Spelling suggestions: "subject:"topos"" "subject:"copos""
61 |
Äganderätt i svensk skogsdebatt : En retorisk analys av hinder och möjligheter för samförstånd i en polariserad debatt / Property rights in Swedish forest debate : A rhetorical analysis of obstacles and possibilites for mutual understanding in a polarized debateMännikkö, Johanna January 2022 (has links)
The climate crisis has increased the demands on Swedish forestry and given fuel to an already polarized debate concerning how Swedish forests should be managed and what constitutes sustainable forestry. Questions of ownership and who should have a say in the matter is at the center of this conflict. This essay examines the topic of ownership in the Swedish forest debate. The argumentation of stakeholders in the debate was analyzed to show which topoi contribute to the conflict and create inertia towards reaching mutual understanding. Thirty-nine opinion articles from Swedish news media, published between April and October 2021, were analyzed through a critical textual analysis. Two primary groupings among the debaters were found: those who argue to strengthen the rights of forest owners, and those who argue for more regulation or conservation. Identified topoi show that emotions and trust play a key role in the conflict. Ways of working with this and possibilities for discursive meeting places are discussed. Making explicit important values, clearly defining important terms, and focusing on the right subject matters are also suggested to enhance possibilities for mutual understanding.
|
62 |
Existential completion and pseudo-distributive laws: an algebraic approach to the completion of doctrinesTrotta, Davide 17 December 2019 (has links)
The main purpose of this thesis is to combine the categorical approach to logic given by the study of doctrines, with the universal algebraic techniques given by the theory of the pseudo-monads and pseudo-distributive laws. Every completions of doctrines is then formalized by a pseudo-monad, and then combinations of these are studied by the analysis of the pseudo-distributive laws. The starting point are the works of Maietti and Rosolini, in which they describe three completions for elementary doctrines: the first which adds full comprehensions, the second comprehensive diagonals, and the third quotients. Then we determine the existential completion of a primary doctrine, and we prove that the 2-monad obtained from it is lax-idempotent, and that the 2-category of existential doctrines is isomorphic to the 2-category of algebras for this 2-monad. We also show that the existential completion of an elementary doctrine is again elementary and we extend the notion of exact completion of an elementary existential doctrine to an arbitrary elementary doctrine. Finally we present the elementary completion for a primary doctrine whose base category has finite limits. In particular we prove that, using a general results about unification for first order languages, we can easily add finite limits to a syntactic category, and then apply the elementary completion for syntactic doctrines. We conclude with a complete description of elementary completion for primary doctrine whose base category is the free product completion of a discrete category, and we show that the 2-monad constructed from the 2-adjunction is lax-idempotent.
|
63 |
La fuga del MRTA, un ejemplo del uso de la no ficción en determinados contextos sociopolíticos del Perú.Rodríguez Quezada, Mario 22 August 2014 (has links)
En la actualidad el papel de los medios de comunicación como simplificadores de la
realidad adquiere una gran relevancia; esto debido a que facilitan la comprensión de una
realidad en donde la inmediatez de la información es una ley que ha dejado en un segundo
plano el análisis y la reflexión.
Consideramos que la función simplificadora de los medios de comunicación tiene por
objetivo el crear, en muchos casos, una estructura episódica unitaria, la cual permite al
receptor comprender con menos dificultades la gran cantidad de datos que tienen los
diversos formatos propios del periodismo.
Dentro de esta misión de hacer más fácil de comprender a algunos eventos de la realidad,
aparecen los libros de no ficción, género periodístico que se erige como una alternativa
atractiva e importante en un mercado de la información en donde el entretenimiento suele
ser el primer o único objetivo. Esta técnica se aleja de la acumulación de datos sin
interpretación en unas cuantas líneas y propone al receptor, la posibilidad de acceder a un
análisis detallado de toda una época, un evento en particular o de un personaje específico.
Los libros de no ficción son importantes porque le permiten al receptor tener a su
disposición información narrada de forma episódica. Esta forma de contar una historia es la
que usan los lectores para narrar hechos vinculados a su cotidianidad y por consiguiente, es
una construcción narrativa fácilmente identificable y comprensible.
|
64 |
Grothendieck et les topos : rupture et continuité dans les modes d'analyse du concept d'espace topologiqueBélanger, Mathieu 04 1900 (has links)
La thèse présente une analyse conceptuelle de l'évolution du concept d'espace topologique. En particulier, elle se concentre sur la transition des espaces topologiques hérités de Hausdorff aux topos de Grothendieck.
Il en ressort que, par rapport aux espaces topologiques traditionnels, les topos transforment radicalement la conceptualisation topologique de l'espace. Alors qu'un espace topologique est un ensemble de points muni d'une structure induite par certains sous-ensembles appelés ouverts, un topos est plutôt une catégorie satisfaisant certaines propriétés d'exactitude.
L'aspect le plus important de cette transformation tient à un renversement de la relation dialectique unissant un espace à ses points. Un espace topologique est entièrement déterminé par ses points, ceux-ci étant compris comme des unités indivisibles et sans structure. L'identité de l'espace est donc celle que lui insufflent ses points. À l'opposé, les points et les ouverts d'un topos sont déterminés par la structure de celui-ci. Qui plus est, la nature des points change: ils ne sont plus premiers et indivisibles. En effet, les points d'un topos disposent eux-mêmes d'une structure.
L'analyse met également en évidence que le concept d'espace topologique évolua selon une dynamique de rupture et de continuité. Entre 1945 et 1957, la topologie algébrique et, dans une certaine mesure, la géométrie algébrique furent l'objet de changements fondamentaux. Les livres Foundations of Algebraic Topology de Eilenberg et Steenrod et Homological Algebra de Cartan et Eilenberg de même que la théorie des faisceaux modifièrent profondément l'étude des espaces topologiques. En contrepartie, ces ruptures ne furent pas assez profondes pour altérer la conceptualisation topologique de l'espace elle-même. Ces ruptures doivent donc être considérées comme des microfractures dans la perspective de l'évolution du concept d'espace topologique.
La rupture définitive ne survint qu'au début des années 1960 avec l'avènement des topos dans le cadre de la vaste refonte de la géométrie algébrique entreprise par Grothendieck. La clé fut l'utilisation novatrice que fit Grothendieck de la théorie des catégories. Alors que ses prédécesseurs n'y voyaient qu'un langage utile pour exprimer certaines idées mathématiques, Grothendieck l'emploie comme un outil de clarification conceptuelle. Ce faisant, il se trouve à mettre de l'avant une approche axiomatico-catégorielle des mathématiques.
Or, cette rupture était tributaire des innovations associées à Foundations of Algebraic Topology, Homological Algebra et la théorie des faisceaux. La théorie des catégories permit à Grothendieck d'exploiter le plein potentiel des idées introduites par ces ruptures partielles.
D'un point de vue épistémologique, la transition des espaces topologiques aux topos doit alors être vue comme s'inscrivant dans un changement de position normative en mathématiques, soit celui des mathématiques modernes vers les mathématiques contemporaines. / The thesis presents a conceptual analysis of the evolution of the topological space concept. More specifically, it looks at the transition from topological spaces inherited from Hausdorff to Grothendieck toposes.
This analysis intends to show that, in comparison to traditional topological spaces, toposes radically transform the topological conceptualization of space. While a topological space is a set of points equipped with a structure induced by some of its subsets called open, a topos is a category satisfying exactness properties.
The most important aspect of this transformation is the reversal of the dialectic between a space and its points. A topological space is totally determined by its points who are in turn understood as being indivisible and devoided of any structure. The identity of the space is thus that induced by its points. Conversely, the points and the open of a topos are determined by its very structure. This entails a change in the nature of the points: they are no longer seen as basic nor as indivisible. Indeed, the points of a topos actually have a structure.
The analysis also shows that the evolution of the topological space concept followed a pattern of rupture and continuity. From 1945 to 1957, algebraic topology and, to a lesser extend, algebraic geometry, went through fundamental changes. The books Foundations of Algebraic Topology by Eilenberg and Steenrod and Homological Algebra by Cartan and Eilenberg as well as sheaf theory deeply modified the way topological spaces were studied. However, these ruptures were not deep enough to change the topological conceptualization of space itself. From the point of view of the evolution of the topological space concept, they therefore must be seen as microfractures.
The definitive rupture only occurred in the early 1960s when Grothendieck introduced toposes in the context of his reform of algebraic geometry. The key was his novel use of category theory. While mathematicians before him saw category theory as a convenient language to organize or express mathematical ideas, Grothendieck used it as a tool for conceptual clarification. Grothendieck thus put forward a new approach to mathematics best described as axiomatico-categorical.
Yet, this rupture was dependent of the innovations associated with Foundations of Algebraic Topology, Homological Algebra and sheaf theory. It is category theory that allowed Grothendieck to reveal the full potentiel of the ideas introduced by these partial ruptures.
From an epistemic point of view, the transition from topological spaces to toposes must therefore be seen as revealing a change of normative position in mathematics, that is that from modernist mathematics to contemporary mathematics.
|
65 |
Poetika prostoru v Alexandrijském kvartetu. / The Poetics of Space in The Alexandria Quartet.Malý, Lukáš January 2015 (has links)
Poetics of space in The Alexandria Quartet is created by multilevel structures. This poetics is closely connected to the main space of the story - Alexandria, which is at the same time one of the novel's topics. Each level is suggested in connection to various theoretical conceptions which are subsequently used for my own analysis. Alexandria is initially an aesthetic coulisse of the story which is portrayed by descriptive passages. Strongly subjective and lyrical descriptions of the city establish overall impression of the story and potentially support reader's experiential illusion. Alexandria and its specificity is further modulated and thematised by its special macroscopic conditions which border Alexandria as an autonomous fictional space with its own rules within the novel's fictional world. Part of poetics of the space in this novel is also portraying spatio-temporal aspect of the reality (chronotope) no only on the level of the story, but also on the level of storytelling. Alexandria is further explicit rhetoric and also through semantic indexation personified and enters semantic relations with the main characters and events. Each level is complementary to another and all are part of the semantic gesture of the novel. Alexandria becomes a separate symbol, mythical entity which importance is...
|
66 |
Infinitesimal models of algebraic theoriesBár, Filip January 2017 (has links)
Smooth manifolds have been always understood intuitively as spaces that are infinitesimally linear at each point, and thus infinitesimally affine when forgetting about the base point. The aim of this thesis is to develop a general theory of infinitesimal models of algebraic theories that provides us with a formalisation of these notions, and which is in accordance with the intuition when applied in the context of Synthetic Differential Geometry. This allows us to study well-known geometric structures and concepts from the viewpoint of infinitesimal geometric algebra. Infinitesimal models of algebraic theories generalise the notion of a model by allowing the operations of the theory to be interpreted as partial operations rather than total operations. The structures specifying the domains of definition are the infinitesimal structures. We study and compare two definitions of infinitesimal models: actions of a clone on infinitesimal structures and models of the infinitesimalisation of an algebraic theory in cartesian logic. The last construction can be extended to first-order theories, which allows us to define infinitesimally euclidean and projective spaces, in principle. As regards the category of infinitesimal models of an algebraic theory in a Grothendieck topos we prove that it is regular and locally presentable. Taking a Grothendieck topos as a base we study lifts of colimits along the forgetful functor with a focus on the properties of the category of infinitesimally affine spaces. We conclude with applications to Synthetic Differential Geometry. Firstly, with the help of syntactic categories we show that the formal dual of every smooth ring is an infinitesimally affine space with respect to an infinitesimal structure based on nil-square infinitesimals. This gives us a good supply of infinitesimally affine spaces in every well-adapted model of Synthetic Differential Geometry. In particular, it shows that every smooth manifold is infinitesimally affine and that every smooth map preserves this structure. In the second application we develop some basic theory of smooth loci and formal manifolds in naive Synthetic Differential Geometry using infinitesimal geometric algebra.
|
67 |
La tour de Teichmüller--GrothendieckZOONEKYND, Vincent 22 June 2001 (has links) (PDF)
Nous commençons par développer la notion de groupe fondamental d'un champ algébrique, à l'aide de sa catégorie de revêtements étales. Cette définition coïncide avec celle, en termes de schémas simpliciaux, de T. Oda. Nous montrons aussi qu'elle permet de retrouver le groupe fondamental profini de l'orbifold analytique associé puis établissons une suite exacte reliant groupe fondamental géométrique et algébrique d'un champ algébrique sur un corps. Dans un deuxième chapitre, après avoir défini les notions d'espace tangent et de diviseur à croisements normaux dans le cadre des champs algébriques, nous généralisons celle de point base tangentiel, bien connue pour les schémas de carcatéristique nulle, aux champs algébriques en caractéristique quelconque. Dans un troisième chapitre, nous montrons que les strates ouvertes de la stratification de l'espace de modules de courbes stables de genre $g$ à $n$ points marqués peuvent se décrire à l'aide des espaces de modules de courbes lisses de dimension inférieure. Nous expliquons aussi comment un graphe en rubans permet de décrire un point-base tangenciel sur ces espaces de modules. Dans un dernier chapitre, nous détaillons certains liens entre la tour des groupoïdes fondamentaux des espaces de modules de courbes lisses relatifs aux points-bases tangenciels précédemment construits et le groupoïde de Lyubashenko, en y construisant certains chemins (torsion, tressage) et en établissant certaines relations entre ces chemins. Dans deux appendices, nous détaillons les notions de champ algébrique et de 2-catégorie.
|
68 |
Grothendieck et les topos : rupture et continuité dans les modes d'analyse du concept d'espace topologiqueBélanger, Mathieu 04 1900 (has links)
La thèse présente une analyse conceptuelle de l'évolution du concept d'espace topologique. En particulier, elle se concentre sur la transition des espaces topologiques hérités de Hausdorff aux topos de Grothendieck.
Il en ressort que, par rapport aux espaces topologiques traditionnels, les topos transforment radicalement la conceptualisation topologique de l'espace. Alors qu'un espace topologique est un ensemble de points muni d'une structure induite par certains sous-ensembles appelés ouverts, un topos est plutôt une catégorie satisfaisant certaines propriétés d'exactitude.
L'aspect le plus important de cette transformation tient à un renversement de la relation dialectique unissant un espace à ses points. Un espace topologique est entièrement déterminé par ses points, ceux-ci étant compris comme des unités indivisibles et sans structure. L'identité de l'espace est donc celle que lui insufflent ses points. À l'opposé, les points et les ouverts d'un topos sont déterminés par la structure de celui-ci. Qui plus est, la nature des points change: ils ne sont plus premiers et indivisibles. En effet, les points d'un topos disposent eux-mêmes d'une structure.
L'analyse met également en évidence que le concept d'espace topologique évolua selon une dynamique de rupture et de continuité. Entre 1945 et 1957, la topologie algébrique et, dans une certaine mesure, la géométrie algébrique furent l'objet de changements fondamentaux. Les livres Foundations of Algebraic Topology de Eilenberg et Steenrod et Homological Algebra de Cartan et Eilenberg de même que la théorie des faisceaux modifièrent profondément l'étude des espaces topologiques. En contrepartie, ces ruptures ne furent pas assez profondes pour altérer la conceptualisation topologique de l'espace elle-même. Ces ruptures doivent donc être considérées comme des microfractures dans la perspective de l'évolution du concept d'espace topologique.
La rupture définitive ne survint qu'au début des années 1960 avec l'avènement des topos dans le cadre de la vaste refonte de la géométrie algébrique entreprise par Grothendieck. La clé fut l'utilisation novatrice que fit Grothendieck de la théorie des catégories. Alors que ses prédécesseurs n'y voyaient qu'un langage utile pour exprimer certaines idées mathématiques, Grothendieck l'emploie comme un outil de clarification conceptuelle. Ce faisant, il se trouve à mettre de l'avant une approche axiomatico-catégorielle des mathématiques.
Or, cette rupture était tributaire des innovations associées à Foundations of Algebraic Topology, Homological Algebra et la théorie des faisceaux. La théorie des catégories permit à Grothendieck d'exploiter le plein potentiel des idées introduites par ces ruptures partielles.
D'un point de vue épistémologique, la transition des espaces topologiques aux topos doit alors être vue comme s'inscrivant dans un changement de position normative en mathématiques, soit celui des mathématiques modernes vers les mathématiques contemporaines. / The thesis presents a conceptual analysis of the evolution of the topological space concept. More specifically, it looks at the transition from topological spaces inherited from Hausdorff to Grothendieck toposes.
This analysis intends to show that, in comparison to traditional topological spaces, toposes radically transform the topological conceptualization of space. While a topological space is a set of points equipped with a structure induced by some of its subsets called open, a topos is a category satisfying exactness properties.
The most important aspect of this transformation is the reversal of the dialectic between a space and its points. A topological space is totally determined by its points who are in turn understood as being indivisible and devoided of any structure. The identity of the space is thus that induced by its points. Conversely, the points and the open of a topos are determined by its very structure. This entails a change in the nature of the points: they are no longer seen as basic nor as indivisible. Indeed, the points of a topos actually have a structure.
The analysis also shows that the evolution of the topological space concept followed a pattern of rupture and continuity. From 1945 to 1957, algebraic topology and, to a lesser extend, algebraic geometry, went through fundamental changes. The books Foundations of Algebraic Topology by Eilenberg and Steenrod and Homological Algebra by Cartan and Eilenberg as well as sheaf theory deeply modified the way topological spaces were studied. However, these ruptures were not deep enough to change the topological conceptualization of space itself. From the point of view of the evolution of the topological space concept, they therefore must be seen as microfractures.
The definitive rupture only occurred in the early 1960s when Grothendieck introduced toposes in the context of his reform of algebraic geometry. The key was his novel use of category theory. While mathematicians before him saw category theory as a convenient language to organize or express mathematical ideas, Grothendieck used it as a tool for conceptual clarification. Grothendieck thus put forward a new approach to mathematics best described as axiomatico-categorical.
Yet, this rupture was dependent of the innovations associated with Foundations of Algebraic Topology, Homological Algebra and sheaf theory. It is category theory that allowed Grothendieck to reveal the full potentiel of the ideas introduced by these partial ruptures.
From an epistemic point of view, the transition from topological spaces to toposes must therefore be seen as revealing a change of normative position in mathematics, that is that from modernist mathematics to contemporary mathematics.
|
69 |
Efeitos de detritos e nutrientes al?ctones sobre estrutura e din?mica tr?fica de ecossistemas lacustres tropicaisRocha, Elinez da Silva 12 July 2014 (has links)
Made available in DSpace on 2015-03-12T11:47:58Z (GMT). No. of bitstreams: 1
ElinezSR_TESE.pdf: 1138025 bytes, checksum: 344a1e74fd6b942b9e479821ac43ff43 (MD5)
Previous issue date: 2014-07-12 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Ecossistemas aqu?ticos recebem elevada quantidade de subs?dios energ?ticos provenientes de fontes al?ctones de detritos e nutrientes. O objetivo deste estudo foi investigar como tais subs?dios interagem com peixes on?voros e afetam a estrutura e din?mica tr?fica de ecossistemas lacustres tropicais. Os efeitos do aporte de detritos al?ctones e da onivoria por peixes filtradores sobre a regula??o das comunidades planct?nicas foram investigados atrav?s de um experimento em 24 mesocosmos, com delineamento fatorial 2x2, onde dois n?veis de detritos (com ou sem aporte) foram combinados com dois n?veis de peixes (presen?a ou aus?ncia) e a resposta do pl?ncton aos tratamentos foi monitorada. Os resultados desse experimento mostram que o aporte de detritos aumentou a concentra??o de nutrientes al?m da biomassa de algas e invertebrados planct?nicos atrav?s da eutrofiza??o dos mesocosmos. No entanto, o efeito positivo do aporte de detritos sobre a biomassa zooplanct?nica foi mais forte na aus?ncia de peixes filtradores. Por outro lado, a presen?a de peixes filtradores reduziu a biomassa zooplanct?nica atrav?s da preda??o e aumentou a biomassa de algas, aparentemente atrav?s da ciclagem de nutrientes. Os efeitos do aporte de nutrientes sobre a estrutura tr?fica dos ecossistemas foi investigada atrav?s da an?lise comparativa de um reservat?rio eutr?fico e outro mesotr?fico, de onde foram amostrados indiv?duos de 13 esp?cies de peixes e seus principais itens alimentares para a an?lise de is?topos est?veis de carbono e nitrog?nio. Os resultados demonstram que a posi??o tr?fica dos peixes foi em geral menor no reservat?rio eutr?fico do que no reservat?rio mesotr?fico. Al?m disso, os resultados de um modelo de mistura sugerem que as fontes pel?gicas de carbono para os peixes foram mais importantes do que as fontes bent?nicas-litor?neas, principalmente no reservat?rio eutr?fico. Portanto, subs?dios al?ctones de detritos e
12
nutrientes alteram a estrutura tr?fica dos ecossistemas lacustres com importantes implica??es para a din?mica desses ecossistemas
|
70 |
Is?topos de Nd na proveni?ncia de rochas e sedimentos da Bacia Potiguar, NE do BrasilMaruoka, Miriam Tyoka da Silva 04 May 2007 (has links)
Made available in DSpace on 2015-03-13T17:08:28Z (GMT). No. of bitstreams: 1
MiriamTSM_DISSERT.pdf: 746109 bytes, checksum: 9993efc70026d11b86a511c7cf5aa9bc (MD5)
Previous issue date: 2007-05-04 / Nd ISOTOPES IN THE PROVENANCE OF TERRIGENOUS AND CARBONATE ROCKS AND SEDIMENTS OF THE POTIGUAR BASIN, NORTHEASTERN BRAZIL. Mesozoic and Cenozoic rocks from the Potiguar Basin, including terrigenous and carbonate sediments have been investigated to identify their isotopic signature and source areas. Additionally, this study aims to determine the provenance of terrigenous and carbonate sediments on the Brazilian Continental shelf adjacent to Potiguar Basin. The
Sm-Nd isotopic signatures of the rocks yielded model ages (TDM) in the range of 2,19- 2,88 Ga, indicating archean to paleoproterozoic sources from the basement. The terrigenous sediments yielded model ages (TDM) in the range of 2,31-2,26 Ga, from 17,5 to 0 cm depth. Despite the small number of samples, limited variations of provenance ages indicates the homogenization of the sediments, probably due to the strong influence of the basement, as the main source of sediments to the shelf. The Sm-Nd isotopic signatures of the carbonate sediments yielded model ages (TDM) in the range of 2,09-2,61
Ga, indicating archean to paleoproterozoic sources from the basement. The results also indicate that the shelf sediments are mainly derived from the A?u River or other small rivers from the Setentrional Sector of Rio Grande do Norte State. The littoral drift doesn?t seem to contribute with sediments from the Oriental Sector since isotopic signatures from this sector were not detected. / An?lises isot?picas Sm-Nd em rochas mesoz?icas e cenoz?icas da Bacia Potiguar, incluindo sedimentos terr?genos e carbon?ticos que aportam do Rio Piranhas-A?u, foram realizadas
objetivando a caracteriza??o de suas assinaturas isot?picas e identifica??o de suas ?reas fonte. As assinaturas isot?picas Sm-Nd das rochas apresentaram idades modelo (TDM) variando de 2,88 a 2,19 Ga, indicando fontes, principalmente, paleoproteroz?icas e arquenas do embasamento. Os sedimentos terr?genos plataformais apresentaram idades modelo (TDM) de 2,31 Ga e 2,26 Ga, coletados, respectivamente, nas profundidades de 10-17,5 cm e 0-5 cm. Apesar do n?mero
pequeno de amostras, a pequena varia??o na idade indica homogeneiza??o dos sedimentos, talvez devido a forte influ?ncia do embasamento como fonte de material para a plataforma. As assinaturas isot?picas Sm-Nd dos sedimentos carbon?ticos plataformais apresentaram idades modelo (TDM) variando de 2,61 a 2,09 Ga, indicando fontes do embasamento arqueano a paleoproteroz?ico. Estes resultados indicam ainda que os sedimentos terr?genos presentes na plataforma em estudo s?o ou foram trazidos principalmente pelo rio A?u, ou outros rios menores da por??o setentrional do Rio Grande do Norte. A deriva litor?nea aparentemente n?o tem compet?ncia para arrastar sedimentos da por??o oriental para a setentrional, tendo em vista que os valores ?Nd registrados n?o s?o compat?veis com as rochas da por??o oriental.
|
Page generated in 0.0356 seconds