Spelling suggestions: "subject:"théorie ees groupes"" "subject:"théorie ees troupes""
21 |
Un formalisme pour la traçabilité des transformationsLemoine, Mathieu 12 1900 (has links)
Dans le développement logiciel en industrie, les documents de
spécification jouent un rôle important pour la communication entre les analystes
et les développeurs. Cependant, avec le temps, les changements de personel et
les échéances toujours plus courtes, ces documents sont souvent obsolètes ou
incohérents avec l'état effectif du système, i.e., son code
source. Pourtant, il est nécessaire que les composants du système logiciel
soient conservés à jour et cohérents avec leurs documents de spécifications pour
faciliter leur développement et maintenance et, ainsi, pour en réduire les
coûts. Maintenir la cohérence entre spécification et code source nécessite de
pouvoir représenter les changements sur les uns et les autres et de pouvoir
appliquer ces changements de manière cohérente et automatique.
Nous proposons une solution permettant de décrire une représentation d'un
logiciel ainsi qu'un formalisme mathématique permettant de décrire et de
manipuler l'évolution des composants de ces représentations. Le formalisme est
basé sur les triplets de Hoare pour représenter les transformations et sur la
théorie des groupes et des homomorphismes de groupes pour manipuler ces
transformations et permettrent leur application sur les différentes
représentations du système.
Nous illustrons notre formalisme sur deux représentations d'un système logiciel
: PADL, une représentation architecturale de haut niveau (semblable à UML), et
JCT, un arbre de syntaxe abstrait basé sur Java. Nous définissons également des
transformations représentant l'évolution de ces représentations et la
transposition permettant de reporter les transformations d'une représentation
sur l'autre. Enfin, nous avons développé et décrivons brièvement une
implémentation de notre illustration, un plugiciel pour l'IDE Eclipse détectant
les transformations effectuées sur le code par les développeurs et un générateur
de code pour l'intégration de nouvelles représentations dans l'implémentation. / When developing software system in industry, system specifications are heavily
used in communication among analysts and developers. However, system evolution,
employee turn-over and shorter deadlines lead those documents either not to be
up-to-date or not to be consistent with the actual system source code. Yet,
having up-to-date documents would greatly help analysts and developers and
reduce development and maintenance costs. Therefore, we need to keep those
documents up-to-date and consistent.
We propose a novel mathematical formalism to describe and manipulate the
evolution of these documents. The mathematical formalism is based on Hoare
triple to represent the transformations and group theory and groups
homomorphisms to manipulate these transformations and apply them on different
representations.
We illustrate our formalism using two representation of a same system: PADL,
that is an abstract design specification (similar to UML), and JCT, that is an
Abstract Syntax Tree for Java. We also define transformations describing their
evolutions, and transformations transposition from one representation to
another. Finally, we provide an implementation of our illustration, a plugin for
the Eclipse IDE detecting source code transformations made by a developer and a
source code generator for integrating new representations in the implementation.
|
22 |
Graphes et marches aléatoiresDe Loynes, Basile 06 July 2012 (has links) (PDF)
L'étude des marches aléatoires fait apparaître des connexions entre leurs propriétés algébriques, géométriques ou encore combinatoires et leurs propriétés stochastiques. Si les marches aléatoires sur les groupes - ou sur des espaces homogènes - fournissent beaucoup d'exemples, il serait appréciable d'obtenir de tels résultats de rigidité sur des structures algébriques plus faibles telles celles de semi-groupoide ou de groupoide. Dans cette thèse il est considéré un exemple de semi-groupoide et un exemple de groupoide, tous les deux sont définis a partir de sous-graphes contraints du graphe de Cayley d'un groupe - le premier graphe est dirige alors que le second ne l'est pas. Pour ce premier exemple, on précise un résultat de Campanino et Petritis (ils ont montre que la marche aléatoire simple était transiente pour cet exemple de graphe dirigé) en déterminant la frontière de Martin associée à cette marche et établissant sa trivialité Dans le second exemple apparaissant dans ce manuscrit, on considère des pavages quasi-périodiques de l'espace euclidien obtenus à l'aide de la méthode de coupe et projection. Nous considérons la marche aléatoire simple le long des arêtes des polytopes constituant le pavage, et nous répondons a la question du type de celle-ci, c'est-à-dire nous déterminons si elle est récurrente ou transiente. Nous montrons ce résultat en établissant des inégalités isopérimétriques Cette stratégie permet d'obtenir des estimées de la vitesse de décroissance du noyau de la chaleur, ce que n'aurait pas permis l'utilisation d'un critère de type Nash-Williams.
|
23 |
Probabilités et géométrie dans certains groupes de type finiMathéus, Frédéric 25 November 2011 (has links) (PDF)
Dans de nombreux phénomènes régis par le hasard, le résultat de l'observation provient de la combinaison aléatoire d'événements élémentaires : le gain d'un joueur au jeu de pile ou face est le résultat de parties successives, mélanger un jeu de cartes s'effectue en plusieurs battages consécutifs, l'enchevêtrement d'une molécule d'ADN dans une cellule est le produit, entre autres, de croisements successifs. Ces événements élémentaires ont la particularité d'être réversibles (gagner/perdre au pile ou face, croiser/décroiser des brins d'ADN) et l'aléa régissant leur combinaison possède une certaine indépendance (l'issue d'une partie de pile ou face n'a a priori aucune influence sur la suivante). Un modèle possible pour ces phénomènes consiste à considérer un groupe G, fini ou dénombrable, que l'on munit d'une mesure de probabilité μ. On effectue des tirages successifs d'éléments dans G avec les hypothèses suivantes : les tirages sont indépendants, et, pour chaque tirage, μ(g) est la probabilité de tirer l'élément g. Si g1, g2,...,gn est le résul- tat de n tirages, on forme le produit g1.g2. ... . gn. C'est, par définition, la position à l'instant n de la marche aléatoire sur G de loi μ, et la question est : que peut-on dire du comportement asymptotique de g1.g2. ... .gn lorsque n augmente in- définiment ? La marche aléatoire s'en va-t'elle à l'infini ? Si oui, dans quelle direction ? Et à quelle vitesse ? Mes travaux depuis 2003 sont consacrés, pour l'essentiel, à l'étude du comportement asymptotique des marches aléatoires dans trois familles de groupes infinis, non abéliens et de type fini : les produits libres de groupes finis, les groupes d'Artin diédraux, ainsi que certaines extensions des groupes libres. Ils sont le fruit de collaborations avec Jean Mairesse (CNRS, Paris VI) et François Gautero (Université de Nice). Dans le cas des produits libres de groupes finis, nous décrivons précisément la mesure harmonique pour les marches aléatoires au plus proche voisin dans ces groupes, ce qui permet de calculer la vitesse et l'entropie asymptotique. En particulier, ces quantités dépendent de façon analytique des coefficients de μ. Considérant l'inégalité fondamentale de Yves Guivarc'h entre vitesse, entropie et croissance, nous montrons que les générateurs canoniques des produits libres de groupes finis sont extrémaux au sens de Vershik. Les groupes d'Artin diédraux forment une classe de groupes d'Artin qui généralise le groupe de tresses à trois brins B3 et pour laquelle nous donnons une description précise des géodésiques. La connaissance de la vitesse de fuite des marches aléatoires au plus proche voisin dans le groupe B3 est un premier outil de mesure de la complexité asymptotique d'une tresse aléatoire. Dans ce cas, on montre que la vitesse dépend de façon lipschitzienne mais non différentiable de μ, faisant apparaître certaines transitions de phase. Enfin, en ce qui concerne les extensions du groupe libre, nous montrons que, dans certains cas (comprenant notamment les extensions cycliques) les fonctions μ-harmoniques bornées sont entièrement décrites via le bord du groupe libre sous-jacent. La preuve repose sur l'existence d'actions non triviales de ces groupes sur des arbres réels, couplée à des critères généraux sur les compactifications des groupes développés par Vadim Kaimanovich.
|
24 |
Sur la géométrie et la combinatoire du groupe T de Thompson / Geometric and combinatorial aspects of Thompson's group TFossas, Ariadna 29 June 2012 (has links)
Cette thèse concerne le groupe T de Thompson. Ce groupe simple infini et finiment présenté est généralement vu comme un sous-groupe du groupe des homéomorphismes dyadiques du cercle unité qui sont linéaires par morceaux et préservent l'orientation («T linéaire par morceaux»). Cependant, T peut aussi être vu comme: 1.- le groupe des classes d'équivalence des paires équilibrées d'arbres binaires finis («T combinatoire»), 2.- un sous-groupe du groupe des homéomorphismes de la droite projective réelle qui préservent l'orientation et sont «PSL(2,Z) par morceaux» («T projectif par morceaux»), et 3.- le groupe modulaire asymptotique de l'épaissi, dans le plan hyperbolique, de l'arbre régulier de valence 3 («T modulaire»).On montre d'abord que la copie canonique de PSL(2,Z) obtenue à partir de «T projectif par morceaux» est un sous-groupe non distordu de T. Pour cela, on transporte ce sous-groupe pour obtenir une caractérisation dans le «T combinatoire», ce qui permet d'estimer la longueur des mots de ses éléments. La non-distorsion est alors une conséquence des propriétés métriques de T établies par Burillo-Cleary-Stein-Taback. Comme corollaire, T a des sous-groupes non distordus isomorphes au groupe libre engendré par deux éléments. Qui plus est, PSL(2,Z) est aussi donné explicitement sous forme «linéaire par morceaux».Le deuxième résultat utilise «T modulaire» pour prouver qu'il y a exactement f(n) classes de conjugaison d'éléments d'ordre n dans T, où f est l'indicatrice d'Euler. Étant donné un élément de torsion t de T d'ordre n, on trouve une triangulation du disque de Poincaré qui est invariante sous l'action de T sauf dans un polygone convexe à n côtés. On construit ensuite un complexe cellulaire C contractile et simplement connexe sur lequel le groupe T agit par automorphismes, et qui est minimal pour ces propriétés. Le groupe d'automorphismes de C est essentiellement T lui même (c'est une extension de T par le groupe d'ordre 2). Ce complexe cellulaire peut être vu comme une généralisation des associaèdres deStasheff dans le cas d'un polygone convexe à une infinité de côtés. L'action de T sur C est transitive sur les arêtes et les sommets, et plus généralement, sur les cellules «de type associaèdre» de toute dimension.La partie finale décrit les premières étapes d'un programme de recherche. On utilise l'interprétation géométrique du 1-squelette de C en termes de triangulations dyadiques du disque de Poincaré pour définir un bord géométrique à l'infini. Bien qu'on ait prouvé auparavant que le 1-squelette de C n'est pas hyperbolique, la construction s'inspire de celle de Gromov et permet la description de certains points du bord. / This PhD thesis is concerned with Thompson's group T. This infinite, finitely presented, simple group is usually seen as a subgroup of the group of dyadic, piecewise linear, orientation-preserving homeomorphisms of the unit circle (piecewise linear T). However, T can also be identified to: 1.- a group of equivalence classes of balanced pairs of finite binary trees (combinatorial T), 2.- a subgroup of piecewise PSL(2,Z), orientation-preserving homeomorphisms of the projective real line (piecewise projective T), and 3.- the asymptotic mapping class group of a fattened complete trivalent tree in the hyperbolic plane (modular T). The first result shows that the canonical copy of PSL(2,Z) obtained from the piecewise projective T is a non-distorted subgroup of T. For this, one carries over this subgroup to obtain a characterization into combinatorial T, from which the word length of its elements can be estimated. Then, non-distortion follows from the metric properties of T established by Burillo-Cleary-Stein-Taback. As a corollary, T has non-distorted subgroups isomorphic to the free non-abelian group of rank 2. Furthermore, PSL(2,Z) is also explicitly given in the piecewise linear form.The second result uses modular T to state that there are exactly f(n) conjugacy classes of elements of order n, where f is the Euler function. Given a torsion element t of T of order n, a dyadic triangulation of the Poincaré disc which is invariant under the action of t modulo a convex polygon with n sides is found.The third result constructs a minimal simply-connected contractible cellular complex C on which the group T acts by automorphisms. The automorphism group of C is essentially T itself (strictly speaking it is an extension of T by the group of order 2). The cellular complex C can be seen as a generalization of Stasheff's associahedra for an infinitely sided convex polygon. The action of T on C is transitive on vertices and edges and, plus generally, on associahedral type cells in all dimensions.The final part deals with the first steps of a research project. One uses the geometric interpretation of the 1-skeleton of C in term of dyadic triangulations of the Poincaré disc to define a geometric boundary at infinity. Although the 1-skeleton of C is proved not to be hyperbolic, the construction imitates Gromov's construction of the boundary of hyperbolic spaces, and allows the description of the nature of some of the boundary points.
|
25 |
Shift spaces on groups : computability and dynamics / Calculabilité et dynamique des sous-décalages sur des groupesBarbieri Lemp, Sebastián Andrés 28 June 2017 (has links)
Les sous-décalages sont des ensembles de coloriages d'un groupe définis en excluant certains motifs, et munis d'une action de décalage. Ces objets apparaissent naturellement comme discrétisations de systèmes dynamiques : à partir d'une partition de l'espace, on associe à chaque point de ce-dernier la suite des partitions visitées sous l'action du système.Plusieurs résultats récents ont mis en évidence la riche interaction entre la dynamique des sous-décalages et leur propriétés algorithmiques. Un exemple remarquable est la classification des entropies des sous-décalages multidimensionnels de type fini comme l'ensemble des nombres récursivement énumérables à droite. Cette thèse s'intéresse aux sous-décalages avec une approche double : d'un côté on s'intéresse à leurs propriétés dynamiques et de l'autre on les étudie comme des modèles de calcul.Cette thèse contient plusieurs résultats : une condition combinatoire suffisante prouvant qu'un sous-décalage dans un groupe dénombrable est non-vide, un théorème de simulation qui réalise une action effective d'un groupe de type fini comme un facteur d'une sous-action d'un sous-décalage de type fini, une caractérisation de l'effectivité à l'aide de machines de Turing généralisées et l'indécidabilité du problème de torsion pour deux groupes, qui sont invariants de systèmes dynamiques.Comme corollaires de nos résultats, nous obtenons d'abord une preuve courte de l'existence de sous-décalages fortement apériodiques sur tout groupe dénombrable. Puis, dans le cas d'un produit semi-direct de la grille bidimensionnelle avec un groupe de type fini avec problème du mot décidable, nous montrons que le sous-décalage obtenu est de type fini. / Shift spaces are sets of colorings of a group which avoid a set of forbidden patterns and are endowed with a shift action. These spaces appear naturally as discrete versions of dynamical systems: they are obtained by partitioning the phase space and mapping each element into the sequence of partitions visited by its orbit.Severa! breakthroughs in this domain have pointed out the intricate relationship between dynamics of shift spaces and their computability properties. One remarkable example is the classification of the entropies of multidimensional subshifts of finite type as the set of right recursively enumerable numbers. This work explores shift spaces with a dual approach: on the one hand we are interested in their dynamical properties and on the ether hand we studythese abjects as computational models.Four salient results have been obtained as a result of this approach: (1) a combinatorial condition ensuring non-emptiness of subshifts on arbitrary countable groups; (2) a simulation theorem which realizes effective actions of finitely generated groups as factors of a subaction of a subshift of finite type; (3) a characterization of effectiveness with oracles using generalized Turing machines and (4) the undecidability of the torsion problem for two group invariants of shift spaces.As byproducts of these results we obtain a simple proof of the existence of strongly aperiodic subshifts in countable groups. Furthermore, we realize them as subshifts of finite type in the case of a semidirect product of a d-dimensional integer lattice with a finitely generated group with decida ble word problem whenever d> 1.
|
26 |
Groupes, invariants et géométries dans l'œuvre de Weyl : Une étude des écrits de Hermann Weyl en mathématiques, physique mathématique et philosophie, 1910-1931 / Groups, invariants and geometries in Weyl's work : A Study of Hermann Weyl's writings in mathematics, mathematical physics and philosophy, 1910-1931Eckes, Christophe 05 December 2011 (has links)
Nous entendons confronter pratique des mathématiques et réflexions sur les mathématiques dans l'œuvre de Weyl. Nous étudierons : (a) ses monographies en analyse complexe, en relativité générale et en mécanique quantique, (b) les articles en lien avec ces ouvrages, (c) certains de ses cours, (d) sa correspondance avec divers scientifiques, principalement A. Einstein, E. Cartan, J. von Neumann. Nous voulons savoir si les théories mathématiques qu'il investit conditionnent ses positions sur les fondements des mathématiques. Inversement, nous montrerons que les philosophies auxquelles il se réfère – essentiellement le criticisme kantien, l'idéalisme fichtéen et la phénoménologie de Husserl – conditionnent ses recherches. Tout d'abord, nous reviendrons sur Die Idee der Riemannschen Fläche (première éd. 1913). Nous montrerons qu'il opte alors pour un formalisme mitigé. Il se revendique de deux traditions incarnées par Klein et par Hilbert. Ensuite, nous étudierons les éditions successives de Raum, Zeit, Materie (1918-1923). Nous aborderons le projet d'une géométrie purement infinitésimale qui permet à Weyl de proposer une théorie unifiée des champs, cette dernière étant réfutée par Einstein, Pauli, Reichenbach, Hilbert and Eddington. Nous décrirons aussi la construction et la résolution de son « problème de l'espace » (1921-1923). Nous indiquerons comment la référence aux philosophies de Fichte et de Husserl permet d'éclairer ces deux projets. Enfin, nous commenterons l'article de Weyl sur les groupes de Lie (1925-1926) ainsi que son ouvrage Gruppentheorie und Quantenmechanik (1928, 1931). Son article sur les groupes de Lie manifeste la voie moyenne entre formalisme et intuitionnisme qu'il adopte en 1924. Son ouvrage en mécanique quantique incarne quant à lui un « tournant empirique » dans son épistémologie qu'il conviendra de comparer \`a l'« empirisme logique ». / Our purpose consists in comparing Weyl's mathematical practice with his philosophical reflections on mathematics. We will study (a) his monographs on complex analysis, general relativity and quantum mechanics, (b) the articles which are linked to these books, (c) some of his lecture courses, (d) his correspondence with different scientists, mainly A. Einstein, E. Cartan, J. von Neumann. We will show that his mathematical research has a strong influence on the different stands he successively takes regarding the foundations of mathematics. Conversely, we will show that the philosophical systems he refers to (mainly kantian criticism, fichtean idealism and husserlian phenomenology) have a real impact on his investigations in mathematics. We will first analyse Die Idee der Riemannschen Fläche (first edition 1913). In this book, Weyl seems to take up a formalist point of view, but this is partly true. In fact, he is influenced by two traditions respectively embodied by Hilbert and Klein. Then, we will study the successive editions of Raum, Zeit, Materie (1918-1923). We will describe Weyl's project of a “purely infinitesimal geometry”. Thanks to this geometrical framework, he builds a unified fields theory, which will be disproved by Einstein, Pauli, Reichenbach, Hilbert and Eddington. During this short period, Weyl also constructs and solves the so-called space problem (1921-1923). Weyl's references to Fichte and Husserl have a significant impact on these two projects. Finally, we will comment Weyl's main article on Lie groups (1925-1926) and his monograph on quantum mechanics, i.e. Gruppentheorie und Quantenmechanik (1rst ed. 1928, 2nd ed. 1931). Weyl's article on Lie groups is in accordance with his compromise between intuitionism and formalism (1924). On the other hand, Weyl's book on quantum mechanics encapsulates an “empirical turn” in his epistemology, which will be compared with the so-called empirical logicism.
|
27 |
Géométrie et dynamique sur les surfaces algébriques réellesMoncet, Arnaud 20 June 2012 (has links) (PDF)
Cette thèse s'intéresse aux automorphismes des surfaces algébriques réelles, c'est-à-dire les transformations polynomiales admettant un inverse polynomial. La question centrale est de savoir si leur restriction au lieu réel reflète toute la richesse de la dynamique complexe. Celle-ci est traitée sous deux aspects : celui de l'entropie topologique et celui de l'ensemble de Fatou. Pour le premier point, on introduit une quantité purement géométrique, appelée concordance, qui ne dépend que de la surface. Puis on montre que le rapport des entropies réelle et complexe est relié à cette quantité. La concordance est calculée explicitement sur de nombreux exemples de surfaces, notamment les surfaces abéliennes qui sont traitées en détails, ainsi que certaines surfaces K3. Dans la seconde partie, on étudie l'ensemble de Fatou, qui correspond aux pointscomplexes pour lesquels la dynamique est simple. On montre, grâce à des résultats antérieurs de Dinh et Sibony sur les courants positifs fermés, que celui-ci est hyperbolique au sens de Kobayashi, quitte à lui enlever certaines courbes fixées par (unitéré de) notre transformation. Cette propriété permet d'en déduire que ce lieu réel ne peut pas être entièrement contenu dans l'ensemble de Fatou, hormis quelques cas exceptionnels où la topologie du lieu réel est simple et la dynamique bien comprise. Ainsi la complexité de la dynamique est presque toujours observable sur les points réels.
|
28 |
Théorie de Ramsey structurale et applications en dynamique topologique via la correspondance de Kechris-Pestov-TodorcevicNguyen Van Thé, Lionel 09 December 2013 (has links) (PDF)
Le but de ce mémoire est d'effectuer un survol de mes travaux effectués depuis janvier 2007. Le sujet d'étude se situe à l'une des intersections entre la combinatoire, la dynamique topologique et la logique via le formalisme des structures ultrahomogènes et de la théorie de Fraïssé. Ce domaine a récemment connu un essor considérable grâce à deux contributions majeures par Kechris, Pestov et Todorcevic, et par Kechris et Rosendal. Mon travail part de la première de ces contributions et se concentre autour des deux thèmes suivants : Théorie de Ramsey structurale et dynamique topologique des groupes de transformation associés.
|
29 |
Symétries et corrélations dans les gaz quantiques fortement interagissants à une dimension / Symmetries and correlations in strongly interacting one-dimensional quantum gasesDecamp, Jean 25 September 2018 (has links)
L’objectif principal de cette thèse est l’étude théorique de mélanges quantiques fortement interagissants à une dimension et soumis à un potentiel externe harmonique. De tels systèmes fortement corrélés peuvent être réalisés et testés dans des expériences d’atomes ultrafroids. Leurs propriétés de symétrie par permutation non triviales sont étudiées, ainsi que leurs effets sur les corrélations. Exploitant une solution exacte pour des interactions fortes, nous extrayons des propriétés générales des corrélations encodées dans la matrice densité à un corps et dans les distributions des impulsions associées, dans les mélanges fermioniques et de Bose-Fermi. En particulier, nous obtenons des résultats substantiels sur le comportement à courtes distances, et donc les queues à haute impulsions, qui suivent des lois en k^−4 typiques. Les poids de ces queues, dénotés contacts de Tan, sont liés à de nombreuses propriétés thermodynamiques des systèmes telles que les corrélations à deux corps, la dérivée de l’énergie par rapport à la longueur de diffusion unidimensionnelle, ou le facteur de structure statique. Nous montrons que ces contacts universels de Tan permettent également de caractériser la symétrie spatiale des systèmes, et constituent donc une connexion profonde entre les corrélations et les symétries. En outre, la symétrie d’échange est extraite en utilisant une méthode de théorie des groupes, à savoir la méthode de la somme des classes (class-sum method en anglais), qui provient à l’origine de la physique nucléaire. De plus, nous montrons que ces systèmes suivent une version généralisée du fameux théorème de Lieb-Mattis. Souhaitant rendre nos résultats aussi pertinents expérimentalement que possible, nous dérivons des lois d’échelle pour le contact de Tan en fonction de l’interaction, de la température et du confinement transverse. Ces lois présentent des effets intéressants liés aux fortes corrélations et à la dimensionnalité. / The main focus of this thesis is the theoretical study of strongly interacting quantum mixtures confined in one dimension and subjected to a harmonic external potential. Such strongly correlated systems can be realized and tested in ultracold atoms experiments. Their non-trivial permutational symmetry properties are investigated, as well as their interplay with correlations. Exploiting an exact solution at strong interactions, we extract general correlation properties encoded in the one-body density matrix and in the associated momentum distributions, in fermionic and Bose-Fermi mixtures. In particular, we obtain substantial results about the short-range behavior, and therefore the high-momentum tails, which display typical k^−4 laws. The weights of these tails, denoted as Tan’s contacts, are related to numerous thermodynamic properties of the systems such as the two-body correlations, the derivative of the energy with respect to the one-dimensional scattering length, or the static structure factor. We show that these universal Tan’s contacts also allow to characterize the spatial symmetry of the systems, and therefore is a deep connection between correlations and symmetries. Besides, the exchange symmetry is extracted using a group theory method, namely the class-sum method, which comes originally from nuclear physics. Moreover, we show that these systems follow a generalized version of the famous Lieb-Mattistheorem. Wishing to make our results as experimentally relevant as possible, we derive scaling laws for Tan’s contact as a function of the interaction, temperature and transverse confinement. These laws. Display displadisplay display interesting effects related to strong correlations and dimensionality.
|
Page generated in 0.0664 seconds