifs et le milieu ambiant grâce en autre à l’amélioration du système de refroidissement et des propriétés thermiques des matériaux constituant le module. Or cette interface est un point délicat du transfert de chaleur car elle peut représenter plusieurs dizaines de pourcents de la résistance thermique globale. Elle nécessite donc une connaissance approfondie de son comportement aux sollicitations thermiques. Après un état de l’art sur les matériaux d’interfaces thermiques et les méthodes de caractérisation des propriétés thermophysiques des matériaux, nous proposons la mise en œuvre d’outils expérimentaux et mathématiques permettant de suivre l’éventuelle évolution de matériaux d’interfaces utilisés en électronique de puissance au cours d’un vieillissement par cyclage en température. Pour cela, deux méthodes sont présentées. La première repose sur la mesure de la résistance thermique des interfaces en régime stationnaire avec un transfert de chaleur monodimensionnel alors que la seconde, basée sur une caractérisation transitoire thermique d’un système, permet d’en identifier les constantes de temps et le réseau Résistance-Capacité du système testé. Des travaux de simulations numériques ont été menés sur les deux types de bancs expérimentaux, d’un côté pour pouvoir évaluer les pertes thermiques latérales du banc statiques, de l’autre côté pour montrer qu’il est bien possible de détecter une variation de la résistance thermique d’un matériau d’interface par l’analyse de l’impédance thermique. / In the context of transportation applications, and especially the "more electric aircraft", with an ever present demand for space and weight reduction, the trend is to integrate more extensive of static converters. The increase in power density and the thermal stresses induced by the environment in which these structures are located, are becoming increasingly critical. Thermal management of these devices is provided by cooling systems on which are mounted the semiconductor components via a thermal interface material. Effective management will be achieved by reducing the overall thermal resistance between the dissipative elements and the environment by improving the cooling system and thermal properties of the materials constituting the module. However, this interface is a delicate point of heat transfer because it can represent several tens of percent of the circuit total thermal resistance. It therefore requires a thorough knowledge of their behavior in thermal stresses. After a state of the art on the thermal interface materials and methods for characterizing thermophysical properties of materials, we propose the implementation of experimental and mathematical tools to monitor any change of interface materials used in power electronics during aging by temperature cycling. For this, two methods are presented. The first is based on the measurement of the thermal resistance of the interfaces with a steady one-dimensional heat transfer, while the second, based on a characterization of a transient thermal system, allows to identify the time constants and the resistor and capacitor network of the tested system. Numerical simulations were carried out on two types of experimental benches, on one side in order to assess the lateral heat losses from static bench, on the other side to show that it is possible to detect a change in the thermal resistance of a TIM with the analysis of the thermal impedance.
104

Stratégies de ventilation pour l'amélioration de la qualité de l'environnement intérieur dans les véhicules / Ventilation strategies for improving the indoor environment quality in vehicles

Danca, Paul-Alexandru 18 December 2018 (has links)
La prédiction des conditions thermiques confortables à l'intérieur d'une cabine de véhicule reste un défi en raison du comportement transitoire de cet environnement. Le développement des modèles d'écoulement reste toujours une préoccupation pour les chercheurs en raison de la géométrie complexe de la cabine et de la complexité du système de ventilation (débit, emplacement et géométrie des diffuseurs d'air). Le confort thermique a été largement étudié dans le bâtiment, alors que le confort thermique dans les véhicules est un sujet relativement nouveau, avec peu d'études qui y sont dédiées. La norme actuellement disponible destinée à l'évaluation de l'environnement thermique du véhicule, EN ISO 14505, propose des modèles d'évaluation des bâtiments, qui ne répondent pas aux exigences de l'évaluation de l'environnement cabine. Contrairement à l'environnement intérieur des bâtiments, le climat de la cabine de véhicule est dominé par des conditions transitoires thermiques: environnement thermique fortement non uniforme associé aux vitesses élevées de l'air localisé, des niveaux plus élevés d'humidité relative, le flux de chaleur solaire et le flux de chaleur radiatif des surfaces intérieures, l'intensité solaire et sa diffusion sur les différents types de matériaux et niches de surface de la cabine, les angles d'incidence du rayonnement solaire, etc. En l'absence de modèles d'évaluation adaptés à cet environnement, la littérature disponible est dispersée autour des articles traitant des conditions environnementales dans le véhicule susceptible d'affecter le confort thermique de l'homme ainsi que de celles concernant la réaction de l'homme et la perception de son interaction avec l'environnement. Dans ce contexte, nous avons décidé d'orienter le sujet de la thèse autour de la problématique complexe de l'environnement thermique de la cabine et de ses effets sur l'état thermique du conducteur et du passager. Le manuscrit présente des études numériques et expérimentales des effets de différentes grilles passives sur le confort thermique des passagers. Ainsi, les objectifs généraux du projet de recherche doctorale pourraient être résumés comme suit: approfondir les connaissances et comprendre les phénomènes thermiques qui se produisent dans l'environnement thermique de la cabine; développer un mannequin thermique avancé capable d'évaluer le confort thermique de la cabine; développer et valider un modèle numérique complexe afin de mieux comprendre les phénomènes complexes précédemment évoqués. Ces trois objectifs généraux visaient à soutenir l'objectif principal de la recherche doctorale, à savoir: l'amélioration de la sensation thermique des occupants du véhicule, par la mise en œuvre de diffuseurs d'air innovants. À cette fin, nous avons orienté nos recherches vers des diffuseurs à géométrie spéciale permettant des mécanismes de contrôle du débit et permettant d'améliorer le mélange entre l'alimentation en air par le système de ventilation et l'air ambiant dans la cabine. Au cours de la quête complexe, nous pourrions avoir l'opportunité de nous familiariser avec les phénomènes thermiques, afin d'analyser le rôle réel joué par les paramètres d'environnement transitoires, dans la perception du confort thermique et dans son estimation. Pendant toute cette quête, nous avons essayé de rester sur une ligne qui permettrait finalement de répondre à un ensemble de questions fondamentales, à savoir: dans quelle mesure ce type de paramètres peut affecter la perception du confort, ainsi que les conséquences d'une évaluation "incomplète" proposée par les modèles existants ? Dans ce contexte, comment la conception de la ventilation et de la climatisation est-elle affectée par l'utilisation des modèles actuels pour pré-évaluer le bon fonctionnement des systèmes CVC - en particulier pour les véhicules – et un environnement acceptable pour ses utilisateurs ? / Prediction of comfortable thermal conditions inside a vehicle cabin is still a challenge due to the transient behavior of this environment. Understanding flow patterns is still difficult nowadays for researchers due to the complexity of the interior cabin geometry and of the ventilation system (flow rate, location and geometry of the air diffusers). Thermal comfort has been widely studied in build environments, while thermal comfort in vehicles is a relatively new subject, with fairly few extensive studies that are exploring all possibilities of investigation in this direction. The currently available standard intended for the evaluation of vehicle thermal environment, EN ISO 14505, propose models extensively used for buildings, which do not seem to be entirely adapted for the vehicular space. Unlike the indoor environment from buildings, the vehicular cabin climate is dominated by thermal transient conditions: the strongly non-uniform temperature distributions, both in air and on the surfaces, associated with the high localized air speeds, the relatively higher levels of relative humidity compared to the buildings, the solar radiation intensity, and the radiative heat exchange from the interior surfaces, the angles of incidence of the solar radiation etc. In the absence of the evaluation models adapted to this environment, the available literature is dispersed around those papers dealing with environmental conditions inside the vehicle that might affect the human thermal comfort and those concerning the human’s response and perception of its interaction with the environment. In this context, we decided to orient the research work in this thesis around the complex problematic of cabin thermal environment and its effect on driver’s and passenger’s thermal state. The thesis presents numerical and experimental studies of the effects of an improved set of dashboard air diffusers over passengers’ thermal comfort. The general objectives of the doctoral research project could be summarized as following: to deepen the knowledge and to understand thermal phenomena that occur in cabin thermal environment; to develop and validate a complex numerical model in order to get insight into the complex phenomena previously evoked. These three general objectives were intended to sustain the main goal of the doctoral research that is: improvement of thermal sensation of vehicle occupants, by implementation of innovative air diffusers. To this end we oriented our research towards diffusers with a special geometry that allows flow control mechanisms resulting in the improvement of mixing between air supply by the ventilation system and the ambient air in the cabin. During the complex quest, we could have the opportunity to become familiar to the intricate thermal phenomena, to analyze the real role played by transient environment parameters perceiving thermal comfort and in its estimation. During all this quest we tried to stay on a line that would ultimately allow to respond to a set of fundamental questions, namely: To what extent this kind of parameters can affect the perceiving of comfort, and also the consequences of an "incomplete" assessment proposed by the existing evaluation models ? How is, in this context, affected the ventilation and air conditioning design due to the use of current models for pre-evaluating a good functioning of the HVAC systems – in particular for vehicles - and an acceptable environment for their users ?
105

Étude des phénomènes de transport thermique dans les couches minces par thermoréflectance / Study of thermal transport phenomena in thin films by thermoreflectance

Badine, Elie 16 July 2019 (has links)
Avec la miniaturisation croissante des systèmes micro et nanoélectroniques, les problématiques thermiques revêtent un enjeu croissant. En effet, la faible taille des composants rend problématique l'évacuation de chaleur. Selon la NASA, 90% des défaillances sont imputables à des défauts d'interconnections thermiques et d'après l'US Air Force, 55% des défaillances électroniques sont attribuables à des effets thermiques. Devenues très courantes dans les domaines des nanotechnologies et des énergies renouvelables, les couches minces présentent des caractéristiques thermiques propres (confinement) et des défis métrologiques particuliers (taille des échantillons, influence du substrat sur la mesure). Le transfert de chaleur à l'échelle submicrométrique diffère du transfert de chaleur dans les matériaux massifs à cause de l'effet de confinement spatial propre aux nanostructures. Ainsi, la diffusivité thermique α et la conductivité thermique κ de ces couches minces sont des paramètres qui affectent la performance et la durée de vie de ces couches dans une application donnée. Ce mémoire de thèse porte sur le développement d'un banc de mesure, basé sur les variations de réflectivité d'un matériau en fonction de la température ou thermoréflectance, pour la caractérisation thermique à l'échelle submicrométrique. Dans ce travail, nous avons développé des modèles thermiques tridimensionnels dans des systèmes à deux et trois couches ainsi que les expressions théoriques du signal de thermoréflectance mesuré suite à une excitation thermique de la surface de l'échantillon. Ces expressions ont été développées en tenant compte de l'effet des résistances thermiques aux interfaces. Les modèles ont été validés expérimentalement par des mesures sur des couches minces d'or déposées sur un substrat de silice. Les mesures de thermoréflectance ont été ensuite appliquées à des couches minces d'acide polylactique. Finalement, des couches minces d'oxyde de zinc dopées par différentes concentrations d'aluminium ont été élaborées par voie électrochimique et leurs propriétés thermiques étudiées à l'aide du banc de mesure de thermoréflectance. / With the increasing miniaturization of micro and nanoelectronic systems, the thermal behavior of these systems has become more and more important. The small size of the components makes the heat emitted more troublesome. According to NASA, 90% of failures are due to thermal interconnection faults and according to the US Air Force, 55% of electronic failures are attribuable to thermal effects. Most electronic chips are manufactured using thin films technologies ; therefore, the characteristics of thin metal films have been the bottom line in the ongoing research in nanotechnology and renewable energy domain. Nanoscale heat transfer is different from the heat transfer in bulk materials due to the spatial confinement effect specific to nanostructures. Furthermore, the thermal diffusivity α and thermal conductivity κ of these films are critical parameters affecting their performance and lifetime in a given application. This thesis is devoted to setting up a measurement bench, based on the reflectivity variations of a material as a function of temperature (thermoreflectance), in order to thermally characterize thin films. In this work, a three-dimensional theoretical model is developed in order to describe the temperature distribution in two and three layers systems and obtain the expression of the measured thermoreflectance signal when the surface of the sample is heated by an intensity-modulated Gaussian laser beam. These expressions are obtained by taking into consideration the effect of thermal boundary resistances. These models have been validated experimentally on thin films of gold deposited on fused silica substrate. The thermoreflectance measurements have been then performed on thin films of polylactic acid. Finally, thin films of zinc oxide doped with different concentrations of aluminum have been elaborated during this thesis. The thermal characterization of these films is carried out with the thermoreflectance bench.
106

Caractérisation thermique et thermomécanique de fibres de carbone et céramique à très haute température

Pradere, Christophe 09 1900 (has links) (PDF)
Ce travail, motivé par un besoin industriel, a pour objectif de déterminer les propriétés thermiques et thermomécaniques de fibres micrométriques de carbone et céramique à très haute température (1000-3000 K). Afin de fournir des mesures à de telles échelles et sur une telle gamme de température, notre étude a porté sur: la modélisation des phénomènes, le développement de méthodes d'identification stables, l'optimisation expérimentale et la recherche d'erreurs. En plus de ce travail important de développement de méthodes de mesures, un effort particulier a consisté à réaliser un maximum de caractérisations susceptibles d'apporter une connaissance précise des propriétés thermiques et thermomécaniques (inconnues jusqu'à présent) des fibres de carbone. Dans la première partie, relative à la détermination des propriétés thermomécaniques des fibres, la difficulté peut se résumer à la mise en oeuvre de méthodes susceptibles de détecter avec précision, à très haute température, des variations de l'ordre de quelques nanomètres sur des matériaux dont la dimension caractéristique est d'environ 10 mm. La méthode développée permet de réaliser indifféremment des mesures du coefficient de dilatation transverse et du coefficient de Poisson. Dans la deuxième partie, on détermine d'une part la capacité thermique massique à pression constante à l'aide d'une méthode analytique et d'autre part la diffusivité thermique longitudinale par méthode inverse, ce qui nous permet d'estimer la conductivité thermique. Dans les deux cas, la difficulté liée aux échelles micrométriques et aux très hautes températures se répercute sur l'expérimentation, sur les modélisations et sur le développement de méthodes d'identifications.
107

Comportement à haute température des bétons à haute performance évolution des principales propriétés mécaniques

Gaweska, Izabela 11 1900 (has links) (PDF)
Le travail présenté vise une meilleure compréhension des phénomènes mis en jeu lors de l'exposition à haute température des bétons à haute performance. Nous nous sommes plus particulièrement intéressés au comportement mécanique. La première partie de ce document présente une synthèse des travaux réalisés sur l'évolution des propriétés physiques et mécaniques des bétons soumis à haute température. Les résultats présents dans la littérature sont variés, parfois contradictoires et confus notamment ceux concernant l'évolution des propriétés mécaniques au cours de l'échauffement. Les évolutions de la résistance en compression, résistance en traction et module d'élasticité sont présentés en fonction des différents paramètres influençant ces comportements. L'influence des conditions de réalisation des essais est notamment discutée. En outre, le comportement au feu est abordé sous l'angle du phénomène de l'écaillage. Nous présentons ainsi le rôle des fibres polypropylène, un moyen efficace de réduire les risques d'apparition du comportement explosif. La deuxième partie, consacrée à l'étude expérimentale. Dans cette partie nous exposons les matériaux testés, leurs compositions et les constituants utilisés, ainsi que la fabrication de ces matériaux et leur conservation. Ensuite nous présentons le banc d'essais développé, permettant de tester le comportement mécanique à chaud des bétons. Ce nouveau dispositif expérimental spécifique et relativement complexe, a été spécialement mis au point afin de réaliser l'étude de la déformation thermique libre, de la déformation thermique sous charge mécanique, et du comportement en compression et en traction à chaud. Les résultats expérimentaux obtenus, sont ensuite présentés et discutés. La majeure partie de cette étude a été consacrée à l'établissement des relations entre le comportement mécanique et la température des différents types de béton. La résistance en compression et le module d'élasticité varient non seulement avec la température d'exposition du matériau, mais aussi avec le scénario d'échauffement (vitesse de montée en température, essais à chaud/après refroidissement, etc.). Dans les observations que nous avons réalisé, l'influence du rapport E/C des bétons testés a été étudiée ainsi que l'influence de l'ajout des fibres polypropylène sur les propriétés mécanique des BHP testés à chaud. Les observations de l'évolution des propriétés mécaniques réalisées nous ont permis de constater que les résultats du comportement à haute température sont fortement influencés par la présence de l'eau dans le matériau, surtout dans la gamme de températures jusqu'à 300°C. En complément de l'étude du comportement en compression, nous avons étudié la possibilité de réalisation des essais de traction directe sur le matériau béton "à chaud". Diverses solutions ont été envisagées et testées, afin de retenir la technique plus adaptée à nos besoins. Les premiers résultats sont très prometteurs. Il faut souligner que le nombre d'études expérimentales du comportement en traction directe "à chaud" est extrêmement faible. Une grande partie de la recherche a été consacrée à l'étude de la déformation thermique transitoire (DTT). Ce comportement, encore mal connu et souvent controversé, appelé "fluage thermique transitoire" a été étudié sur trois bétons à haute performance (BHP) et un béton ordinaire (BO). Parmi les paramètres influençant la DTT nous pouvons citer: le taux de chargement, l'histoire du chargement thermo mécanique, la vitesse de montée an température ou la teneur en eau du béton. De plus, nous avons étudié de l'existence du phénomène de la DTT sous charge mécanique en traction.
108

Modélisation du comportement thermique de l'homme et de son habitat. Une approche de l'étude du confort

Thellier, Françoise 11 July 1989 (has links) (PDF)
la modélisation de l'habitat ne peut plus se limiter à la détermination des paramètres physique d'une ambiance, mais doit s'étendre à l'étude de leurs effets sur le corps. Un modèle mathématique de thermorégulation humaine a été inséré dans le logiciel de simulation de l'habitat TRNSYS. il fournit des données caractérisant l'état thermique global et local du sujet (température depeau, ..) et des réactions physiologiques ( sudation, frissons, ...). La détermination des grandeurs physiques permet une analyse des interactions entre l'habitant et son habitat dans des situations complexes, en vue d'une approche de l'étude du confort thermique et/ou des inconfort locaux.
109

Thermal radiation at the nanoscale : Near-field and interference effects in few-layer structures and on the electrical performances of thermophotovoltaic devices / Rayonnement thermique à l’échelle nanométrique : Effets de champ proche et d’interférences dans les structures multicouches et sur les performances électriques des cellules thermophotovoltaïques

Blandre, Etienne 14 October 2016 (has links)
Ce manuscrit traite du rayonnement thermique à l’échelle nanométrique et du contrôle de l’échange d’énergie radiative entre deux corps, afin d’augmenter les performances de conversion énergétique des systèmes thermophotovoltaïques (TPV). Les bases du rayonnement thermique et de la conversion photovoltaïque sont tout d’abord rappelées. Les flux rayonnés par des émetteurs multicouches supportant des phénomènes d’interférence sont ensuite calculés numériquement. Ces phénomènes permettent de contrôler le spectre d’émission et donc l’optimisation d’un émetteur sélectif pour des applications TPV. Il s’avère important de prendre en compte l’évolution en température des propriétés optiques des matériaux constituant l’émetteur. Il est démontré que le contrôle des phénomènes d’interférences au sein des structures multicouches sur substrat métallique permet d’obtenir des émissivités spectrale et totale hémisphérique 20 fois supérieures à celles du substrat seul. Le chapitre suivant est dédié au rayonnement thermique en champ proche entre un émetteur semi-infini et une couche mince. Cette configuration est proche d’un système TPV, où l’émetteur semi-infini peut être assimilé au corps rayonnant, et le film à une cellule PV. Différent phénomènes sont analysés : le comportement des résonances de polaritons de surface, l’absorption spatiale de la puissance radiative en champ proche et les phénomènes d’interférences dans le régime de transition champ proche-champ lointain. Ces phénomènes peuvent être mis à profit pour la conception de spectres optimisés. Dans le dernier chapitre, les performances de systèmes TPV en champ proche (TPV-CP) sont simulées numériquement à l’aide d’un code couplé transport des charges-rayonnement. Les modèles basés sur l’hypothèse de faible injection utilisés généralement pour simplifier le problème du transport des charges électriques dans la cellule PV sont évalués en détails. Différentes architectures de cellules permettant d’optimiser les performances du système sont présentées en conclusion. Ces travaux offrent un nouvel éclairage sur le rayonnement des structures multicouches et leur application à la conversion thermophotovoltaïque. / This thesis deals with thermal radiation at nanoscale in order to increase the energy conversion performances of thermophotovoltaic systems (TPV) The basics of thermal radiation and of photovoltaic energy conversion are recalled first. The flux radiated by few-layers emitters supporting interference phenomena are then calculated numerically. These phenomena allows controlling the emission spectrum, and thus the optimization of a selective emitter for TPV application. The next chapter is dedicated to near-field thermal radiation between a semi-infinite emitter and a flat film. This configuration is close to a TPV system, where the semi-infinite emitter can be related to the radiating body, and the film to the photovoltaic device. Different phenomena are analyzed: the behavior of the surface polariton resonances, the spatiale absorption of the radiative power and the interference phenomena in the near-to-far field transition regime. These phenomena can be used to design optimal spectra. In the last chapter, the performances of TPV system under near-field regime (NFR-TPV) are numerically simulated with a coupled charge transport/thermal radiation code. The models based on the low-injection approximation commonly used to simplify the charge transport problem inside the PV device are evaluated in details. Several cell architectures optimizing the performances of the system are then presented. All these results shed new light on thermal radiation of multilayers and their application to thermophotovoltaic conversion.
110

Etude du confort thermique dans l'habitat par des procédés géo-héliothermiques / Study of the thermal comfort in building by geo- solar thermal processes

Benzaama, Mohammed Hichem 14 May 2017 (has links)
Ce travail s'inscrit dans le cadre de la recherche des solutions d’économie d'énergie du bâtiment tout en utilisant des sources naturelles et renouvelables (Energie solaire pour le chauffage et la géothermie pour le rafraîchissement). Il est nul besoin de rappeler que l'Algérie dispose d'un potentiel énergétique hélio géothermique important. Dans ce travail de thèse on s'intéresse particulièrement à l'étude du confort thermique (hiver et été) dans l'habitat alimenté par un plancher hydraulique réversible. Pour mener à bien cette étude, nous disposons d'un gisement solaire important d'une part et d'autre part d'un dispositif expérimental à échelle réelle. Une pièce munie d'un plancher hydraulique réversible (chauffant ou rafraichissant) est instrumentée. Une citerne de stockage enfuie à quelques mètres de la surface du sol afin de bénéficier du rafraichissement géothermique. Un service d'asservissement permettant la régulation du système en fonctionnement mode chauffage ou mode rafraichissement. Plusieurs sondes de mesures reliées à une station d'acquisition qui est reliée à un ordinateur permettent le suivi des évolutions de températures. La modélisation de la structure de l'enveloppe de la cellule et l'évolution de la température de l'air intérieur et celle des parois sont réalisées sous le logiciel TRNSYS. A l'aide des résultats obtenus par TRNSYS, logiciel FLUENT nous a permis de modéliser la tache solaire et son influence sur le plancher chauffant sous les conditions climatiques de la ville d'Oran.Après validation, la simulation numérique est utilisée pour étudier le comportement thermique de la cellule, les performances énergétiques du plancher réversible et le calcul des économies d'énergie que l'on pourrait réaliser avec de tels systèmes. / This work is part of the search for energy saving solutions in the building industry while using natural and renewable sources, such as solar energy for heating and geothermal energy for refreshment. There is no need to recall that Algeria has a very large geothermal gravitational energy potential in view of its geographical position.In this thesis work, we are particularly interested in the study of thermal comfort in the case of a housing powered with a reversible hydraulic floor (heating and cooling).To carry out this study, as we can see Algeria have an important solar field and on the other hand we use an experimental system representing a real scale local. To do this, a room with a reversible hydraulic floor (heated or refreshing) is instrumented. A storage tank buried in the ground at few meters from the ground surface is used for thegeothermal refreshment during the warm periods. A service system allows us to regulate the system in heating or cooling mode. Several measuring probes used are connected to an acquisition station which is connected to a computer for monitoring of temperature évolutions.The modeling of the structure of the cell envelope is carried out under the TRNSYS software. With this, we have access to evolutions of the temperatures of the indoor air and to that of the walls. These results obtained by TRNSYS are used in a second step as input data for the FLUENT software. This allows us to model the solar spot and its influence on the heating floor under the climatic conditions of the city of Oran.After validation, numerical simulation is used to study the thermal behavior of the cell, the energy performance of the reversible floor and the calculation of the energy savings that could be achieved with such systems.

Page generated in 0.0473 seconds