• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 54
  • 23
  • 17
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Versatile High Performance Photomechanical Actuators Based on Two-dimensional Nanomaterials

Rahneshin, Vahid 13 July 2018 (has links)
The ability to convert photons into mechanical motion is of significant importance for many energy conversion and reconfigurable technologies. Establishing an optical-mechanical interface has been attempted since 1881; nevertheless, only few materials exist that can convert photons of different wavelengths into mechanical motion that is large enough for practical import. Recently, various nanomaterials including nanoparticles, nanowires, carbon nanotubes, and graphene have been used as photo-thermal agents in different polymer systems and triggered using near infrared (NIR) light for photo-thermal actuation. In general, most photomechanical actuators based on sp bonded carbon namely nanotube and graphene are triggered mainly using near infra-red light and they do not exhibit wavelength selectivity. Layered transition metal dichalcogenides (TMDs) provide intriguing opportunities to develop low cost, light and wavelength tunable stimuli responsive systems that are not possible with their conventional macroscopic counterparts. Compared to graphene, which is just a layer of carbon atoms and has no bandgap, TMDs are stacks of triple layers with transition metal layer between two chalcogen layers and they also possess an intrinsic bandgap. While the atoms within the layers are chemically bonded using covalent bonds, the triple layers can be mechanically/chemically exfoliated due to weak van der Waals bonding between the layers. Due to the large optical absorption in these materials, they are already being exploited for photocatalytic, photoluminescence, photo-transistors, and solar cell applications. The large breaking strength together with large band gap and strong light- matter interaction in these materials have resulted in plethora of investigation on electronic, optical and magnetic properties of such layered ultra-thin semiconductors. This dissertation will go in depth in the synthesis, characterization, development, and application of two- dimensional (2D) nanomaterials, with an emphasis on TMDs and molybdenum disulfide (MoS2), when used as photo-thermal agents in photoactuation technologies. It will present a new class of photo-thermal actuators based on TMDs and hyperelastic elastomers with large opto-mechanical energy conversion, and investigate the layer-dependent optoelectronics and light-matter interaction in these nanomaterials and nanocomposites. Different attributes of semiconductive nanoparticles will be studied through different applications, and the possibility of globally/locally engineering the bandgap of such nanomaterials, along with its consequent effect on optomechanical properties of photo thermal actuators will be investigated. Using liquid phase exfoliation in deionized water, inks based on 2D- materials will be developed, and inkjet printing of 2D materials will be utilized as an efficient method for fast fabrication of functional devices based on nanomaterials, such as paper-graphene-based photo actuators. The scalability, simplicity, biocompatibility, and fast fabrication characteristics of the inkjet printing of 2D materials along with its applicability to a variety of substrates such as plastics and papers can potentially be implemented to fabricate high-performance devices with countless applications in soft robotics, wearable technologies, flexible electronics and optoelectronics, bio- sensing, photovoltaics, artificial skins/muscles, transparent displays and photo-detectors.
32

Iontronic - Étude de dispositifs à effet de champ à base des techniques de grilles liquides ioniques / Iontronics - Field effect study of different devices, using techniques of ionic liquid gating

Seidemann, Johanna 20 October 2017 (has links)
Les liquides ioniques sont des fluides non volatiles, constitués de cations et d’anions, qui sont conducteurs ioniques, isolants électriques, et peuvent avoir des valeurs de capacité très élevées. Ces liquides sont susceptibles non seulement de remplacer les électrolytes solides, mais également de susciter des champs électriques intenses (>SI{10}{megavoltpercentimetre}) au sein d’une couche dite double couche électronique (electric double layer, EDL) à l’interface entre le liquide et le matériau sur lequel il est déposé. Ceci conduit à une injection de porteurs de charge bidimensionelle avec des densités allant jusqu’à SI{e15}{cm^{-2}}. Cet effet de grille remarquablement fort des liquides ioniques est réduit en présence d’états piégés ou de rugosité de surface. À cet égard, les dicalchogénures de métaux de transitions, de très haute qualité cristalline et atomiquement plats, font partis des semi-conducteurs les plus adaptés aux grilles EDL.Nous avons réalisé des transistors à effet de champ avec des EDL dans des nanotubes multi-couches de ce{WS2}, avec des performances comparables à celles de transistors EDL sur des ilots de ce{WS2}, et meilleurs que celles de nanotubes de ce{WS2} avec une grille solide. Nous avons obtenu des mobilités allant jusqu’à SI{80}{squarecentimetrepervoltpersecond} pour les porteurs n et p, et des ratios de courants on/off dépassant SI{e5}{} pour les deux polarités. Pour de forts dopages de type électron, les nanotubes ont un comportement métallique jusqu’à basse température. De plus, utiliser un liquide ionique permet de créer une jonction pn de manière purement électrostatique. En prenant avantage de cet effet, nous avons pu réaliser un transistor photoluminescent dans un nanotube.La possibilité de susciter de très forte densités de charges donne la possibilité d’induire des phases métalliques ou supraconductrices dans des semi-conducteurs a large bande interdite. Nous avons ainsi réussi à induire par effet de champ une phase métallique à basse température dans du diamant intrinsèque avec une surface hydrogénée, et nous avons obtenu un effet de champ dans du silicone dopé métallique.Les liquides ioniques offrent beaucoup d’avantages, mais leur champ d’application est encore réduit par l’instabilité du liquide, ainsi que par les courants de fuites et l’absorption graduelle d’impuretés. Un moyen efficace de s’affranchir de ces inconvénients, tout en conservant la possibilité d’induire de très fortes densités de porteurs, est de gélifier le liquide ionique. Nous sommes allés plus loin en fabriquant des gels ioniques modifiés, avec les cations fixés sur une seule surface et les anions libres de se mouvoir au sein du gel. Cet outil nous a permis de réaliser une nouvelle diode à effet de champ de faible puissance. / Ionic liquids are non-volatile fluids, consisting of cations and anions, which are ionically conducting and electrically insulating and hold very high capacitances. These liquids have the ability to not only to replace solid electrolytes, but to create strongly increased electric fields (>SI{10}{megavoltpercentimetre}) in the so-called electric double layer (EDL) on the electrolyte/channel interface, which leads to the injection of 2D charge carrier densities up to SI{e15}{cm^{-2}}. The remarkably strong gate effect of ionic liquids is diminished in the presence of trapped states and roughness-induced surface disorder, which points out that atomically flat transition metal dichalcogenides of high crystal quality are some of the semiconductors best suited for EDL-gating.We realised EDL-gated field-effect transistors based on multi-walled ce{WS2} nanotubes with operation performance comparable to that of EDL-gated thin flakes of the same material and superior to the performance of backgated ce{WS2} nanotubes. For instance, we observed mobilities of up to SI{80}{squarecentimetrepervoltpersecond} for both p- and n-type charge carriers and our current on-off ratios exceed SI{e5}{} for both polarities. At high electron doping levels, the nanotubes show metallic behaviour down to low temperatures. The use of an electrolyte as topgate dielectric allows the purely electrostatic formation of a pn-junction. We successfully fabricated a light-emitting transistor taking advantage of this utility.The ability of high charge carrier doping suggests an electrostatically induced metal phase or superconductivity in large gap semiconductors. We successfully induced low temperature metallic conduction into intrinsic diamond with hydrogen-terminated surface via field-effect and we observed a gate effect in doped, metallic silicon.Ionic liquids have many advantageous properties, but their applicability suffers from the instability of their liquid body, gate leakage currents and absorption of impurities. An effective way to bypass most of these problems, while keeping the ability of ultra-high charge carrier injection, is the gelation of ionic liquids. We even went one step further and fabricated modified ion gel films with the cations fixed on one surface and the anions able to move freely through the film. With this tool, we realised a novel low-power field-effect diode.
33

Electron Energy-Loss Spectroscopy on Underdoped Cuprates and Transition-Metal Dichalcogenides

Schuster, Roman 09 March 2010 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit Elektronenenergieverlustspektroskopie an unterdotierten Kupratsupraleitern und Übergangsmetalldichalcogeniden. Nach einem kurzen Abriss über die der experimentellen Methode zugrundeliegenden theoretischen Tatsachen folgen zwei experimentelle Kapitel. Für das prototypische Kupratsystem Ca2-xNaxCuO2Cl2 wird für verschiedene Dotierungskonzentrationen zunächst die Entwicklung der Ladungstransferanregungen untersucht. Man findet eine substanzielle Umverteilung des spektralen Gewichtes, verbunden mit einem starken Einbruch der Dispersion dieser Anregungen. Beides wird im Rahmen der Wechselwirkung mit Spinfreiheitsgraden innerhalb der Kupfer-Sauerstoff-Ebene diskutiert. Anschliessend erfolgt die Diskussion einer ausschließlich für zehnprozentige Dotierung auftretenden Symmetriebrechung der optischen Antwortfunktion, für die verschiedene mögliche Szenarien vorgeschlagen werden. Im Kapitel über die Dichalcogenide liegt der Fokus auf dem Verhalten des Ladungsträgerplasmons, das für alle Substanzen dieser Gruppe mit Ladungsordnung eine negative Dispersion aufweist. Dieses Verhalten läßt sich durch in-situ Interkalation zusätzlicher Ladungstraeger umkehren, so dass man eine dotierungsabhängige Plasmonendispersion erhält. Es werden verschiedene Szenarien für dieses Verhalten diskutiert. / The present thesis describes electron energy-loss spectroscopy on underdoped cuprate superconductors and transition-metal dichalcogenides. After a brief introduction into the experimental method there are two experimental chapters. For the prototype cuprate system Ca2-xNaxCuO2Cl2 the behavior of the charge-transfer excitations is investigated as a function of doping. The observed substantial redistribution of spectral weight and the accompanying breakdown of their dispersion is discussed in terms of a coupling to the spin degrees of freedom within the copper-oxygen plane. For x=0.1 there is a pronounced symmetry breaking in the optical response function which is discussed in terms of different possible scenarios. The chapter on the dichalcogenides focuses on the properties of the charge-carrier plasmon which shows a negative dispersion for all representatives of this family exhibiting a charge-density wave instability. This behavior can be influenced by in-situ intercalation of additional charges, the result being a doping dependent plasmon dispersion. Several approaches to reconcile these findings are considered.
34

Valley dynamics and excitonic properties in monolayer transition metal dichalcogenides / Dynamique d'indice de vallée dans l'espace réciproque et propriétés excitoniques dans les monocouches de dichalcogénures à métaux de transition

Bouet, Louis 09 October 2015 (has links)
La possibilité de créer des monocouches de dichalcogenures à métaux de transition (MoS2, WSe2,MoSe2 pour ceux étudiés dans ce manuscrit) a été démontrée récemment (2005) et a ouvert la voie à l’étude de ces matériaux sous leur forme 2D. Il apparaît depuis que les propriétés de ces semi-conducteurs sous leur forme monocouche offrent des perspectives intéressantes à la fois du point de vue de la physique fondamentale et des potentielles applications qui peuvent en découler ; en plus de bénéficier d’un fort couplage avec la lumière, l’existence d’un gap important (situé dans le visible, 1.7-1.8 eV) permet entre autres de réaliser des transistors d’épaisseur mono-atomique. Par ailleurs, la physique de ces matériaux est prometteuse pour les applications dans le domaine de l’optoélectronique. En effet, lorsque le matériau est affiné jusqu’à la monocouche atomique, son gap optique devient direct et la brisure de symétrie d’inversion associée au fort couplage spin-orbite provoque l’apparition de règles de sélection optique originales qui relient directement la polarisation de la lumière émise ou absorbée à une des deux vallées non-équivalentes de l’espace réciproque. Cela ouvre la possibilité d’explorer une nouvelle physique, basée sur l’indice de vallée et intitulée en conséquence vallée-tronique, avec comme perspectives futures la manipulation de l’indice de vallée et l’exploitation d’effetsliés à cette relation originale entre propriétés optiques et électroniques (effet vallée-Hall par exemple). Cemanuscrit de thèse regroupe une série d’expériences réalisées dans le but de comprendre et caractériser les propriétés optoélectroniques de ces matériaux. Un premier chapitre introductif présente le contexte scientifique de ces travaux de recherche et démontre l’origine des propriétés électroniques et optiques de ces matériaux via un modèle théorique simple. Le second chapitre présente en détails les échantillons étudiés ainsi que le dispositif expérimental utilisé lors des mesures. Enfin les chapitres 3 à 6 détaillent les expériences menées et les résultats obtenus ; le lecteur y trouvera des mesures de photoluminescence apportant la démonstration expérimentale des règles de sélection optique, l’identification des différents raies spectrales d’émission pour les différentstypes d’échantillons mentionnés plus haut ainsi que des mesures de photoluminescence résolues en temps permettant d’extraire la dynamique des propriétés des porteurs photo-générés. Une part importante de ce manuscrit est consacrée à l’étude expérimentale des propriétés excitoniques de ces matériaux dont la structure de bande électronique est finalement sondée via des études de magnéto-spectroscopie. / The possibility of isolating transition metal dichalcogenide monolayers by simple experimental means has been demonstrated in 2005, by the same technique used for graphene. This has sparked extremely diverse and active research by material scientists, physicists and chemists on these perfectly two-dimensional (2D) materials. Their physical properties inmonolayer formare appealing both fromthe point of view of fundamental science and for potential applications. Transition metal dichalcogenidemonolayers such asMoS2 have a direct optical bandgap in the visible and show strong absorption of the order of 10% per monolayer. For transistors based on single atomic layers, the presence of a gap allows to obtain high on/off ratios.In addition to potential applications in electronics and opto-electronics these 2D materials allow manipulating a new degree of freedom of electrons, in addition to the spin and the charge : Inversion symmetry breaking in addition to the strong spin-orbit coupling result in very original optical selection rules. The direct bandgap is situated at two non-equivalent valleys in k-space, K+ and K−. Using a specific laser polarization, carriers can be initialized either in the K+ or K− valley, allowing manipulating the valley index of the electronic states. This opens up an emerging research field termed "valleytronics". The present manuscript contains a set of experiments allowing understanding and characterizing the optoelectronic properties of these new materials. The first chapter is dedicated to the presentation of the scientific context. The original optical and electronic properties of monolayer transition metal dichalcogenides are demonstrated using a simple theoreticalmodel. The second chapter presents details of the samples and the experimental setup. Chapters 3 to 6 present details of the experiments carried out and the results obtained. We verify experimentally the optical selection rules. We identify the different emission peaks in the monolayer materials MoS2, WSe2 and MoSe2. In time resolved photoluminescence measurements we study the dynamics of photo-generated carriersand their polarization. An important part of this study is dedicated to experimental investigations of the properties of excitons, Coulomb bound electron-hole pairs. In the final experimental chapter, magneto-Photoluminescence allows us to probe the electronic band structure and to lift the valley degeneracy.
35

In-situ elektronová mikroskopie / In-situ electron microscopy

Bukvišová, Kristýna January 2019 (has links)
Cílem diplomové práce je popsat oxidaci nanotrubic sulfidu wolframičitého za zvýšených teplot v přítomnosti vodní páry. Na jejich povrchu se nejprve vytvoří nanočástice oxidu wolframu, ze kterých potom vyrůstají nanodráty. Na základě in-situ experimentů v rastrovacím elektronovém mikroskopu je navržen mechanismus reakce a ten je zjednodušeně popsán analyticky. Ukazuje se, že elektronový svazek má zásadní vliv na reakci.
36

Measurement and Manipulation of Spins and Magnetism in 2D Materials and Spinel Oxides

Newburger, Michael J. January 2021 (has links)
No description available.
37

Growth of Nanocrystalline MoSe2 Monolayers on Epitaxial Graphene from Amorphous Precursors

Göhler, Fabian, Hadland, Erik C., Schmidt, Constance, Zahn, Dietrich R. T., Speck, Florian, Johnson, David C., Seyller, Thomas 31 May 2019 (has links)
A new approach to the growth of MoSe2 thin films on epitaxial graphene on SiC(0001) by the use of modulated elemental reactants (MER) precursors has been reported. The synthesis applies a two-step process, where first an amorphous precursor is deposited on the substrate which self-assembles upon annealing. Films with a nominal thickness of about 1ML are successfully grown on epitaxial graphene monolayer as well as buffer layer samples. Characterization of the films is performed using XPS, LEED, AFM, and Raman spectroscopy. The films are nanocrystalline and show randomly rotated domains. This approach opens up an avenue to synthesize a number of new van-der-Waals systems on epitaxial graphene and other substrates.
38

Optical Properties of Two Dimensional Semiconductors

McCormick, Elizabeth Joan, McCormick 09 October 2018 (has links)
No description available.
39

Excitation Energy Transfer in Two-Dimensional Transition Metal Dichalcogenides Based Nanohybrid Systems

Chang, Kainan 02 August 2022 (has links)
Die vorliegende Arbeit untersucht den Anregungsenergie-Transfer in Nano-hybrid-Systemen, welche zweidimensionale Übergangsmetall-Dichalkonid-Schichten (TMDCs) enthalten. Heterostrukturen, welche TMDC-Schichten mit sogenannten nulldimensionalen Systemen kombinieren, werden als wesentlich für die nächste Generation von elektronischen und photonischen Bauelementen angesehen. Trotz dieser großen Bedeutung existieren wenige theoretische Untersuchungen. Insbesondere ist der Anregungsenergie-Transfer in diesen Hybridsystemen nicht umfassend erklärt, und die Behandlung von TMDC-Schichten bezieht sich auf sehr kleine oder periodische Systeme. Daher wird in der Arbeit der Versuch unternommen, existierende Theorien zu verbessern, und es werden Transferprozesse in zwei Typen von Heterostrukturen simuliert. Die berechneten Systeme enthalten tausende von Atomen und kommen damit in den Bereich experimentell untersuchter Strukturen. In dem einen Nanohybrid-System ist eine MoS2-Monoschicht mit einem einzelnen Para-Sexiphenyl-Molekül kombiniert, wogegen im zweiten System ein CdSe-Nanokristall an der MoS2-Mono-schicht plaziert ist. Dabei ermöglicht die Coulomb-Wechselwirkung zwischen Monoschicht und Molekül bzw. Nanokristall den Anregungsenergie-Transfer. In allen untersuchten Heterostrukturen ist die Stärke der Anregungsenergie-Transfer-Kopplung auf den sub-meV-Bereich beschränkt. In diesem Bereich ist der Anregungsenergie-Transfer inkohärent und bestimmt durch Raten, die aus Fermi's Goldener Regel folgen. Auch wird eine Abhängigkeit der Transferrate von der relativen Position des para-Sexiphenyl-Moleküls gefunden. Durch die Analyse der Übergangsladungsdichte des CdSe-Nanokristalls kann aufgezeigt werden, dass die energetisch tiefliegenden Exziton-Niveaus mit ausgeprägtem Dipolcharakter zu einer stärkeren Transferkopplung führen. Die resultierenden Transferzeiten erstrecken sich vom Piko- zum Nanosekunden-Bereich und decken sich mit entsprechend gemessenen Werten. / This thesis explores the excitation energy transfer in two-dimensional transition metal dichalcogenides (TMDCs) based nanohybrid systems. Such heterostructures combining TMDC layers with zero-dimensional materials are considered in next-generation electronics and photonics. However, there exists a shortage of current theoretical work, because the general process of excitation energy transfer in these hybrid systems has rarely been explored and the treatment of TMDCs is limited to a small size. We therefore improve the existing theories and investigate the transfer phenomena in two types of heterostructures. The considered systems contain thousands of atoms close to the experimental system size. In the first nanohybrid system, a MoS2 monolayer is combined with a single para-sexiphenyl molecule. In the second hybrid, a CdSe semiconductor spherical nanocrystal is placed close to the MoS2 monolayer. The MoS2 monolayer is coupled to the para-sexiphenyl molecule or the CdSe spherical nanocrystal via Coulomb interaction, which makes the excitation energy transfer mechanism possible. In our heterostructures, all excitation energy transfer coupling strengths lie in the meV-range or below. Within this limitation, the non-coherent excitation transfer is determined by rate expressions derived from Fermi’s Golden Rule. An effective transfer rate dependency on the relative positions of the para-sexiphenyl molecule is found. For the case of the CdSe spherical nanocrystal , by visualizing the shape of transition charge densities of CdSe excitons, we find that the low-lying exciton levels with more obvious dipole character lead to a stronger transfer coupling. The resultant transfer times range from picoseconds to nanoseconds and coincide with experimental data.
40

Mono-to-few Layers Transition Metal Dichalcogenides, Exciton Dynamics, and Versatile Growth of Naturally Formed Contacted Devices

ALEITHAN, SHROUQ H. 06 June 2018 (has links)
No description available.

Page generated in 0.1289 seconds