• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 12
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Neural Network Approach for Generating Investors’ Views in the Black-Litterman Model / En Neural nätverksansats för att generera investerares åsikter i Black-Litterman-modellen

Lavatt, Rafael January 2022 (has links)
This thesis investigates how neural networks can be used to produce investors' views for the Black-Litterman market model. The study uses two data sets, one with global stock market indexes and one with stock market data from the S&P 500. The task of the neural networks is to produce forecasts for the returns for the next quarter and the following year. The neural network will have to predict whether the market will move up or down and determine if the market movement is less than or equal to one standard deviation, creating four different scenarios. The forecasts are used as input to the Black-Litterman model to generate new portfolios, which are backtested from 2017 until 2022. The index data set was compared to a benchmark portfolio and a portfolio with naive risk diversification, while the S&P 500 data set was compared to market capitalization-weighted and naive portfolios. This resulted in eight different backtests where the neural networks obtained AUC values in the range of 0.56-0.73 and prediction accuracies in the range of 20.9% - 42.1%. The network used for yearly predictions on the index data set was the only network to outperform the benchmark portfolio. It obtained a Sharpe ratio of 1.782, a Sortino ratio of 2.165, and a maximum drawdown of -30.9% compared to the benchmark portfolio, where the corresponding metrics were 1.544, 1.879, and -32.8%. / Detta examensarbete undersöker hur neurala nätverk kan användas för att generera investerares åsikt till Black-Littermans marknadsmodell. Studien använder två dataset, en med globala börsindex och en med börsdata från S6P 500. De neurala nätverkens uppgift är att generera prognoser för avkastning för nästa kvartal samt nästkommande år. Det neurala nätverket måste förutsäga om marknaden kommer att röra sig uppåt eller nedåt, och avgöra om marknadsrörelsen är mindre än eller lika med en standaravvikelse, vilket skapar fyra olika scenarier. Prognoserna användas som input till Black-Litterman-modellen för att generera nya portföljer, som backtestas från 2017 till 2022. Portföljerna som skapades med globala börsindex jämfördes med en benchmarkportfölj och en portfölj med naiv riskspridning. Datasetet med data från S&P 500 jämfördes med marknadsvärdesviktade och naiva portföljer. Detta resulterade i åtta olika simuleringar där de neurala nätverken fick AUC-värden i intervallet 0,56-0,73 och prediktionsnoggrannheter i intervallte 20,9% - 42,1%. Nätverket som användes för årliga prognoser om globala börsindex var det enda nätverket som överträffade jämförelseportföljen. Den fick en Sharpekvot på 1, 782, Sortinokvot på 2,165 och en största kumulativa nedgång på -30,9% jämfört med jämförelseportföljen där motsvarande mätvärden var 1, 544, 1, 879 och -32,8%.
12

Modelos black-litterman e GARCH ortogonal para uma carteira de títulos do tesouro nacional / Black-Litterman and ortogonal GARCH models for a portfolio of bonds issued by the National Treasury

Lobarinhas, Roberto Beier 02 March 2012 (has links)
Uma grande dificuldade da gestão financeira é conseguir associar métodos quantitativos às formas tradicionais de gestão, em um único arranjo. O estilo tradicional de gestão tende a não crer, na devida medida, que métodos quantitativos sejam capazes de captar toda sua visão e experiência, ao passo que analistas quantitativos tendem a subestimar a importância do enfoque tradicional, gerando flagrante desarmonia e ineficiência na análise de risco. Um modelo que se propõe a diminuir a distância entre essas visões é o modelo Black-Litterman. Mais especificamente, propõe-se a diminuir os problemas enfrentados na aplicação da teoria moderna de carteiras e, em particular, os decorrentes da aplicação do modelo de Markowitz. O modelo de Markowitz constitui a base da teoria de carteiras há mais de meio século, desde a publicação do artigo Portfolio Selection [Mar52], entretanto, apesar do papel de destaque da abordagem média-variância para o meio acadêmico, várias dificuldades aparecem quando se tenta utilizá-lo na prática, e talvez, por esta razão, seu impacto no mundo dos investimentos tem sido bastante limitado. Apesar das desvantagens na utilização do modelo de média-variância de Markowitz, a idéia de maximizar o retorno, para um dado nível de risco é tão atraente para investidores, que a busca por modelos com melhor comportamento continuou e é neste contexto que o modelo Black-Litterman surgiu. Em 1992, Fischer Black e Robert Litterman publicam o artigo Portfolio Optimization [Bla92], fazendo considerações sobre o papel de pouco destaque da alocação quantitativa de ativos, e lançam o modelo conhecido por Black-Litterman. Uma grande diferença entre o modelo Black-Litterman e um modelo média-variância tradicional é que, enquanto o segundo gera pesos em uma carteira a partir de um processo de otimização, o modelo Black-Litterman parte de uma carteira de mercado em equilíbrio de longo prazo (CAPM). Outro ponto de destaque do modelo é ser capaz de fornecer uma maneira clara para que investidores possam expressar suas visões de curto prazo e, mais importante, fornece uma estrutura para combinar de forma consistente a informação do equilíbrio de longo prazo (priori) com a visão do investidor (curto prazo), gerando um conjunto de retornos esperados, a partir do qual os pesos em cada ativo são fornecidos. Para a escolha do método de estimação dos parâmetros, levou-se em consideração o fato de que matrizes de grande dimensão têm um papel importante na avaliação de investimentos, uma vez que o risco de uma carteira é fundamentalmente determinado pela matriz de covariância de seus ativos. Levou-se também em consideração que seria desejável utilizar um modelo flexível ao aumento do número de ativos. Um modelo capaz de cumprir este papel é o GARCH ortogonal, pois este pode gerar matrizes de covariâncias do modelo original a partir de algumas poucas volatilidades univariadas, sendo, portanto, um método computacionalmente bastante simples. De fato, as variâncias e correlações são transformações de duas ou três variâncias de fatores ortogonais obtidas pela estimação GARCH. Os fatores ortogonais são obtidos por componentes principais. A decomposição da variância do sistema em fatores de risco permite quantificar a variabilidade que cada fator de risco traz, o que é de grande relevância, pois o gestor de risco poderá direcionar mais facilmente sua atenção para os fatores mais relevantes. Ressalta-se também que a ideia central da ortogonalização é utilizar um espaço reduzido de componentes. Neste modelo de dimensão reduzida, suficientes fatores de risco serão considerados, assim, os demais movimentos, ou seja, aqueles não capturados por estes fatores, serão considerados ruídos insignificantes para este sistema. Não obstante, a precisão, ao desconsiderar algumas componentes, irá depender de o número de componentes principais ser suficiente para explicar grande parte da variação do sistema. Logo, o método funcionará melhor quando a análise de componentes principais funcionar melhor, ou seja, em estruturas a termo e outros sistemas altamente correlacionados. Cabe mencionar que o GARCH ortogonal continua igualmente útil e viável quando pretende-se gerar matriz de covariâncias de fatores de risco distintos, isto é, tanto dos altamente correlacionados, quanto daqueles pouco correlacionados. Neste caso, basta realizar a análise de componentes principais em grupos correlacionados. Feito isto, obtêm-se as matrizes de covariâncias utilizando a estimação GARCH. Em seguida faz-se a combinação de todas as matrizes de covariâncias, gerando a matriz de covariâncias do sistema original. A estimação GARCH foi escolhida pois esta é capaz de captar os principais fatos estilizados que caracterizam séries temporais financeiras. Entende-se por fatos estilizados padrões estatísticos observados empiricamente, que, acredita-se serem comuns a um grande número de séries temporais. Séries financeiras com suficiente alta frequência (observações intraday e diárias) costumam apresentar tais características. Este modelo foi utilizado para a estimação dos retornos e, com isso, obtivemos todas as estimativas para que, com o modelo B-L, pudéssemos gerar uma carteira ótima em um instante de tempo inicial. Em seguida, faremos previsões, obtendo carteiras para as semanas seguintes. Por fim, mostraremos que a associação do modelo B-L e da estimação GARCH ortogonal pode gerar resultados bastante satisfatórios e, ao mesmo tempo, manter o modelo simples e gerar resultados coerentes com a intuição. Este estudo se dará sobre retornos de títulos de renda fixa, mais especificamente, títulos emitidos pelo Tesouro Nacional no mercado brasileiro. Tanto a escolha do modelo B-L, quanto a escolha por utilizar uma carteira de títulos emitidos pelo Tesouro Nacional tiveram como motivação o objetivo de aproximar ferramentas estatísticas de aplicações em finanças, em particular, títulos públicos federais emitidos em mercado, que têm se tornado cada vez mais familiares aos investidores pessoas físicas, sobretudo através do programa Tesouro Direto. Ao fazê-lo, espera-se que este estudo traga informações úteis tanto para investidores, quanto para gestores de dívida, uma vez que o modelo média-variância presta-se tanto àqueles que adquirem títulos, buscando, portanto, maximizar retorno para um dado nível de risco, quanto para aqueles que emitem títulos, e que, portanto, buscam reduzir seus custos de emissão a níveis prudenciais de risco. / One major challenge to financial management resides in associating traditional management with quantitative methods. Traditional managers tend to be skeptical about the quantitative methods contributions, whereas quantitative analysts tend to disregard the importance of the traditional view, creating clear disharmony and inefficiency in the risk management process. A model that seeks to diminish the distance between these two views is the Black-Litterman model (BLM). More specifically, it comes as a solution to difficulties faced when using modern portfolio in practice, particularly those derived from the usage of the Markowitz model. Although the Markowitz model has constituted the basis of portfolio theory for over half century, since the publication of the article Portfolio Selection [Mar52], its impact on the investment world has been quite limited. The Markowitz model addresses the most central objectives of an investment: maximizing the expected return, for a given level of risk. Even though it has had a standout role in the mean-average approach to academics, several difficulties arise when one attempts to make use of it in practice. Despite the disadvantages of its practical usage, the idea of maximizing the return for a given level of risk is so appealing to investors, that the search for models with better behavior continued, and is in this context that the Black-Litterman model came out. In 1992, Fischer Black and Robert Litterman wrote an article on the Black-Litterman model. One intrinsic difference between the BLM and a traditional mean-average one is that, while the second provides the weights of the assets in a portfolio out of a optimization routine, the BLM has its starting point at the long-run equilibrium market portfolio(CAPM). Another highlighting point of the BLM is the ability to provide one clear structucture that is able to combine the long term equilibrium information with the investors views, providing a set of expected returns, which, together, will be the input to generate the weights on the assets. As far as the estimation process is concerned, and for the purpose of choosing the most appropriate model, it was taken into consideration the fact that the risk of a portfolio is determined by the covariation matrix of its assets and, being so, matrices with large dimensions play an important role in the analysis of investments. Whereas, provided the application under study, it is desirable to have a model that is able to carry out the analysis for a considerable number of assets. For these reasons, the Orthogonal GARCH was selected, once it can generate the matrix of covariation of the original system from just a few univariate volatilities, and for this reason, it is a computationally simple method. The orthogonal factors are obtained with principal components analysis. Decomposing the variance of the system into risk factors is highly important, once it allows the risk manager to focus separately on each relevant source of risk. The main idea behind the orthogonalization consists in working with a reduced dimension of components. In this kind of model, sufficient risk factors are considered, thus, the variability not perceived by the model will be considered insigficant noise to the system. Nevertheless, the precision, when not using all the components, will depend on the number of components be sufficient to explain the major part of the variability. Moreover, the model will provide reasonable results depending on principal component analysis performing properly as well, what will be more likely to happen, in highly correlated systems. It is worthy of note that the Orthogonal GARCH is equally useful and feasible when one intends to analyse a portfolio consisting of assets across various types of risk, it means, a system which is not highly correlated. It is common to have such a portfolio, with, for instance, currency rates, stocks, fixed income and commodities. In order to make it to perform properly, it is necessary to separate groups with the same kind of risk and then carry out the principal component analysis by group and then merge the covariance matrices, producing the covariance matrix of the original system. To work together with the orthogonalization method, the GARCH model was chosen because it is able to draw the main stylized facts which characterize financial time series. Stylized facts are statistical patterns empirically observed, which are believed to be present in a number of time series. Financial time series which sufficient high frequency (intraday, daily and even weekly) usually present such behavior. For estimating returns purposes, it was used a ARMA model, and together with the covariance matrix estimation, we have all the parameters needed to perform the BLM study, coming out, in the end, with the optimal portfolio in a given initial time. In addition, we will make forecasts with the GARCH model, obtaining optimal portfolio for the following weeks. We will show that the association of the BLM with the Orthogonal GARCH model can generate satisfactory and coherent with intuition results and, at the same time, keeping the model simple. Our application is on fixed income returns, more specifically, returns of bonds issued in the domestic market by the Brazilian National Treasury. The motivation of this work was to put together statistical tolls and finance uses and applications, more specifically those related to the bonds issued by the National Treasuy, which have become more and more popular due to the \"Tesouro Direto\" program. In conclusion, this work aims to bring useful information either for investors or to debt managers, once the mean-variance model can be useful for those who want to maximize return at a given level or risk as for those who issue bonds, and, thus, seek to reduce their issuance costs at prudential levels of risk.
13

Modelos black-litterman e GARCH ortogonal para uma carteira de títulos do tesouro nacional / Black-Litterman and ortogonal GARCH models for a portfolio of bonds issued by the National Treasury

Roberto Beier Lobarinhas 02 March 2012 (has links)
Uma grande dificuldade da gestão financeira é conseguir associar métodos quantitativos às formas tradicionais de gestão, em um único arranjo. O estilo tradicional de gestão tende a não crer, na devida medida, que métodos quantitativos sejam capazes de captar toda sua visão e experiência, ao passo que analistas quantitativos tendem a subestimar a importância do enfoque tradicional, gerando flagrante desarmonia e ineficiência na análise de risco. Um modelo que se propõe a diminuir a distância entre essas visões é o modelo Black-Litterman. Mais especificamente, propõe-se a diminuir os problemas enfrentados na aplicação da teoria moderna de carteiras e, em particular, os decorrentes da aplicação do modelo de Markowitz. O modelo de Markowitz constitui a base da teoria de carteiras há mais de meio século, desde a publicação do artigo Portfolio Selection [Mar52], entretanto, apesar do papel de destaque da abordagem média-variância para o meio acadêmico, várias dificuldades aparecem quando se tenta utilizá-lo na prática, e talvez, por esta razão, seu impacto no mundo dos investimentos tem sido bastante limitado. Apesar das desvantagens na utilização do modelo de média-variância de Markowitz, a idéia de maximizar o retorno, para um dado nível de risco é tão atraente para investidores, que a busca por modelos com melhor comportamento continuou e é neste contexto que o modelo Black-Litterman surgiu. Em 1992, Fischer Black e Robert Litterman publicam o artigo Portfolio Optimization [Bla92], fazendo considerações sobre o papel de pouco destaque da alocação quantitativa de ativos, e lançam o modelo conhecido por Black-Litterman. Uma grande diferença entre o modelo Black-Litterman e um modelo média-variância tradicional é que, enquanto o segundo gera pesos em uma carteira a partir de um processo de otimização, o modelo Black-Litterman parte de uma carteira de mercado em equilíbrio de longo prazo (CAPM). Outro ponto de destaque do modelo é ser capaz de fornecer uma maneira clara para que investidores possam expressar suas visões de curto prazo e, mais importante, fornece uma estrutura para combinar de forma consistente a informação do equilíbrio de longo prazo (priori) com a visão do investidor (curto prazo), gerando um conjunto de retornos esperados, a partir do qual os pesos em cada ativo são fornecidos. Para a escolha do método de estimação dos parâmetros, levou-se em consideração o fato de que matrizes de grande dimensão têm um papel importante na avaliação de investimentos, uma vez que o risco de uma carteira é fundamentalmente determinado pela matriz de covariância de seus ativos. Levou-se também em consideração que seria desejável utilizar um modelo flexível ao aumento do número de ativos. Um modelo capaz de cumprir este papel é o GARCH ortogonal, pois este pode gerar matrizes de covariâncias do modelo original a partir de algumas poucas volatilidades univariadas, sendo, portanto, um método computacionalmente bastante simples. De fato, as variâncias e correlações são transformações de duas ou três variâncias de fatores ortogonais obtidas pela estimação GARCH. Os fatores ortogonais são obtidos por componentes principais. A decomposição da variância do sistema em fatores de risco permite quantificar a variabilidade que cada fator de risco traz, o que é de grande relevância, pois o gestor de risco poderá direcionar mais facilmente sua atenção para os fatores mais relevantes. Ressalta-se também que a ideia central da ortogonalização é utilizar um espaço reduzido de componentes. Neste modelo de dimensão reduzida, suficientes fatores de risco serão considerados, assim, os demais movimentos, ou seja, aqueles não capturados por estes fatores, serão considerados ruídos insignificantes para este sistema. Não obstante, a precisão, ao desconsiderar algumas componentes, irá depender de o número de componentes principais ser suficiente para explicar grande parte da variação do sistema. Logo, o método funcionará melhor quando a análise de componentes principais funcionar melhor, ou seja, em estruturas a termo e outros sistemas altamente correlacionados. Cabe mencionar que o GARCH ortogonal continua igualmente útil e viável quando pretende-se gerar matriz de covariâncias de fatores de risco distintos, isto é, tanto dos altamente correlacionados, quanto daqueles pouco correlacionados. Neste caso, basta realizar a análise de componentes principais em grupos correlacionados. Feito isto, obtêm-se as matrizes de covariâncias utilizando a estimação GARCH. Em seguida faz-se a combinação de todas as matrizes de covariâncias, gerando a matriz de covariâncias do sistema original. A estimação GARCH foi escolhida pois esta é capaz de captar os principais fatos estilizados que caracterizam séries temporais financeiras. Entende-se por fatos estilizados padrões estatísticos observados empiricamente, que, acredita-se serem comuns a um grande número de séries temporais. Séries financeiras com suficiente alta frequência (observações intraday e diárias) costumam apresentar tais características. Este modelo foi utilizado para a estimação dos retornos e, com isso, obtivemos todas as estimativas para que, com o modelo B-L, pudéssemos gerar uma carteira ótima em um instante de tempo inicial. Em seguida, faremos previsões, obtendo carteiras para as semanas seguintes. Por fim, mostraremos que a associação do modelo B-L e da estimação GARCH ortogonal pode gerar resultados bastante satisfatórios e, ao mesmo tempo, manter o modelo simples e gerar resultados coerentes com a intuição. Este estudo se dará sobre retornos de títulos de renda fixa, mais especificamente, títulos emitidos pelo Tesouro Nacional no mercado brasileiro. Tanto a escolha do modelo B-L, quanto a escolha por utilizar uma carteira de títulos emitidos pelo Tesouro Nacional tiveram como motivação o objetivo de aproximar ferramentas estatísticas de aplicações em finanças, em particular, títulos públicos federais emitidos em mercado, que têm se tornado cada vez mais familiares aos investidores pessoas físicas, sobretudo através do programa Tesouro Direto. Ao fazê-lo, espera-se que este estudo traga informações úteis tanto para investidores, quanto para gestores de dívida, uma vez que o modelo média-variância presta-se tanto àqueles que adquirem títulos, buscando, portanto, maximizar retorno para um dado nível de risco, quanto para aqueles que emitem títulos, e que, portanto, buscam reduzir seus custos de emissão a níveis prudenciais de risco. / One major challenge to financial management resides in associating traditional management with quantitative methods. Traditional managers tend to be skeptical about the quantitative methods contributions, whereas quantitative analysts tend to disregard the importance of the traditional view, creating clear disharmony and inefficiency in the risk management process. A model that seeks to diminish the distance between these two views is the Black-Litterman model (BLM). More specifically, it comes as a solution to difficulties faced when using modern portfolio in practice, particularly those derived from the usage of the Markowitz model. Although the Markowitz model has constituted the basis of portfolio theory for over half century, since the publication of the article Portfolio Selection [Mar52], its impact on the investment world has been quite limited. The Markowitz model addresses the most central objectives of an investment: maximizing the expected return, for a given level of risk. Even though it has had a standout role in the mean-average approach to academics, several difficulties arise when one attempts to make use of it in practice. Despite the disadvantages of its practical usage, the idea of maximizing the return for a given level of risk is so appealing to investors, that the search for models with better behavior continued, and is in this context that the Black-Litterman model came out. In 1992, Fischer Black and Robert Litterman wrote an article on the Black-Litterman model. One intrinsic difference between the BLM and a traditional mean-average one is that, while the second provides the weights of the assets in a portfolio out of a optimization routine, the BLM has its starting point at the long-run equilibrium market portfolio(CAPM). Another highlighting point of the BLM is the ability to provide one clear structucture that is able to combine the long term equilibrium information with the investors views, providing a set of expected returns, which, together, will be the input to generate the weights on the assets. As far as the estimation process is concerned, and for the purpose of choosing the most appropriate model, it was taken into consideration the fact that the risk of a portfolio is determined by the covariation matrix of its assets and, being so, matrices with large dimensions play an important role in the analysis of investments. Whereas, provided the application under study, it is desirable to have a model that is able to carry out the analysis for a considerable number of assets. For these reasons, the Orthogonal GARCH was selected, once it can generate the matrix of covariation of the original system from just a few univariate volatilities, and for this reason, it is a computationally simple method. The orthogonal factors are obtained with principal components analysis. Decomposing the variance of the system into risk factors is highly important, once it allows the risk manager to focus separately on each relevant source of risk. The main idea behind the orthogonalization consists in working with a reduced dimension of components. In this kind of model, sufficient risk factors are considered, thus, the variability not perceived by the model will be considered insigficant noise to the system. Nevertheless, the precision, when not using all the components, will depend on the number of components be sufficient to explain the major part of the variability. Moreover, the model will provide reasonable results depending on principal component analysis performing properly as well, what will be more likely to happen, in highly correlated systems. It is worthy of note that the Orthogonal GARCH is equally useful and feasible when one intends to analyse a portfolio consisting of assets across various types of risk, it means, a system which is not highly correlated. It is common to have such a portfolio, with, for instance, currency rates, stocks, fixed income and commodities. In order to make it to perform properly, it is necessary to separate groups with the same kind of risk and then carry out the principal component analysis by group and then merge the covariance matrices, producing the covariance matrix of the original system. To work together with the orthogonalization method, the GARCH model was chosen because it is able to draw the main stylized facts which characterize financial time series. Stylized facts are statistical patterns empirically observed, which are believed to be present in a number of time series. Financial time series which sufficient high frequency (intraday, daily and even weekly) usually present such behavior. For estimating returns purposes, it was used a ARMA model, and together with the covariance matrix estimation, we have all the parameters needed to perform the BLM study, coming out, in the end, with the optimal portfolio in a given initial time. In addition, we will make forecasts with the GARCH model, obtaining optimal portfolio for the following weeks. We will show that the association of the BLM with the Orthogonal GARCH model can generate satisfactory and coherent with intuition results and, at the same time, keeping the model simple. Our application is on fixed income returns, more specifically, returns of bonds issued in the domestic market by the Brazilian National Treasury. The motivation of this work was to put together statistical tolls and finance uses and applications, more specifically those related to the bonds issued by the National Treasuy, which have become more and more popular due to the \"Tesouro Direto\" program. In conclusion, this work aims to bring useful information either for investors or to debt managers, once the mean-variance model can be useful for those who want to maximize return at a given level or risk as for those who issue bonds, and, thus, seek to reduce their issuance costs at prudential levels of risk.
14

Análise de portfólio: uma perspectiva bayesiana

Tito, Edison Americo Huarsaya 03 June 2016 (has links)
Submitted by EDISON AMERICO HUARSAYA TITO (edison.tito@gmail.com) on 2016-06-23T14:02:55Z No. of bitstreams: 1 EdisonMscFGV(20160619).pdf: 2366030 bytes, checksum: 231be2cde1e7f8e01331fddff3f227a1 (MD5) / Approved for entry into archive by GILSON ROCHA MIRANDA (gilson.miranda@fgv.br) on 2016-06-23T14:36:07Z (GMT) No. of bitstreams: 1 EdisonMscFGV(20160619).pdf: 2366030 bytes, checksum: 231be2cde1e7f8e01331fddff3f227a1 (MD5) / Approved for entry into archive by GILSON ROCHA MIRANDA (gilson.miranda@fgv.br) on 2016-06-24T12:51:11Z (GMT) No. of bitstreams: 1 EdisonMscFGV(20160619).pdf: 2366030 bytes, checksum: 231be2cde1e7f8e01331fddff3f227a1 (MD5) / Made available in DSpace on 2016-06-29T12:06:48Z (GMT). No. of bitstreams: 1 EdisonMscFGV(20160619).pdf: 2366030 bytes, checksum: 231be2cde1e7f8e01331fddff3f227a1 (MD5) Previous issue date: 2016-06-03 / This work has the objective to address the problem of asset allocation (portfolio analysis) under a Bayesian perspective. For this it was necessary to review all the theoretical analysis of the classical mean-variance model and following identify their deficiencies that compromise its effectiveness in real cases. Interestingly, its biggest deficiency this not related to the model itself, but by its input data in particular the expected return calculated on historical data. To overcome this deficiency the Bayesian approach (Black-Litterman model) treat the expected return as a random variable and after that builds a priori distribution (based on the CAPM model) and a likelihood distribution (based on market investor’s views) to finally apply Bayes theorem resulting in the posterior distribution. The expected value of the return of this posteriori distribution is to replace the estimated expected return calculated on historical data. The results showed that the Bayesian model presents conservative and intuitive results in relation to the classical model of mean-variance. / Este trabalho tem com objetivo abordar o problema de alocação de ativos (análise de portfólio) sob uma ótica Bayesiana. Para isto foi necessário revisar toda a análise teórica do modelo clássico de média-variância e na sequencia identificar suas deficiências que comprometem sua eficácia em casos reais. Curiosamente, sua maior deficiência não esta relacionado com o próprio modelo e sim pelos seus dados de entrada em especial ao retorno esperado calculado com dados históricos. Para superar esta deficiência a abordagem Bayesiana (modelo de Black-Litterman) trata o retorno esperado como uma variável aleatória e na sequência constrói uma distribuição a priori (baseado no modelo de CAPM) e uma distribuição de verossimilhança (baseado na visão de mercado sob a ótica do investidor) para finalmente aplicar o teorema de Bayes tendo como resultado a distribuição a posteriori. O novo valor esperado do retorno, que emerge da distribuição a posteriori, é que substituirá a estimativa anterior do retorno esperado calculado com dados históricos. Os resultados obtidos mostraram que o modelo Bayesiano apresenta resultados conservadores e intuitivos em relação ao modelo clássico de média-variância.
15

Black-Litterman 模型在組合型基金的應用 / Application of the Black-Litterman Model on Fund of Funds

廖哲宏, Liao,Che Hung Unknown Date (has links)
本篇論文主要是將Black-Litterman模型應用在組合型基金上。從一個組合型基金的基金經理人角度出發,在有限的風險下,如何進行資產配置使其達到報酬極大化的目標?第二章介紹mean-variance模型,以及其模型之缺點。第三章介紹Black-Litterman模型,其不僅可以改善mean-variace模型的缺點,此外允許投資人加入主觀看法,結合數量方法以及投資人的主觀看法是此模型的特色之一。第四章,針對兩個模型的進行比較。最後,我們發現:BLack-Litterman模型不僅符合經濟直覺,進行資產配置時也展現模型的穩定性。 / This paper applies a popular asset allocation model: the Black-Litterman model on a fund of funds. First, an overview is given of the foundations of modern portfolio theory with the mean-variance model. Next, we discuss some improvements that could be made over the mean-variance model. The Black-Litterman model addresses some of these flaws and tries to improve them. Finally, simulation has been performed to compare the performance of the Black-Litterman model to mean-variance optimization. The models have been compared in intuitiveness and stability. The conclusion can be drawn that BL-model improves the mean-variance model, in our simulation, both in intuitiveness and stability.
16

Asset-liability modelling and pension schemes: the application of robust optimization to USS

Platanakis, Emmanouil, Sutcliffe, C. 08 May 2015 (has links)
Yes / This paper uses a novel numerical optimization technique – robust optimization – that is well suited to solving the asset–liability management (ALM) problem for pension schemes. It requires the estimation of fewer stochastic parameters, reduces estimation risk and adopts a prudent approach to asset allocation. This study is the first to apply it to a real-world pension scheme, and the first ALM model of a pension scheme to maximize the Sharpe ratio. We disaggregate pension liabilities into three components – active members, deferred members and pensioners, and transform the optimal asset allocation into the scheme’s projected contribution rate. The robust optimization model is extended to include liabilities and used to derive optimal investment policies for the Universities Superannuation Scheme (USS), benchmarked against the Sharpe and Tint, Bayes–Stein and Black–Litterman models as well as the actual USS investment decisions. Over a 144-month out-of-sample period, robust optimization is superior to the four benchmarks across 20 performance criteria and has a remarkably stable asset allocation – essentially fix-mix. These conclusions are supported by six robustness checks.
17

Contingent Hedging : Applying Financial Portfolio Theory on Product Portfolios

Karlsson, Victor, Svensson, Rikard, Eklöf, Viktor January 2012 (has links)
In an ever-changing global environment, the ability to adapt to the current economic climate is essential for a company to prosper and survive. Numerous previous re- search state that better risk management and low overall risks will lead to a higher firm value. The purpose of this study is to examine if portfolio theory, made for fi- nancial portfolios, can be used to compose product portfolios in order to minimize risk and optimize returns. The term contingent hedge is defined as an optimal portfolio that can be identified today, that in the future will yield a stable stream of returns at a low level of risk. For companies that might engage in costly hedging activities on the futures market, the benefits of creat- ing a contingent hedge are several. These include creating an optimized portfolio that minimizes risk and avoid trading contracts on futures markets that would incur hefty transaction costs and risks. Using quantitative financial models, product portfolio compositions are generated and compared with the returns and risks profile of individual commodities, as well as the actual product portfolio compositions of publicly traded mining companies. Us- ing Modern Portfolio Theory an efficient frontier is generated, yielding two inde- pendent portfolios, the minimum risk portfolio and the tangency portfolio. The Black-Litterman model is also used to generate yet another portfolio using a Bayesian approach. The portfolios are generated by historic time-series data and compared with the actual future development of commodities; the portfolios are then analyzed and compared. The results indicate that the minimum risk portfolio provides a signif- icantly lower risk than the compositions of all mining companies in the study, as well as the risks of individual commodities. This in turn will lead to several benefits for company management and the firm’s shareholders that are discussed throughout the study. However, as for a return-optimizing portfolio, no significant results can be found. Furthermore, the analysis suggests a series of improvements that could potentially yield an even greater result. The recommendation is that mining companies can use the methods discussed throughout this study as a way to generate a costless contin- gent hedge, rather than engage in hedging activities on futures markets.
18

[en] OPTIMIZATION UNDER UNCERTAINTY FOR ASSET ALLOCATION / [pt] OTIMIZAÇÃO SOB INCERTEZA PARA ALOCAÇÃO DE ATIVOS

THUENER ARMANDO DA SILVA 27 April 2016 (has links)
[pt] A alocação de ativos é uma das mais importantes decisões financeiras para investidores. No entanto, as decisões humanas não são totalmente racionais. Sabemos que as pessoas cometem muitos erros sistemáticos como, excesso de confiança, aversão à perda irracional e mau uso da informação entre outros. Nesta tese desenvolvemos duas metodologias distintas para enfrentar esse problema. A primeira abordagem é qualitativa, utiliza o modelo de Black-Litterman e tenta mapear a visão que o investidor tem do mercado. Esse método tenta mitigar a irracionalidade na tomada de decisão tornando mais fácil para um investidor demonstrar suas preferências em relação aos ativos. Black e Litterman desenvolveram um método para otimização de carteiras com a proposta de melhorar o modelo Markowitz, utilizando a construção de visões para representar a opinião do investidor sobre o futuro. No entanto, a forma de construir essas visões é bastante confusa e exige que o investidor estime vários parâmetros que são subjetivos. Assim, propomos uma nova forma de criar essas visões, utilizando Análise Verbal de Decisão. A segunda pesquisa envolve métodos quantitativos para resolver o problema de alocação de ativos com múltiplos estágios com premissas mais realistas. Embora a Programação Dinâmica Dual Estocástica (PDDE) seja uma técnica promissora para a solução de problemas de grande porte, não é adequada para o problema de alocação de ativos devido à dependência temporal associada aos retornos dos ativos. PDDE assume que o processo estocástico tem independência por estágio assegurando uma função única de custo futuro para cada estágio. No problema de alocação de ativos, a dependência do tempo é tipicamente não-linear e no lado esquerdo, o que torna PDDE tradicional não aplicável. Propomos uma variação do PDDE usando modelo oculto de Markov com estados discretos para resolver problemas reais de alocação de ativos com múltiplos períodos e dependência no tempo. Ambas as abordagens foram testadas em dados reais e empiricamente analisadas. As principais contribuições são as metodologia desenvolvidas para simplificar a construção de portfólios e para resolver o problema de alocação de ativos com múltiplos estágios. / [en] Asset allocation is one of the most important financial decisions made by investors. However, human decisions are not fully rational, and people make several systematic mistakes due to overconfidence, irrational loss aversion and misuse of information, among others. In this thesis, we developed two distinct methodologies to tackle this problem. The first approach has a more qualitative view, trying to map the investor s vision of the market. It tries to mitigate irrationality in decision-making by making it easier for an investor to demonstrate his/her preferences for specirfic assets. This first research uses the Black-Litterman model to construct portfolios. Black and Litterman developed a method for portfolio optimization as an improvement over the Markowitz model. They suggested the construction of views to represent an investor s opinion about future stocks returns. However, constructing these views has proven difficult, as it requires the investor to quantify several subjective parameters. This work investigates a new way of creating these views by using Verbal Decision Analysis. The second research focuses on quantitative methods to solve the multistage asset allocation problem. More specifically, it modifies the Stochastic Dynamic Dual Programming (SDDP) method to consider real asset allocation models. Although SDDP is a consolidated solution technique for large-scale problems, it is not suitable for asset allocation problems due to the temporal dependence of returns. Indeed, SDDP assumes a stagewise independence of the random process assuring a unique cost-to-go function for each time stage. For the asset allocation problem, time dependency is typically nonlinear and on the left-hand side, which makes traditional SDDP inapplicable. This thesis proposes an SDDP variation to solve real asset allocation problems for multiple periods, by modeling time dependence as a Hidden Markov Model with concealed discrete states. Both approaches were tested in real data and empirically analyzed. The contributions of this thesis are the methodology to simplify portfolio construction and the methods to solve real multistage stochastic asset allocation problems.
19

The Black-Litterman Asset Allocation Model - An Empirical Analysis of Its Practical Use / Black-Littermans modell för tillgångsallokering - En empirisk analys av dess praktiska användning

Ernstsson, Hampus, Börjes Liljesvan, Max January 2021 (has links)
Modern portfolio theory has its attractive characteristics of promoting diversification in a portfolio and can be seen as an easy alternative for setting optimal weights for portfolio managers. Furthermore, as portfolio managers try to beat a defined benchmark for their portfolio the Black-Litterman model allows them to include their own prospects on the future return of markets and securities. This thesis examines how the practical use of the Black-Litterman model can affect portfolios' performance. The analysis was done by calculating historical portfolio weights with investor views, without investor views, and with perfect investor views in the Black-Litterman model. Thereafter, calculating historical return and volatility for six multi-asset portfolios between 2017-09-25 and 2021-01-31. This was then compared with benchmark portfolios, which reflect the practical use. These portfolios included historically used investor views and constraints in the mean-variance optimization. The results showed that investor views had a negative effect on total return (lower return) and a positive effect on volatility (lower risk), however, an increased Sharpe ratio. The constraints in the mean-variance optimization used in the benchmark portfolios resulted in a lower total return. In conclusion, the Black-Litterman model showed robustness and did not generate unintuitive or unreasonable portfolios, and it has great potential with increasing accuracy in the investor views. / Modern portföljteori har attraktiva egenskaper vad gäller att främja diversifiering i en portfölj och kan ses som ett enkelt alternativ för att välja optimala vikter för portföljförvaltare. Eftersom portföljförvaltare försöker slå ett definierat benchmark för sin portfölj tillåter dessutom Black-Litterman modellen dem att inkludera sina egna åsikter angående förväntade avkastningar på marknader och värdepapper. Detta examensarbete undersöker hur den praktiska användningen av Black-Litterman modellen kan påverka portföljernas prestation. Analysen gjordes genom att beräkna historiska portföljvikter med Black-Litterman modellen med och utan invetserarens egna åsikter angående förväntade avkastningar, och med perfekta förväntade avkastningar. Därefter beräknades historiska avkastningar och volatiliteter för sex investeringsportföljer mellan 2017-09-25 och 2020-01-31. Detta jämfördes med benchmarkportföljer, vilka återspeglade den praktiska användningen. Dessa portföljer inkluderade historiskt använda förväntade avkastningar och restriktioner i mean-variance optimeringen. Resultaten visade att investerares åsikter angående förväntade avkastningar hade en negativ effekt på avkastningen (lägre avkastning), positiv effekt på volatiliteten (lägre risk), vilket resulterade i en högre Sharpe kvot. Restriktionerna i mean-variance optimeringen som användes i benchmarkportföjerna resulterade i en lägre totalavkastning. Sammanfattningsvis visade Black-Litterman modellen robusthet och genererade inte ointuitiva eller olämpliga portföljer, och modellen har stor potential med ökad träffsäkerhet i investerarens åsikter angående förväntade avkastningar.
20

Otimização de carteiras regularizadas empregando informações de grupos de ativos para o mercado brasileiro

Martins, Diego de Carvalho 06 February 2015 (has links)
Submitted by Diego de Carvalho Martins (diego.cmartins@gmail.com) on 2015-03-03T17:37:26Z No. of bitstreams: 1 Dissertação Diego Martins Vf.pdf: 5717457 bytes, checksum: 7b47eb855a437b18798c842352f083b8 (MD5) / Rejected by Renata de Souza Nascimento (renata.souza@fgv.br), reason: Prezado Diego, Encaminharei por e-mail o que deve ser alterado, para que possamos aceita-lo junto à biblioteca. Att Renata on 2015-03-03T21:33:00Z (GMT) / Submitted by Diego de Carvalho Martins (diego.cmartins@gmail.com) on 2015-03-03T22:13:33Z No. of bitstreams: 1 Dissertação Diego Martins Vf.pdf: 5717977 bytes, checksum: 446abdc648b62abddb519b99648b6a3a (MD5) / Approved for entry into archive by Renata de Souza Nascimento (renata.souza@fgv.br) on 2015-03-04T17:27:29Z (GMT) No. of bitstreams: 1 Dissertação Diego Martins Vf.pdf: 5717977 bytes, checksum: 446abdc648b62abddb519b99648b6a3a (MD5) / Made available in DSpace on 2015-03-04T18:27:00Z (GMT). No. of bitstreams: 1 Dissertação Diego Martins Vf.pdf: 5717977 bytes, checksum: 446abdc648b62abddb519b99648b6a3a (MD5) Previous issue date: 2015-02-06 / This work aims to analyze the performance of regularized mean-variance portfolios, employing financial assets available in Brazilian markets. In particular, regularized portfolios are obtained by restricting the norm of the portfolio-weights vector, following DeMiguel et al. (2009). Additionally, we analyze the performance of portfolios that take into account information about the group structure of assets with similar characteristics, as proposed by Fernandes, Rocha and Souza (2011). While the covariance matrix employed is the sample one, the expected returns are obtained by reverse optimization of market equilibrium portfolio proposed by Black and Litterman (1992). The empirical analysis out of the sample for the period between January 2010 and October 2014 indicates that, in line with previous studies, penalizing the norm of weights can (depending on the chosen standard and intensity of the restriction) lead to portfolios having best performances in terms of return and Sharpe, when compared to portfolios obtained via Markowitz models. In addition, the inclusion of group information can also be beneficial in order to calculate optimal portfolios, when compared to both Markowitz portfolios or without using group information. / Este trabalho se dedica a analisar o desempenho de modelos de otimização de carteiras regularizadas, empregando ativos financeiros do mercado brasileiro. Em particular, regularizamos as carteiras através do uso de restrições sobre a norma dos pesos dos ativos, assim como DeMiguel et al. (2009). Adicionalmente, também analisamos o desempenho de carteiras que levam em consideração informações sobre a estrutura de grupos de ativos com características semelhantes, conforme proposto por Fernandes, Rocha e Souza (2011). Enquanto a matriz de covariância empregada nas análises é a estimada através dos dados amostrais, os retornos esperados são obtidos através da otimização reversa da carteira de equilíbrio de mercado proposta por Black e Litterman (1992). A análise empírica fora da amostra para o período entre janeiro de 2010 e outubro de 2014 sinaliza-nos que, em linha com estudos anteriores, a penalização das normas dos pesos pode levar (dependendo da norma escolhida e da intensidade da restrição) a melhores performances em termos de Sharpe e retorno médio, em relação a carteiras obtidas via o modelo tradicional de Markowitz. Além disso, a inclusão de informações sobre os grupos de ativos também pode trazer benefícios ao cálculo de portfolios ótimos, tanto em relação aos métodos tradicionais quanto em relação aos casos sem uso da estrutura de grupos.

Page generated in 0.0578 seconds