Spelling suggestions: "subject:"threebody problem"" "subject:"freebody problem""
71 |
Le problème mathématique des trois corps, abordé simultanément sous l'angle de la recherche théorique et celui de la diffusion auprès de publics variés / The mathematical three body problem, simultaneoulsy addressed through theoretical research, and through popularization toward various publicsLhuissier, Marie 21 November 2018 (has links)
Cette thèse contient deux parties distinctes, reliées par le thème de l’étude géométrique du problème à trois corps. La première partie présente un point de vue sur les enjeux et les perspectives liés à la diffusion des mathématiques, et illustre ce point de vue à l’aide de deux projets de diffusion « grand public » : une exposition virtuelle autour de la mécanique céleste et du problème à trois corps, et un duo de contes mathématiques pour enfants, l’un sur la forme de la lune, et l’autre sur l’enlacement de courbes fermées. La présentation de ces projets est suivie d’une analyse a priori et d’une étude des observations recueillies lors de différentes expérimentations auprès de publics variés. La deuxième partie est consacrée à l’étude – théorique et numérique – de l’enlacement des trajectoires de quelques systèmes dynamiques sur la 3-sphère, et en particulier de certaines instances du problème à trois corps. On y présente d’abord le problème à trois corps restreint, plan, circulaire, en s’intéressant tout particulièrement au cas où une des deux primaires disparait. On se ramène ainsi à un flot sur la 3-shpère dont on connaît explicitement des sections de Birkhoff en disque ou en anneau, et on met en lumière des éléments qui tendent à montrer le caractère lévogyre de ce flot. On explore ensuite, à l’aide de simulations numériques, la possibilité que le système reste lévogyre sur un domaine assez éloigné de ce cas dégénéré. Enfin, on s’intéresse aux flots sur la 3-sphère qui admettent une section de Birkhoff en disque et on traduit la notion d’enlacement de mesures invariantes pour le flot en termes d’enroulement de mesures invariantes pour le difféomorphisme de premier retour. / This thesis contains two distinct parts, connected by the subject of the geometric study of the three body problem.The first part presents a point of view about the stakes and prospects of the popularization of mathematics, and it illustrates this point of view with two projects of popularization for a general public : a virtual exhibition about celestial mechanics and the three body problem, and a pair of mathematical tales for children, one about the shape of the moon, and the other about the linking number of two closed curves. The presentation of these projects is followed by an initial analysis and by a study of the observations collected during different experimentations towards various publics. The second part is devoted to the theoretical and computational study of the linking number of trajectories from a few dynamical systems on the 3-sphere, and in particular from some cases of the restricted three body problem. We first present the planar, circular, restricted three body problem, with a particular attention to the case where one of the two heavy bodies vanishes. We thus restrict ourselves to a flow on the 3-shpere for which disk-like or annular-like Birkhoff sections are explicitely known, and we bring to light evidences of the right-handedness of this flow. Then we investigate, with the help of computer simulations, the possibility for the system to stay right-handed over a domain rather distant from this degenerate case. Finally, we consider the flows on the 3-sphere which admit a disk-like Birkhoff section, and we translate the notion of linking for measures that are invariant by a flow into the notion of winding for measures that are invariant by the first return map on the disk.
|
72 |
Dynamics of few-cluster systems.Lekala, Mantile Leslie 30 November 2004 (has links)
The three-body bound state problem is considered using configuration-space Faddeev equations within the framework of the total-angular-momentum representation. Different
three-body systems are considered, the main concern of the investigation being the
i) calculation of binding energies for weakly bounded trimers, ii) handling of systems
with a plethora of states, iii) importance of three-body forces in trimers, and iv) the
development of a numerical technique for reliably handling three-dimensional integrodifferential
equations. In this respect we considered the three-body nuclear problem, the
4He trimer, and the Ozone (16 0 3 3) system.
In practice, we solve the three-dimensional equations using the orthogonal collocation
method with triquintic Hermite splines. The resulting eigenvalue equation is handled
using the explicitly Restarted Arnoldi Method in conjunction with the Chebyshev polynomials to improve convergence. To further facilitate convergence, the grid knots are distributed quadratically, such that there are more grid points in regions where the potential is stronger. The so-called tensor-trick technique is also employed to handle
the large matrices involved. The computation of the many and dense states for the Ozone case is best implemented using the global minimization program PANMIN based
on the well known MERLIN optimization program. Stable results comparable to those of other methods were obtained for both nucleonic and molecular systems considered. / Physics / D.Phil. (Physics)
|
73 |
Chaos dynamique dans le problème à trois corps restreint / Dynamical chaos in the restricted three body problemRollin, Guillaume 02 November 2015 (has links)
Capture-évolution-éjection de particules par des systèmes binaires (étoile-planète, étoile binaire, étoile-trou noir supermassif, trou noir binaire, ...). Dans une première partie, en utilisant une généralisation de l'application de Kepler, nous décrivons, au travers du cas de 1P/Halley, la dynamique chaotique des comètes dans le système solaire. Le système binaire, alors considéré, est composé du Soleil et de Jupiter. L'application symplectique utilisée permet de rendre compte des différentes caractéristiques de la dynamique : trajectoires chaotiques, îlots invariants de KAM associés aux résonances avec le mouvement orbital de Jupiter,... Nous avons déterminé de façon exacte et semi-analytique l'énergie échangée (fonction kick) entre le système solaire et la comète de Halley à chaque passage au périhélie. Cette fonction kick est la somme des contributions des problèmes à trois corps Soleil-planète-comète associés aux 8 planètes du système solaire. Nous avons montré que chacune de ces contributions peut être décomposée en un terme keplerien associé au potentiel gravitationnel de la planète et un terme dipolaire dû au mouvement du soleil autour du centre de masse du système solaire. Dans une deuxième partie, nous avons utilisé la généralisation de l'application de Kepler pour étudier la capture de particules de matière noire au sein des systèmes binaires. La section efficace de capture a été calculée et montre que la capture à longue portée est bien plus efficace que la capture due aux rencontres proches. Nous montrons également l'importance de la vitesse de rotation du système binaire dans le processus de capture. Notamment, un système binaire en rotation ultrarapide accumulera en son sein une densité de matière jusqu'à 10^4 fois celle du flot de matière le traversant. Dans la dernière partie, en intégrant les équations du mouvement du problème à trois corps restreint plan, nous avons étudié l'éjection des particules capturées par un système binaire. Dans le cas d'un système binaire dont les deux corps sont de masses comparables, alors que la majorité des particules sont éjectées immédiatement, nous montrons, sur les sections de Poincaré, que la trace des particules restant indéfiniment aux abords du système binaire forme une structure fractale caractéristique d'un répulseur étrange associé à un système chaotique ouvert. Cette structure fractale, également présente dans l'espace réel, a une forme de spirale à deux bras partageant des similitudes avec les structures spiralées des galaxies comme la nôtre. / This work is devoted to the study of the restricted 3-body problem and particularly to the capture-evolution-ejection process of particles by binary systems (star-planet, binary star, star-supermassive black hole, binary black hole, ...). First, using a generalized Kepler map, we describe, through the case of 1P/Halley, the chaotic dynamics of comets in the Solar System. The here considered binary system is the couple Sun-Jupiter. The symplectic application we use allows us to depict the main characteristics of the dynamics: chaotic trajectories, KAM islands associated to resonances with Jupiter orbital motion, ... We determine exactly and semi-analytically the exchange of energy (kick function) between the Solar System and 1P/Halley at its passage at perihelion. This kick function is the sum of the contributions of 3-body problems Sun-planet-comet associated to the eight planets. We show that each one of these contributions can be split in a keplerian term associated to the planet gravitational potential and a dipolar term due to the Sun movement around Solar System center of mass. We also use the generalized Kepler map to study the capture of dark matter particles by binary systems. We derive the capture cross section showing that long range capture is far more efficient than close encounter induced capture. We show the importance of the rotation velocity of the binary in the capture process. Particularly, a binary system with an ultrafast rotation velocity accumulates a density of captured matter up to 10^4 times the density of the incoming flow of matter. Finally, by direct integration of the planar restricted 3-body problem equations of motion, we study the ejection of particles initially captured by a binary system. In the case of a binary with two components of comparable masses, although almost all the particles are immediately ejected, we show, on Poincaré sections, that the trace of remaining particles in the vicinity of the binary form a fractal structure associated to a strange repeller associated to chaotic open systems. This fractal structure, also present in real space, has a shape of two arm spiral sharing similarities with spiral structures observed in galaxies such as the Milky Way.
|
74 |
Transfer design methodology between neighborhoods of planetary moons in the circular restricted three-body problemDavid Canales Garcia (11812925) 19 December 2021 (has links)
<div>There is an increasing interest in future space missions devoted to the exploration of key moons in the Solar system. These many different missions may involve libration point orbits as well as trajectories that satisfy different endgames in the vicinities of the moons. To this end, an efficient design strategy to produce low-energy transfers between the vicinities of adjacent moons of a planetary system is introduced that leverages the dynamics in these multi-body systems. Such a design strategy is denoted as the moon-to-moon analytical transfer (MMAT) method. It consists of a general methodology for transfer design between the vicinities of the moons in any given system within the context of the circular restricted three-body problem, useful regardless of the orbital planes in which the moons reside. A simplified model enables analytical constraints to efficiently determine the feasibility of a transfer between two different moons moving in the vicinity of a common planet. Subsequently, the strategy builds moon-to-moon transfers based on invariant manifold and transit orbits exploiting some analytical techniques. The strategy is applicable for direct as well as indirect transfers that satisfy the analytical constraints. The transition of the transfers into higher-fidelity ephemeris models confirms the validity of the MMAT method as a fast tool to provide possible transfer options between two consecutive moons. </div><div> </div><div>The current work includes sample applications of transfers between different orbits and planetary systems. The method is efficient and identifies optimal solutions. However, for certain orbital geometries, the direct transfer cannot be constructed because the invariant manifolds do not intersect (due to their mutual inclination, distance, and/or orbital phase). To overcome this difficulty, specific strategies are proposed that introduce intermediate Keplerian arcs and additional impulsive maneuvers to bridge the gaps between trajectories that connect any two moons. The updated techniques are based on the same analytical methods as the original MMAT concept. Therefore, they preserve the optimality of the previous methodology. The basic strategy and the significant additions are demonstrated through a number of applications for transfer scenarios of different types in the Galilean, Uranian, Saturnian and Martian systems. Results are compared with the traditional Lambert arcs. The propellant and time-performance for the transfers are also illustrated and discussed. As far as the exploration of Phobos and Deimos is concerned, a specific design framework that generates transfer trajectories between the Martian moons while leveraging resonant orbits is also introduced. Mars-Deimos resonant orbits that offer repeated flybys of Deimos and arrive at Mars-Phobos libration point orbits are investigated, and a nominal mission scenario with transfer trajectories connecting the two is presented. The MMAT method is used to select the appropriate resonant orbits, and the associated impulsive transfer costs are analyzed. The trajectory concepts are also validated in a higher-fidelity ephemeris model.</div><div> </div><div>Finally, an efficient and general design strategy for transfers between planetary moons that fulfill specific requirements is also included. In particular, the strategy leverages Finite-Time Lyapunov Exponent (FTLE) maps within the context of the MMAT scheme. Incorporating these two techniques enables direct transfers between moons that offer a wide variety of trajectory patterns and endgames designed in the circular restricted three-body problem, such as temporary captures, transits, takeoffs and landings. The technique is applicable to several mission scenarios. Additionally, an efficient strategy that aids in the design of tour missions that involve impulsive transfers between three moons located in their true orbital planes is also included. The result is a computationally efficient technique that allows three-moon tours designed within the context of the circular restricted three-body problem. The method is demonstrated for a Ganymede->Europa->Io tour.</div>
|
75 |
Bound states for A-body nuclear systemsMukeru, Bahati 03 1900 (has links)
In this work we calculate the binding energies and root-mean-square radii for A−body
nuclear bound state systems, where A ≥ 3. To study three−body systems, we employ
the three−dimensional differential Faddeev equations with nucleon-nucleon semi-realistic
potentials. The equations are solved numerically. For this purpose, the equations are
transformed into an eigenvalue equation via the orthogonal collocation procedure using
triquintic Hermite splines. The resulting eigenvalue equation is solved using the Restarted
Arnoldi Algorithm. Ground state binding energies of the 3H nucleus are determined.
For A > 3, the Potential Harmonic Expansion Method is employed. Using this method,
the Schr¨odinger equation is transformed into coupled Faddeev-like equations. The Faddeevlike
amplitudes are expanded on the potential harmonic basis. To transform the resulting
coupled differential equations into an eigenvalue equation, we employ again the orthogonal
collocation procedure followed by the Gauss-Jacobi quadrature. The corresponding
eigenvalue equation is solved using the Renormalized Numerov Method to obtain ground
state binding energies and root-mean-square radii of closed shell nuclei 4He, 8Be, 12C, 16O
and 40Ca. / Physics / M. Sc. (Physics)
|
76 |
Cislunar Trajectory Design Methodologies Incorporating Quasi-Periodic Structures With ApplicationsBrian P. McCarthy (5930747) 29 April 2022 (has links)
<p> </p>
<p>In the coming decades, numerous missions plan to exploit multi-body orbits for operations. Given the complex nature of multi-body systems, trajectory designers must possess effective tools that leverage aspects of the dynamical environment to streamline the design process and enable these missions. In this investigation, a particular class of dynamical structures, quasi-periodic orbits, are examined. This work summarizes a computational framework to construct quasi-periodic orbits and a design framework to leverage quasi-periodic motion within the path planning process. First, quasi-periodic orbit computation in the Circular Restricted Three-Body Problem (CR3BP) and the Bicircular Restricted Four-Body Problem (BCR4BP) is summarized. The CR3BP and BCR4BP serve as preliminary models to capture fundamental motion that is leveraged for end-to-end designs. Additionally, the relationship between the Earth-Moon CR3BP and the BCR4BP is explored to provide insight into the effect of solar acceleration on multi-body structures in the lunar vicinity. Characterization of families of quasi-periodic orbits in the CR3BP and BCR4BP is also summarized. Families of quasi-periodic orbits prove to be particularly insightful in the BCR4BP, where periodic orbits only exist as isolated solutions. Computation of three-dimensional quasi-periodic tori is also summarized to demonstrate the extensibility of the computational framework to higher-dimensional quasi-periodic orbits. Lastly, a design framework to incorporate quasi-periodic orbits into the trajectory design process is demonstrated through a series of applications. First, several applications were examined for transfer design in the vicinity of the Moon. The first application leverages a single quasi-periodic trajectory arc as an initial guess to transfer between two periodic orbits. Next, several quasi-periodic arcs are leveraged to construct transfer between a planar periodic orbit and a spatial periodic orbit. Lastly, transfers between two quasi-periodic orbits are demonstrated by leveraging heteroclinic connections between orbits at the same energy. These transfer applications are all constructed in the CR3BP and validated in a higher-fidelity ephemeris model to ensure the geometry persists. Applications to ballistic lunar transfers are also constructed by leveraging quasi-periodic motion in the BCR4BP. Stable manifold trajectories of four-body quasi-periodic orbits supply an initial guess to generate families of ballistic lunar transfers to a single quasi-periodic orbit. Poincare mapping techniques are used to isolate transfer solutions that possess a low time of flight or an outbound lunar flyby. Additionally, impulsive maneuvers are introduced to expand the solution space. This strategy is extended to additional orbits in a single family to demonstrate "corridors" of transfers exist to reach a type of destination motion. To ensure these transfers exist in a higher fidelity model, several solutions are transitioned to a Sun-Earth-Moon ephemeris model using a differential corrections process to show that the geometries persist.</p>
|
77 |
Navigating Chaos: Resonant Orbits for Sustaining Cislunar OperationsMaaninee Gupta (8770355) 26 April 2024 (has links)
<p dir="ltr">The recent and upcoming increase in spaceflight missions to the lunar vicinity necessitates methodologies to enable operations beyond the Earth. In particular, there is a pressing need for a Space Domain Awareness (SDA) and Space Situational Awareness (SSA) architecture that encompasses the realm of space beyond the sub-geosynchronous region to sustain humanity's long-term presence in that region. Naturally, the large distances in the cislunar domain restrict access rapid and economical access from the Earth. In addition, due to the long ranges and inconsistent visibility, the volume contained within the orbit of the Moon is inadequately observed from Earth-based instruments. As such, space-based assets to supplement ground-based infrastructure are required. The need for space-based assets to support a sustained presence is further complicated by the challenging dynamics that manifest in cislunar space. Multi-body dynamical models are necessary to sufficiently model and predict the motion of any objects that operate in the space between the Earth and the Moon. The current work seeks to address these challenges in dynamical modeling and cislunar accessibility via the exploration of resonant orbits. These types of orbits, that are commensurate with the lunar sidereal period, are constructed in the Earth-Moon Circular Restricted Three-Body Problem (CR3BP) and validated in the Higher-Fidelity Ephemeris Model (HFEM). The expansive geometries and energy options supplied by the orbits are favorable for achieving recurring access between the Earth and the lunar vicinity. Sample orbits in prograde resonance are explored to accommodate circumlunar access from underlying cislunar orbit structures via Poincaré mapping techniques. Orbits in retrograde resonance, due to their operational stability, are employed in the design of space-based observer constellations that naturally maintain their relative configuration over successive revolutions. </p><p dir="ltr"> Sidereal resonant orbits that are additionally commensurate with the lunar synodic period are identified. Such orbits, along with possessing geometries inherent to sidereal resonant behavior, exhibit periodic alignments with respect to the Sun in the Earth-Moon rotating frame. This characteristic renders the orbits suitable for hosting space-based sensors that, in addition to naturally avoiding eclipses, maintain visual custody of targets in the cislunar domain. For orbits that are not eclipse-favorable, a penumbra-avoidance path constraint is implemented to compute baseline trajectories that avoid Earth and Moon eclipse events. Constellations of observers in both sidereal and sidereal-synodic resonant orbits are designed for cislunar SSA applications. Sample trajectories are assessed for the visibility of various targets in the cislunar volume, and connectivity relative to zones of interest in Earth-Moon plane. The sample constellations and observer trajectories demonstrate the utility of resonant orbits for various applications to sustain operations in cislunar space. </p>
|
78 |
Διαφορική θεωρία Galois και μη-ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Stormer και του ισοσκελούς προβλήματος τριών σωμάτωνΝομικός, Δημήτριος 20 October 2010 (has links)
Στην παρούσα διατριβή μελετήσαμε την ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Størmer (ASP) και του ισοσκελούς προβλημάτος τριών σωμάτων (IP), με εφαρμογή της θεωρίας Morales-Ramis-Simó. Τα αποτελέσματα της μελέτης δημοσιεύθηκαν στο περιοδικό Physica D: Nonlinear Phenomena.
Ένα σύστημα Hamilton SH, Ν βαθμών ελευθερίας, είναι ολοκληρώσιμο (κατά Liouville) όταν επιδέχεται Ν συναρτησιακώς ανεξάρτητα και σε ενέλιξη πρώτα ολοκληρώματα. Οι J.J. Morales-Ruiz, J.P. Ramis και C. Simó απέδειξαν ότι αν ένα SH είναι ολοκληρώσιμο, τότε η ταυτοτική συνιστώσα G0k της διαφορικής ομάδας Galois των εξισώσεων μεταβολών VE¬k τάξης k , που αντιστοιχούν σε μια ολοκληρωτική καμπύλη του SH, είναι αβελιανή.
Το ASP μπορεί να θεωρηθεί ότι είναι ένα σύστημα Hamilton δυο βαθμών ελευθερίας που περιέχει τις παραμέτρους pφ και ν2>0, το οποίο περιγράφει την κίνηση ενός φορτισμένου σωματιδίου υπό την επίδραση του μαγνητικού πεδίου ενός διπόλου. Οι Α. Almeida, T. Stuchi είχαν αποδείξει ότι το ASP είναι μη-ολοκληρώσιμο για pφ≠0 και ν2>0, ενω για pφ=0 είχαν αποδείξει τη μη-ολοκληρωσιμότητα των περιπτώσεων που αντιστοιχούν στις τιμές ν2≠5/12, 2/3. Η δική μας διερεύνηση απέδειξε ότι το ASP με pφ=0 (ASP0) είναι, επίσης, μη-ολοκληρώσιμο για ν2=5/12, 2/3. Αρχικά, με χρήση της μεθόδου Yoshida, αναλύσαμε τις G01 των VE¬1, που αντιστοιχούν σε δύο ολοκληρωτικές καμπύλες του ASP0, καταλήγοντας ότι οι G01 είναι μη-αβελιανές για ν2≠2/3. Στη συνέχεια, ορίσαμε τις VE3 κατά μήκος μιας τρίτης ολοκληρωτικής καμπύλης του ASP0 και δείξαμε ότι η αντίστοιχη G03 είναι μη-αβελιανή για ν2=2/3. Σύμφωνα με τη θεωρία Morales-Ramis-Simó, τα προαναφερόμενα αποδεικνύουν τη μη-ολοκληρωσιμότητα του ASΡ για pφ=0 και ν2>0.
Το ΙΡ είναι μια υποπερίπτωση του προβλήματος τριών σωμάτων και μπορεί να μελετηθεί ως ένα σύστημα Hamilton δύο βαθμών ελευθερίας με παραμέτρους pφ και m, m3>0. Η προγενέστερη ανάλυση του ΙΡ υπεδείκνυε τη μη-ολοκληρωσιμότητα του συστήματος, όμως είχε πραγματοποιηθεί με χρήση αριθμητικών μεθόδων. Βρίσκοντας από μια ολοκληρωτική καμπύλη για κάθε μια απο τις περιπτώσεις pφ=0, pφ≠0, ορίσαμε τις αντίστοιχες VE1 και αποδείξαμε τη μη-ολοκληρωσιμότητα του ΙΡ. Για pφ=0 χρησιμοποιήσαμε τη μέθοδο Yoshida για να μελετήσουμε την G01, ενώ για pφ≠0 εφαρμόσαμε τον αλγόριθμο Kovacic και ερευνητικά αποτελέσματα των D. Boucher, J.A. Weil για να διερευνήσουμε την αντίστοιχη G01. Οι G01 και στις δυο προαναφερόμενες περιπτώσεις είναι μη-αβελιανές, οπότε το ΙΡ είναι μη-ολοκληρώσιμο, σύμφωνα με τη θεωρία Morales-Ramis-Simó. / In the present dissertation we studied the integrability of the anisotropic Stormer problem (ASP) and the isosceles three-body problem (IP), applying the Morales-Ramis-Simo theory. The results of our study were published by the journal Physica D: Nonlinear Phenomena.
A Hamiltonian system SH, of N degrees of freedom, is integrable (in the Liouville sense) if it admits an involutive set of N functionally independent first integrals. J.J. Morales-Ruiz, J.P. Ramis and C. Simó proved that if an SH is integrable, then the identity component G0k of the differential Galois group of the variational equations VE¬k of order k that correspond to an integral curve of the SH, is abelian.
The ASP can be considered as a Hamiltonian system of two degrees of freedom that contains the parameters pφ and ν2>0, which describes the motion of a charged particle under the influence of the magnetic field of a dipole. Α. Almeida, T. Stuchi had proved that the ASP is non-integrable for pφ≠0 and ν2>0, while for pφ=0 they had proved the non-integrability of the cases that correspond to ν2≠5/12, 2/3. Our study proved that the ASP with pφ=0 (ASP0) is, also, non-integrable for ν2=5/12, 2/3. Initially, using the Yoshida method, we analysed the G01 of the VE¬1, that correspond to two integrals curves of the ASP0, concluding that they are non-abelian for ν2≠2/3. Then, we defined the VE3 along a third integral curve of the ASP0 and indicated that the corresponding G03 is non-abelian for ν2=2/3. According to the Morales-Ramis-Simó theory, the aforementioned considerations prove the non-integrability of the ASP for pφ=0 and ν2>0.
The IP is a special case of the three-body problem and it can be treated as a Hamiltonian system of two degrees of freedom that embodies the parameters pφ and m, m3>0. Previous analysis of the IP suggested the non-integrability of the system, but it was performed with the use of numerical methods. Finding an integral curve for each of the cases pφ=0, pφ≠0, we defined the corresponding VE1 and proved the non-integrability of the IP. For pφ=0 we used the Yoshida method to examine G01 , while for pφ≠0 we applied the Kovacic algorithm and some results of D. Boucher, J.A. Weil to investigate the corresponding G01 . In both of the aforementioned cases the G01 were non-abelian, yielding IP non-integrable, according to the Morales-Ramis-Simó theory.
|
79 |
MASCOT Follow-on Mission Concept Study with Enhanced GNC and Propulsion Capability of the Nano-lander for Small Solar System Bodies (SSSB) MissionsChand, Suditi January 2020 (has links)
This thesis describes the design, implementation and analysis for a preliminary study for DLR's MASCOT lander's next mission to Small Solar System Bodies (SSSB). MASCOT (Mobile Asteroid Surface Scout) is a nano-lander that flew aboard Hayabusa2 (JAXA) to an asteroid, Ryugu. It is a passive nano-spacecraft that can only be deployed ballistically from a hovering spacecraft. Current research focusses on optimizing similar close-approach missions for deploying landers or small cubesats into periodic orbits but does not provide solutions with semi-autonomous small landers deployed from farther distances. This study aims to overcome this short-coming by proposing novel yet simple Guidance, Navigation and Control (GNC) and Propulsion systems for MASCOT. Due to its independent functioning and customisable anatomy, MASCOT can be adapted for several mission scenarios. In this thesis, a particular case-study is modelled for the HERA (ESA) mission. The first phase of the study involves the design of a landing trajectory to the moon of the Didymos binary asteroid system. For a preliminary analysis, the system - Didymain (primary body), Didymoon (secondary body) and MASCOT (third body) - are modelled as a Planar Circular Restricted Three Body Problem (PCR3BP). The numerical integration methodology used for the trajectory is the variable-step Dormand–Prince (Runge Kutta) ODE-4,5 (Ordinary Differential Equation) solver. The model is built in MATLAB-Simulink (2019a) and refined iteratively by conducting a Monte Carlo analysis using the Sensitivity Analysis Tool. Two models - a thruster-controlled system and an alternative hybrid propulsion system of solar sails and thrusters - are simulated and proven to be feasible. The results show that the stable manifold near Lagrange 2 points proposed by Tardivel et. al. for ballistic landings can still be exploited for distant deployments if a single impulse retro-burn is done at an altitude of 65 m to 210 m above ground with error margins of 50 m in position, 5 cm/s in velocity and 0.1 rad in attitude. The next phase is the conceptual design of a MASCOT-variant with GNC abilities. Based on the constraints and requirements of the flown spacecraft, novel GNC and Propulsion systems are chosen. To identify the overriding factors in using commercial-off-the-shelf (COTS) for MASCOT, a market survey is conducted and the manufacturers of short-listed products are consulted. The final phase of the study is to analyse the proposed equipment in terms of parameter scope and capability-oriented trade-offs. Two traceability matrices, one for devised solutions and system and another for solutions versus capabilities, are constructed. The final proposed system is coherent with the given mass, volume and power constraints. A distant deployment of MASCOT-like landers for in-situ observation is suggested as an advantageous and risk-reducing addition to large spacecraft missions to unknown micro-gravity target bodies. Lastly, the implications of this study and the unique advantages of an enhanced MASCOT lander are explored for currently planned SSSB missions ranging from multiple rendezvous, fly-by or sample-return missions. Concluding, this study lays the foundation for future work on advanced GNC concepts for unconventional spacecraft topology for the highly integrated small landers. / <p>This thesis is submitted as per the requirements for the Spacemaster (Round 13) dual master's degree under the Erasmus Mundus Joint Master's Degree Programme. </p> / MASCOT team, DLR
|
80 |
Characterization of Quasi-Periodic Orbits for Applications in the Sun-Earth and Earth-Moon SystemsBrian P. McCarthy (5930747) 17 January 2019 (has links)
<div>As destinations of missions in both human and robotic spaceflight become more exotic, a foundational understanding the dynamical structures in the gravitational environments enable more informed mission trajectory designs. One particular type of structure, quasi-periodic orbits, are examined in this investigation. Specifically, efficient computation of quasi-periodic orbits and leveraging quasi-periodic orbits as trajectory design alternatives in the Earth-Moon and Sun-Earth systems. First, periodic orbits and their associated center manifold are discussed to provide the background for the existence of quasi-periodic motion on n-dimensional invariant tori, where n corresponds to the number of fundamental frequencies that define the motion. Single and multiple shooting differential corrections strategies are summarized to compute families 2-dimensional tori in the Circular Restricted Three-Body Problem (CR3BP) using a stroboscopic mapping technique, originally developed by Howell and Olikara. Three types of quasi-periodic orbit families are presented: constant energy, constant frequency ratio, and constant mapping time families. Stability of quasi-periodic orbits is summarized and characterized with a single stability index quantity. For unstable quasi-periodic orbits, hyperbolic manifolds are computed from the differential of a discretized invariant curve. The use of quasi-periodic orbits is also demonstrated for destination orbits and transfer trajectories. Quasi-DROs are examined in the CR3BP and the Sun-Earth-Moon ephemeris model to achieve constant line of sight with Earth and avoid lunar eclipsing by exploiting orbital resonance. Arcs from quasi-periodic orbits are leveraged to provide an initial guess for transfer trajectory design between a planar Lyapunov orbit and an unstable halo orbit in the Earth-Moon system. Additionally, quasi-periodic trajectory arcs are exploited for transfer trajectory initial guesses between nearly stable periodic orbits in the Earth-Moon system. Lastly, stable hyperbolic manifolds from a Sun-Earth L<sub>1</sub> quasi-vertical orbit are employed to design maneuver-free transfer from the LEO vicinity to a quasi-vertical orbit.</div>
|
Page generated in 0.046 seconds