Spelling suggestions: "subject:"deoria bayesiana"" "subject:"deoria bayesianas""
141 |
Aplicação de modelos gráficos probabilísticos computacionais em economiaColla, Ernesto Coutinho 29 June 2009 (has links)
Made available in DSpace on 2010-04-20T20:56:57Z (GMT). No. of bitstreams: 4
Ernesto_Colla.pdf.jpg: 21014 bytes, checksum: 4f059b37f39662752479b4c41e7d0ccd (MD5)
Ernesto_Colla.pdf.txt: 293178 bytes, checksum: bbca88752988b32a6da9e503e9fbe5cf (MD5)
license.txt: 4810 bytes, checksum: 4ca799e651215ccf5ee1c07a835ee897 (MD5)
Ernesto_Colla.pdf: 1784465 bytes, checksum: 7c45a00d36db536ce2c8e1eff4a23b6b (MD5)
Previous issue date: 2009-06-29T00:00:00Z / We develop a probabilistic model using Machine Learning tools to classify the trend of the Brazilian country risk expressed EMBI+ (Emerging Markets Bond Index Plus). The main goal is verify if Machine Learning is useful to build economic models which could be used as reasoning tools under uncertainty. Specifically we use Bayesian Networks to perform pattern recognition in observed macroeconomics and financial data. The results are promising. We get the main expected theoretical relationship between country risk and economic variables, as well as international economic context and market expectations. / O objetivo deste trabalho é testar a aplicação de um modelo gráfico probabilístico, denominado genericamente de Redes Bayesianas, para desenvolver modelos computacionais que possam ser utilizados para auxiliar a compreensão de problemas e/ou na previsão de variáveis de natureza econômica. Com este propósito, escolheu-se um problema amplamente abordado na literatura e comparou-se os resultados teóricos e experimentais já consolidados com os obtidos utilizando a técnica proposta. Para tanto,foi construído um modelo para a classificação da tendência do 'risco país' para o Brasil a partir de uma base de dados composta por variáveis macroeconômicas e financeiras. Como medida do risco adotou-se o EMBI+ (Emerging Markets Bond Index Plus), por ser um indicador amplamente utilizado pelo mercado.
|
142 |
Desenvolvendo o conceito de redes bayesianas na construção de cenários prospectivosFischer, Ricardo Balieiro 26 March 2010 (has links)
Submitted by Marcia Bacha (marcia.bacha@fgv.br) on 2011-05-06T18:11:59Z
No. of bitstreams: 1
1417127.pdf: 5400521 bytes, checksum: b6ddcc4cf2fe2855e50cb7bc0be5c242 (MD5) / Approved for entry into archive by Marcia Bacha(marcia.bacha@fgv.br) on 2011-05-06T18:12:06Z (GMT) No. of bitstreams: 1
1417127.pdf: 5400521 bytes, checksum: b6ddcc4cf2fe2855e50cb7bc0be5c242 (MD5) / Approved for entry into archive by Marcia Bacha(marcia.bacha@fgv.br) on 2011-05-06T18:12:15Z (GMT) No. of bitstreams: 1
1417127.pdf: 5400521 bytes, checksum: b6ddcc4cf2fe2855e50cb7bc0be5c242 (MD5) / Made available in DSpace on 2011-05-06T18:12:24Z (GMT). No. of bitstreams: 1
1417127.pdf: 5400521 bytes, checksum: b6ddcc4cf2fe2855e50cb7bc0be5c242 (MD5)
Previous issue date: 2010-03-26 / A incerteza é o principal elemento do futuro. Desde os primórdios, o homem busca métodos para estruturar essas incertezas futuras e assim poder guiar suas ações. Apenas a partir da segunda metade do século XX, porém, quando os métodos projetivos e preditivos já não eram mais capazes de explicar o futuro em um ambiente mundial cada vez mais interligado e turbulento, é que nasceram os primeiros métodos estruturados de construção de cenários. Esses métodos prospectivos visam lançar a luz sobre o futuro não para projetar um futuro único e certo, mas para visualizar uma gama de futuros possíveis e coerentes. Esse trabalho tem como objetivo propor uma nova abordagem à construção de cenários, integrando o Método de Impactos Cruzados à Análise Morfológica, utilizando o conceito de Rede Bayesianas, de fonna a reduzir a complexidade da análise sem perda de robustez. Este trabalho fará uma breve introdução histórica dos estudos do futuro, abordará os conceitos e definições de cenários e apresentará os métodos mais utilizados. Como a abordagem proposta pretende-se racionalista, será dado foco no Método de Cenários de Michel Godet e suas ferramentas mais utilizadas. Em seguida, serão apresentados os conceitos de Teoria dos Grafos, Causalidade e Redes Bayesianas. A proposta é apresentada em três etapas: 1) construção da estrutura do modelo através da Análise Estrutural, propondo a redução de um modelo inicialmente cíclico para um modelo acíclico direto; 2) utilização da Matriz de Impactos Cruzados como ferramenta de alimentação, preparação e organização dos dados de probabilidades; 3) utilização da Rede Bayesiana resultante da primeira etapa como subespaço de análise de uma Matriz Morfológica. Por último, um teste empírico é realizado para comprovar a proposta de redução do modelo cíclico em um modelo acíclico.
|
143 |
Aplicações em meta-análise sob um enfoque bayesiano usando dados médicos.Pissini, Carla Fernanda 21 March 2006 (has links)
Made available in DSpace on 2016-06-02T20:06:11Z (GMT). No. of bitstreams: 1
DissCFP.pdf: 956101 bytes, checksum: e21a11e1dc4754a5751b0b0840943082 (MD5)
Previous issue date: 2006-03-21 / Financiadora de Estudos e Projetos / In this work, we consider the use of Meta-analysis with a Bayesian approach. Meta-analysis is a statistical technique that combines the results of di¤erent independent studies with purpose to find general conclusions. This term was introduced by Glass (1976) and it has been used when the number of studies about some research project is small. Usually, the models for Meta-analysis assume a large number of parameters and the Bayesian approach using MCMC (Markov Chain Monte Carlo) methods is a good alternative to combine information of independent studies, to obtain accutrate inferences about a specified treatment. As illustration, we consider real medical data sets on di¤erent studies, in which, we consider fixed and random e¤ects models. We also assume mixture of normal distributions for the error of the models. Another application is considered with
educational data. / Neste trabalho, consideramos o uso de Meta-análise sob um enfoque Bayesiano. Meta-análise é uma técnica estatística que combina resultados de diversos estudos in-dependentes, com o propósito de descrever conclusões gerais. Este termo foi introduzido por Glass (1976) usado quando o número de estudos sobre alguma pesquisa científica é pequeno. Os modelos propostos para Meta-análise usualmente assumem muitos parâmetros e o enfoque Bayesiano com MCMC (Monte Carlo em Cadeias de Markov) é uma alternativa apropriada para combinar informações de estudos independentes. O uso de modelos Bayesianos hierárquicos permite combinações de vários estudos independentes, para a obtenção de inferências precisas sobre um determinado tratamento. Como ilustração numérica consideramos conjuntos de dados médicos de diferentes estudos e, na análise, utilizamos modelos de efeitos fixos e aleatórios e mistura de distribuições normais para o erro do modelo de regressão. Em uma outra aplicação relacionamos Meta-análise e Educação, através do efeito da espectativa do professor associada ao QI dos estudantes.
|
144 |
Estimação de parâmetros genéticos de produção de leite e de gordura da raça Pardo-suíça, utilizando metodologias freqüentista e bayesiana / Estimation of genetic parameters of milk and fat yield of Brown-Swiss cows using frequentist and bayesian methodologiesYamaki, Marcos 31 July 2006 (has links)
Made available in DSpace on 2015-03-26T13:55:08Z (GMT). No. of bitstreams: 1
texto completo.pdf: 905318 bytes, checksum: 167ccc3c1b47051e3ce28eb0224bed43 (MD5)
Previous issue date: 2006-07-31 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / First lactation data of 6.262 Brown-Swiss cows from 311 herds, daughters of 803 sires with calving between 1980 and 2003 were used to estimate genetic parameters for milk and fat production traits. The components of variance were estimated by restricted maximum likelihood (REML) and bayesian methods, using animal model with uni and two-traits analisys . The estimation by REML was obtained with the software MTDFREML (BOLDMAN et al. 1995) testing unitrait models with different effects to covariables and considering contemporary group and season as fixed effect. The best fitting obtained on unitrait analisys were used on two-trait analisys. The estimative of additive variance was reduced when lactation length was included on the model suggesting that the animals were been fitted to the same base on the capacity of transmit a longer or shorter lactation length to the progeny. Therefore, fitting to this covariable is not recommended. On the other side, the age of calving has linearly influenced milk and fat production. The heritability estimates were 0,26 and 0,25 to milk and fat yield respectively with genetic correlation of 0,95. the high correlation among these traits suggests that part of genes that acts on milk yield also respond to fat yield, in such way that selection for milk yield results, indirectly, in increase on fat yield. The estimation by Bayesian inference was made on software MTGSAM (VAN TASSELL E VAN VLECK, 1995). Chain lengths were tested to obtain the marginal posterior densities of unitrait analisys, the best option of chain length, burn-in and sampling interval was used on two-trait analisys. The burn-in periods were tested with the software GIBANAL (VAN KAAM, 1998) witch analysis inform a sampling interval for each burn-in tested, the criteria for choosing the sampling interval was made with the serial correlation resulting by burn-in and sampling process. The heritability estimates were 0,33 ± 0,05 for both traits with genetic correlation of 0,95. Similar results were obtained on studies using the same methodology on first lactation records. The stationary phase adequately reached with a 500.000 chain length and 30.000 burn-in iteractions. / Dados de primeira lactação de 6.262 vacas distribuídas em 311 rebanhos, filhas de 803 touros com partos entre os anos de 1980 e 2003 foram utilizados para estimar de componentes de variância para as características de produção de leite e gordura com informações de primeira lactação, em animais da raça Pardo-Suíça. Os componentes de variância foram estimados pelo método da máxima verossimilhança restrita (REML) e Bayesiano, sob modelo animal, por meio de análises uni e bicaracterística. A estimação realizada via REML foi obtida com o programa MTDFREML (BOLDMAN et al. 1995) testando modelos unicaracterística com diferentes efeitos para as covariáveis e considerados grupo contemporâneo e estação como efeitos fixos. Os melhores ajustes obtidos nas analises unicaracterística foram utilizados na análise bicaracterística. A duração da lactação reduziu a estimativa da variância aditiva quando era utilizada no modelo sugerindo que os animais estariam sendo corrigidos para uma mesma base quanto à capacidade de imprimir duração da lactação mais longa ou mais curta à progênie sendo, portanto, não recomendado o ajuste para esta covariável. Já a idade da vaca ao parto, influenciou linearmente a produção de leite e gordura. As herdabilidades estimadas foram 0,26 e 0,25 para produção de leite e gordura respectivamente com correlação genética de 0,95. A alta correlação entre a produção de leite e gordura obtida sugere que parte dos genes que atuam na produção de leite também responde pela produção de gordura, de tal forma que a seleção para a produção de leite resulta, indiretamente, em aumentos na produção de gordura. A estimação via inferência Bayesiana foi realizada com o programa MTGSAM (VAN TASSELL E VAN VLECK, 1995). Foram testados diversos tamanhos de cadeia para a obtenção das densidades marginais a posteriori das análises unicaracterística, a melhor proposta para o tamanho de cadeia, burn-in e amostragem foi utilizada para a análise bicaracterística. Os períodos de burn-in foram testados pelo programa GIBANAL (VAN KAAM, 1998) cujas análises fornecem um intervalo de amostragem para cada burn-in testado, o critério de escolha do intervalo de amostragem foi feito de acordo com a correlação serial, resultante do burn-in e do processo de amostragem. As estimativas de herdabilidade obtidas foram 0,33 ± 0,05 para ambas as características com correlação de 0,95. Resultados similares foram obtidos em estudos utilizando a mesma metodologia em informações de primeira lactação. A fase estacionária foi adequadamente atingida com uma cadeia de 500.000 iterações e descarte inicial de 30.000 iterações.
|
145 |
Definição automática de classificadores fuzzy probabilísticos / Automatic design of probabilistic fuzzy classifiersMelo Jr., Luiz Ledo Mota 18 September 2017 (has links)
CNPq / Este trabalho apresenta uma abordagem para a definição automática de bases de regras em Classificadores Fuzzy Probabilísticos (CFPs), um caso particular dos Sistemas Fuzzy Probabilísticos. Como parte integrante deste processo, são utilizados métodos de redução de dimensionalidade como: análise de componentes principais e discriminante de Fisher. Os algoritmos de agrupamento testados para particionar o universo das variáveis de entrada do sistema são Gustafson-Kessel, Supervised Fuzzy Clustering ambos já consolidados na literatura. Adicionalmente, propõe-se um novo algoritmo de agrupamento denominado Gustafson-Kessel com Ponto Focal como parte integrante do projeto automático de CFPs. A capacidade deste novo algoritmo em identificar clusters elipsoidais e não elipsoidais também é avaliada neste trabalho. Em dados altamente correlacionados ou totalmente correlacionados ocorrem problemas na inversão da matriz de covariância fuzzy. Desta forma, um método de regularização é necessário para esta matriz e um novo método está sendo proposto neste trabalho.Nos CFPs considerados, a combinação de antecedentes e consequentes fornece uma base de regras na qual todos os consequentes são possíveis em uma regra, cada um associado a uma medida de probabilidade. Neste trabalho, esta medida de probabilidade é calculada com base no Teorema de Bayes que, a partir de uma função de verossimilhança, atualiza a informação a priori de cada consequente em cada regra. A principal inovação é o cálculo da função de verossimilhança que se baseia no conceito de “região Ideal” de forma a melhor identificar as probabilidades associadas aos consequentes da regra. Os CFPs propostos são comparados com classificadores fuzzy-bayesianos e outros tradicionais na área de aprendizado de máquina considerando conjuntos de dados gerados artificialmente, 30 benchmarks e também dados extraídos diretamente de problemas reais como detecção de falhas em rolamentos de máquinas industriais. Os resultados dos experimentos mostram que os classificadores fuzzy propostos superam, em termos de acurácia, os classificadores fuzzy-bayesianos considerados e alcançam resultados competitivos com classificadores não-fuzzy tradicionais usados na comparação. Os resultados também mostram que o método de regularização proposto é uma alternativa para a técnica de agrupamento Gustafson-Kessel (com ou sem ponto focal) quando se consideram dados com alta correção linear. / This work presents a new approach for the automatic design of Probabilistic Fuzzy Classifiers (PFCs), which are a special case of Probabilistic Fuzzy Systems. As part of the design process we consider methods for reducing the dimensionality like the principal component analysis and the Fisher discriminant. The clustering methods tested for partitioning the universe of input variables are Gustafson-Kessel and Supervised Fuzzy Clustering, both consolidated in the literature. In addition, we propose a new clustering method called Gustafson-Kessel with Focal Point as part of the automatic design of PFCs. We also tested the capacity of this method to deal with ellipsoidal and non-ellipsoidal clusters. Highly correlated data represent a challenge to fuzzy clustering due to the inversion of the fuzzy covariance matrix. Therefore, a regularization method is necessary for this matrix and a new one is proposed in this work. In the proposed PFCs, the combination of antecedents and consequents provides a rule base in which all consequents are possible, each one associated with a probability measure. In this work, the probability is calculated based on the Bayes Theorem by updating, through the likelihood function, a priori information concerning every consequent in each rule. The main innovation is the calculus of the likelihood functions which is based on the “ideal region” concept, aiming to improve the estimation of the probabilities associated with rules’ consequents. The proposed PFCs are compared with fuzzy-bayesian classifiers and other ones traditional in machine learning over artificial generated data, 30 different benchmarks and also on data directly extracted from real world like the problem of detecting bearings fault in industrial machines. Experiments results show that the proposed PFCs outperform, in terms of accuracy, the fuzzy-bayesian approaches and are competitive with the traditional non-fuzzy classifiers used in the comparison. The results also show that the proposed regularization method is an alternative to the Gustafson-Kessel clustering technique (with or without focal point) when using linearly correlated data.
|
146 |
Definição automática de classificadores fuzzy probabilísticos / Automatic design of probabilistic fuzzy classifiersMelo Jr., Luiz Ledo Mota 18 September 2017 (has links)
CNPq / Este trabalho apresenta uma abordagem para a definição automática de bases de regras em Classificadores Fuzzy Probabilísticos (CFPs), um caso particular dos Sistemas Fuzzy Probabilísticos. Como parte integrante deste processo, são utilizados métodos de redução de dimensionalidade como: análise de componentes principais e discriminante de Fisher. Os algoritmos de agrupamento testados para particionar o universo das variáveis de entrada do sistema são Gustafson-Kessel, Supervised Fuzzy Clustering ambos já consolidados na literatura. Adicionalmente, propõe-se um novo algoritmo de agrupamento denominado Gustafson-Kessel com Ponto Focal como parte integrante do projeto automático de CFPs. A capacidade deste novo algoritmo em identificar clusters elipsoidais e não elipsoidais também é avaliada neste trabalho. Em dados altamente correlacionados ou totalmente correlacionados ocorrem problemas na inversão da matriz de covariância fuzzy. Desta forma, um método de regularização é necessário para esta matriz e um novo método está sendo proposto neste trabalho.Nos CFPs considerados, a combinação de antecedentes e consequentes fornece uma base de regras na qual todos os consequentes são possíveis em uma regra, cada um associado a uma medida de probabilidade. Neste trabalho, esta medida de probabilidade é calculada com base no Teorema de Bayes que, a partir de uma função de verossimilhança, atualiza a informação a priori de cada consequente em cada regra. A principal inovação é o cálculo da função de verossimilhança que se baseia no conceito de “região Ideal” de forma a melhor identificar as probabilidades associadas aos consequentes da regra. Os CFPs propostos são comparados com classificadores fuzzy-bayesianos e outros tradicionais na área de aprendizado de máquina considerando conjuntos de dados gerados artificialmente, 30 benchmarks e também dados extraídos diretamente de problemas reais como detecção de falhas em rolamentos de máquinas industriais. Os resultados dos experimentos mostram que os classificadores fuzzy propostos superam, em termos de acurácia, os classificadores fuzzy-bayesianos considerados e alcançam resultados competitivos com classificadores não-fuzzy tradicionais usados na comparação. Os resultados também mostram que o método de regularização proposto é uma alternativa para a técnica de agrupamento Gustafson-Kessel (com ou sem ponto focal) quando se consideram dados com alta correção linear. / This work presents a new approach for the automatic design of Probabilistic Fuzzy Classifiers (PFCs), which are a special case of Probabilistic Fuzzy Systems. As part of the design process we consider methods for reducing the dimensionality like the principal component analysis and the Fisher discriminant. The clustering methods tested for partitioning the universe of input variables are Gustafson-Kessel and Supervised Fuzzy Clustering, both consolidated in the literature. In addition, we propose a new clustering method called Gustafson-Kessel with Focal Point as part of the automatic design of PFCs. We also tested the capacity of this method to deal with ellipsoidal and non-ellipsoidal clusters. Highly correlated data represent a challenge to fuzzy clustering due to the inversion of the fuzzy covariance matrix. Therefore, a regularization method is necessary for this matrix and a new one is proposed in this work. In the proposed PFCs, the combination of antecedents and consequents provides a rule base in which all consequents are possible, each one associated with a probability measure. In this work, the probability is calculated based on the Bayes Theorem by updating, through the likelihood function, a priori information concerning every consequent in each rule. The main innovation is the calculus of the likelihood functions which is based on the “ideal region” concept, aiming to improve the estimation of the probabilities associated with rules’ consequents. The proposed PFCs are compared with fuzzy-bayesian classifiers and other ones traditional in machine learning over artificial generated data, 30 different benchmarks and also on data directly extracted from real world like the problem of detecting bearings fault in industrial machines. Experiments results show that the proposed PFCs outperform, in terms of accuracy, the fuzzy-bayesian approaches and are competitive with the traditional non-fuzzy classifiers used in the comparison. The results also show that the proposed regularization method is an alternative to the Gustafson-Kessel clustering technique (with or without focal point) when using linearly correlated data.
|
147 |
Modelos de processo de Poisson não-homogêneo na presença de um ou mais pontos de mudança, aplicados a dados de poluição do ar / Non-homogeneous Poisson process in the presence of one or more change-points, an application to air pollution dataVicini, Lorena 06 December 2012 (has links)
Orientadores: Luiz Koodi Hotta, Jorge Alberto Achcar / Tese (doutorado) ¿ Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T14:22:26Z (GMT). No. of bitstreams: 1
Vicini_Lorena_D.pdf: 75122511 bytes, checksum: 796c27170036587b321bbe88bc0d369e (MD5)
Previous issue date: 2012 / Resumo: A poluição do ar é um problema que tem afetado várias regiões ao redor do mundo. Em grandes centros urbanos, como é esperado, a concentração de poluição do ar é maior. Devido ao efeito do vento, no entanto, este problema não se restringe a esses centros, e consequentemente a poluição do ar se espalha para outras regiões. Os dados de poluição do ar são modelados por processos de Poisson não-homogêneos (NHPP) em três artigos: dois usando métodos Bayesianos com Markov Chain Monte Carlo (MCMC) para dados de contagem, e um usando análise de dados funcionais. O primeiro artigo discute o problema da especificação das distribuições a priori, incluindo a discussão de sensibilidade e convergência das cadeias MCMC. O segundo artigo introduz um modelo incluindo pontos de mudança para NHPP com a função taxa modelada por uma distribuição gama generalizada, usando métodos Bayesianos. Modelos com e sem pontos de mudança foram considerados para fins de comparação. O terceiro artigo utiliza análise de dados funcionais para estimar a função taxa de um NHPP. Esta estimação é feita sob a suposição de que a função taxa é contínua, mas com um número finito de pontos de descontinuidade na sua primeira derivada, localizados exatamente nos pontos de mudança. A função taxa e seus pontos de mudança foram estimadas utilizando suavização splines e uma função de penalização baseada nos candidatos a pontos de mudança. Os métodos desenvolvidos neste trabalho foram testadas através de simulações e aplicados a dados de poluição de ozônio da Cidade do México, descrevendo a qualidade do ar neste centro urbano. Ele conta quantas vezes, em um determinado período, a poluição do ar excede um limiar especificado de qualidade do ar, com base em níveis de concentração de ozônio. Observou-se que quanto mais complexos os modelos, incluindo os pontos de mudança, melhor foi o ajuste / Abstract: Air pollution is a problem that is currently affecting several regions around the world. In major urban centers, as expected, the concentration of air pollution is higher. Due to wind effect, however, this problem does not remain constrained in such centers, and air pollution spreads to other regions. In the thesis the air pollution data is modeled by Non-Homogeneous Poisson Process (NHPP) in three papers: two using Bayesian methods with Markov Chain Monte Carlo (MCMC) for count data, and one using functional data analysis. Paper one discuss the problem of the prior specification, including discussion of the sensitivity and convergence of the MCMC chains. Paper two introduces a model including change point for NHPP with rate function modeled by a generalized gamma distribution, using Bayesian methods. Models with and without change points were considered for comparison purposes. Paper three uses functional data analysis to estimate the rate function of a NHPP. This estimation is done under the assumption that the rate function is continuous, but with a finite number of discontinuity points in its first derivative, exactly at the change-points. The rate function and its change-points were estimated using splines smoothing and a penalty function based on candidate change points. The methods developed in this work were tested using simulations and applied to ozone pollution data from Mexico City, describing the air quality in this urban center. It counts how many times, in a determined period, air pollution exceeds a specified threshold of air quality, based on ozone concentration levels. It was observed that the more complex the models, including change-points, the better the fitting / Doutorado / Estatistica / Doutor em Estatística
|
148 |
Métodos bayesianos em alocação de ativos: avaliação de desempenhoAtem, Guilherme Muniz 05 February 2013 (has links)
Submitted by Guilherme Atem (guiatem@gmail.com) on 2013-03-19T16:02:06Z
No. of bitstreams: 1
Dissertação - Guilherme Atem.pdf: 2045602 bytes, checksum: 3d2427a0fdd1376baf5c274252a390a2 (MD5) / Approved for entry into archive by Suzinei Teles Garcia Garcia (suzinei.garcia@fgv.br) on 2013-03-19T16:04:40Z (GMT) No. of bitstreams: 1
Dissertação - Guilherme Atem.pdf: 2045602 bytes, checksum: 3d2427a0fdd1376baf5c274252a390a2 (MD5) / Made available in DSpace on 2013-03-19T16:24:11Z (GMT). No. of bitstreams: 1
Dissertação - Guilherme Atem.pdf: 2045602 bytes, checksum: 3d2427a0fdd1376baf5c274252a390a2 (MD5)
Previous issue date: 2013-02-05 / Neste trabalho, comparamos algumas aplicações obtidas ao se utilizar os conhecimentos subjetivos do investidor para a obtenção de alocações de portfólio ótimas, de acordo com o modelo bayesiano de Black-Litterman e sua generalização feita por Pezier e Meucci. Utilizamos como medida de satisfação do investidor as funções utilidade correspondentes a um investidor disciplinado, isto é, que é puramente averso a risco, e outro que procura risco quando os resultados são favoráveis. Aplicamos o modelo a duas carteiras de ações que compõem o índice Ibovespa, uma que replica a composição do índice e outra composta por pares de posições long&short de ações ordinárias e preferenciais. Para efeito de validação, utilizamos uma análise com dados fora da amostra, dividindo os dados em períodos iguais e revezando o conjunto de treinamento. Como resultado, foi possível concluir que: i) o modelo de Black-Litterman não é suficiente para contornar as soluções de canto quando o investidor não é disciplinado, ao menos para o modelo utilizado; ii) para um investidor disciplinado, o P&L médio obtido pelos modelos de média-variância e de Black-Litterman é consideravelmente superior ao do benchmark para as duas carteiras; iii) o modelo de Black Litterman somente foi superior ao de média-variância quando a visão do investidor previu bem os resultados do mercado. / On this work, we compare results obtained when the investor chooses to use his subjective views on the market to calculate the allocation optimization of a given portfolio, according to the bayesian model of Black-Litterman (BLACK; LITTERMAN, 1992) and the generelization provided by Pezier (PEZIER, 2007) and Meucci (MEUCCI, 2008). As a measure of satisfaction of the investor, we use utility functions describing an investor with discipline that is always risk-averse and other function for an investor who seeks risk when the results are favourable. The model is applied to two portfolios consisting of stock from the Ibovespa index: one of them consists of all stocks from the index, with time horizon of half an year, and the other presents four long short positions betwen ordinary and preferential stocks and time horizon of one month. The results are validated with out of sample data, according to a 10-fold cross validation. As a result, we conclude that: i) the Black-Litterman model may not be enougth to avoid corner solutions when the investor has no discipline, according to our model; ii) both the Black-Litterman and the Mean-Variance models perform better then the benchmarks; iii) but the winner model depends on the forecast power of the investor views.
|
149 |
Estimação conjunta de atraso de tempo subamostral e eco de referência para sinais de ultrassom / Joint subsample time delay and echo template estimation for ultrasound signalsAntelo Junior, Ernesto Willams Molina 20 September 2017 (has links)
CAPES / Em ensaios não destrutivos por ultrassom, o sinal obtido a partir de um sistema de aquisição de dados real podem estar contaminados por ruído e os ecos podem ter atrasos de tempo subamostrais. Em alguns casos, esses aspectos podem comprometer a informação obtida de um sinal por um sistema de aquisição. Para lidar com essas situações, podem ser utilizadas técnicas de estimativa de atraso temporal (Time Delay Estimation ou TDE) e também técnicas de reconstrução de sinais, para realizar aproximações e obter mais informações sobre o conjunto de dados. As técnicas de TDE podem ser utilizadas com diversas finalidades na defectoscopia, como por exemplo, para a localização precisa de defeitos em peças, no monitoramento da taxa de corrosão em peças, na medição da espessura de um determinado material e etc. Já os métodos de reconstrução de dados possuem uma vasta gama de aplicação, como nos NDT, no imageamento médico, em telecomunicações e etc. Em geral, a maioria das técnicas de estimativa de atraso temporal requerem um modelo de sinal com precisão elevada, caso contrário, a localização dessa estimativa pode ter sua qualidade reduzida. Neste trabalho, é proposto um esquema alternado que estima de forma conjunta, uma referência de eco e atrasos de tempo para vários ecos a partir de medições ruidosas. Além disso, reinterpretando as técnicas utilizadas a partir de uma perspectiva probabilística, estendem-se suas funcionalidades através de uma aplicação conjunta de um estimador de máxima verossimilhança (Maximum Likelihood Estimation ou MLE) e um estimador máximo a posteriori (MAP). Finalmente, através de simulações, resultados são apresentados para demonstrar a superioridade do método proposto em relação aos métodos convencionais. / Abstract (parágrafo único): In non-destructive testing (NDT) with ultrasound, the signal obtained from a real data acquisition system may be contaminated by noise and the echoes may have sub-sample time delays. In some cases, these aspects may compromise the information obtained from a signal by an acquisition system. To deal with these situations, Time Delay Estimation (TDE) techniques and signal reconstruction techniques can be used to perform approximations and also to obtain more information about the data set. TDE techniques can be used for a number of purposes in the defectoscopy, for example, for accurate location of defects in parts, monitoring the corrosion rate in pieces, measuring the thickness of a given material, and so on. Data reconstruction methods have a wide range of applications, such as NDT, medical imaging, telecommunications and so on. In general, most time delay estimation techniques require a high precision signal model, otherwise the location of this estimate may have reduced quality. In this work, an alternative scheme is proposed that jointly estimates an echo model and time delays for several echoes from noisy measurements. In addition, by reinterpreting the utilized techniques from a probabilistic perspective, its functionalities are extended through a joint application of a maximum likelihood estimator (MLE) and a maximum a posteriori (MAP) estimator. Finally, through simulations, results are presented to demonstrate the superiority of the proposed method over conventional methods.
|
150 |
Seguro contra risco de downside de uma carteira: uma proposta híbrida frequentista-Bayesiana com uso de derivativosPérgola, Gabriel Campos 23 January 2013 (has links)
Submitted by Gabriel Campos Pérgola (gabrielpergola@gmail.com) on 2013-02-04T12:56:43Z
No. of bitstreams: 1
DissertationGabrielPergola2013.pdf: 521205 bytes, checksum: 85369078a82b0d5cc02f8248961e9214 (MD5) / Rejected by Suzinei Teles Garcia Garcia (suzinei.garcia@fgv.br), reason: Prezado Gabriel,
Não recebemos os arquivo em PDF.
Att.
Suzi 3799-7876 on 2013-02-05T18:53:00Z (GMT) / Submitted by Gabriel Campos Pérgola (gabrielpergola@gmail.com) on 2013-02-05T19:00:17Z
No. of bitstreams: 2
DissertationGabrielPergola2013.pdf: 521205 bytes, checksum: 85369078a82b0d5cc02f8248961e9214 (MD5)
DissertationGabrielPergola2013.pdf: 521205 bytes, checksum: 85369078a82b0d5cc02f8248961e9214 (MD5) / Approved for entry into archive by Suzinei Teles Garcia Garcia (suzinei.garcia@fgv.br) on 2013-02-05T19:07:12Z (GMT) No. of bitstreams: 2
DissertationGabrielPergola2013.pdf: 521205 bytes, checksum: 85369078a82b0d5cc02f8248961e9214 (MD5)
DissertationGabrielPergola2013.pdf: 521205 bytes, checksum: 85369078a82b0d5cc02f8248961e9214 (MD5) / Made available in DSpace on 2013-02-05T19:09:04Z (GMT). No. of bitstreams: 2
DissertationGabrielPergola2013.pdf: 521205 bytes, checksum: 85369078a82b0d5cc02f8248961e9214 (MD5)
DissertationGabrielPergola2013.pdf: 521205 bytes, checksum: 85369078a82b0d5cc02f8248961e9214 (MD5)
Previous issue date: 23-01-13 / Portfolio insurance allows a manager to limit downside risk while allowing participation in upside markets. The purpose of this dissertation is to introduce a framework to portfolio insurance optimization from a hybrid frequentist-Bayesian approach. We obtain the joint distribution of regular returns from a frequentist statistical method, once the outliers have been identified and removed from the data sample. The joint distribution of extreme returns, in its turn, is modelled by a Bayesian network, whose topology reflects the events that can significantly impact the portfolio performance. Once we link the regular and extreme distributions of returns, we simulate future scenarios for the portfolio value. The insurance subportfolio is then optimized by the Differential Evolution algorithm. We show the framework in a step by step example for a long portfolio including stocks participating in the Bovespa Index (Ibovespa), using market data from 2008 to 2012. / Seguros de carteiras proporcionam aos gestores limitar o risco de downside sem renunciar a movimentos de upside. Nesta dissertação, propomos um arcabouço de otimização de seguro de carteira a partir de um modelo híbrido frequentista-Bayesiano com uso de derivativos. Obtemos a distribuição conjunta de retornos regulares através de uma abordagem estatística frequentista, uma vez removidos os outliers da amostra. A distribuição conjunta dos retornos extremos, por sua vez, é modelada através de Redes Bayesianas, cuja topologia contempla os eventos que o gestor considera crítico ao desempenho da carteira. Unindo as distribuições de retornos regulares e extremos, simulamos cenários futuros para a carteira. O seguro é, então, otimizado através do algoritmo Evolução Diferencial. Mostramos uma aplicação passo a passo para uma carteira comprada em ações do Ibovespa, utilizando dados de mercado entre 2008 e 2012.
|
Page generated in 0.0544 seconds