• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 5
  • Tagged with
  • 29
  • 29
  • 29
  • 26
  • 26
  • 18
  • 18
  • 14
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electronic structure of heterojunction interfaces investigated by photoelectron spectroscopy

Wang, Rongbin 06 March 2020 (has links)
Heteroübergänge, die aus (in)organischen/(in)organischen Materialien bestehen, spielen eine entscheidende Rolle für die Leistung optoelektronischer Bauteile. Der Schwerpunkt dieser Arbeit liegt hauptsächlich auf der elektronischen Struktur dieser Heteroübergänge, insbesondere der Ausrichtung der Energieniveaus (ELA) an verschiedenen Heteroübergangsschnittstellen, die mit Photoelektronenspektroskopie gemessen wird. Zusätzlich wird die Geräteleistungen mit den PES-Ergebnissen verglichen, um weitere Verbesserung zu ermöglichen. MoOx/n-Si und PEDOT:PSS/n-Si Heteroverbindungen sind aktive Schichten von Solarzellen und mit PES kann direkt, die Groessen der Bandverbiegung auf der n-Si-Seite gemessen werden. Obwohl die Bandverbiegung für einen MoOx/n-Si-Heteroübergang (0,80 eV) größer ist als die von PEDOT:PSS/n-Si (0,71 eV), weisen die entsprechenden Solarzellen (MoOx/n-Si) aufgrund der mangelhaften Passivierung von n-Si und der geringeren Dünnschichtleitfähigkeit von MoOx einen schlechteren Wirkungsgrad (auf. Die Untersuchung der elektronischen Struktur Duenner Schichten aus Perowskit (CH3NH3PbI3) oder Vanadiumdioxid zeigt, dass die Austrittsarbeit durch die Oberflächenkomponenten dramatisch beeinflusst werden kann, wodurch die ELA mit dem prototypischen organischen Lochtransportmaterial N,N′-di(1-naphthyl)-N,N′-diphenylbenzidin (NPB) variiert wird. Bei den CH3NH3PbI3-Dünnschichten, die mit verschiedenen Methoden hergestellt werden, korreliert das Verhältnis der beiden Kohlenstoffarten auf der Oberfläche mit der Variation der Austrittsarbeit. Wie bei der VO2-Oberfläche kann die Austrittsarbeit durch Ändern des Verhältnisses von Sauerstoff und Vanadium auf der Oberfläche von 4,4 eV auf 6,7 eV abgestimmt werden. Belege für eine starke Ferminiveau-Pinning und die damit verbundene Energieniveaubiegung in NPB finden sich für stöchiometrisches VO2 (WF=6,7 eV), wodurch ein ohmscher Kontakt für Löcher entsteht, der als Lochinjektionskontakt in Bauteilen verwendet werden kann. / Heterojunctions, comprised by (in)organic/(in)organic materials, play a crucial role in determining the performance of optoelectronic devices. The focus of this work is mainly on the electronic structure of heterojunctions present in the optoelectronic devices, in particular the energy level alignment (ELA) at different heterojunction interfaces, by employing photoelectron spectroscopy (PES). Furthermore, interface energetics are correlated with the device performances in order to guide the future improvement. MoOx/n-Si and PEDOT:PSS/n-Si heterojunctions are active layers in solar cells and PES measurements give direct band bending magnitudes generated at the n-Si. Even though the band bending magnitude of the MoOx/n-Si heterojunction (0.80 eV) is larger than that of the PEDOT:PSS/n-Si (0.71 eV), the corresponding solar cells (MoOx/n-Si) show inferior power conversion efficiency (PCE), due to the deficient passivation of n-Si and lower thin film conductivity of MoOx. The investigations of electronic structure of perovskite (CH3NH3PbI3) and vanadium dioxide (VO2) thin films show that the work function can be dramatically affected by the surface components, which subsequently varies the ELA with the deposited prototypical organic hole transport material N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine (NPB). As for the CH3NH3PbI3 thin films fabricated by different methods, the ratio of the two C 1s species (CH3NH3+ and CH3+) on the surface correlates with variation of the work function. As for the VO2 thin film, the work function can be tuned from 4.4 eV to 6.7 eV by changing the ratio of oxygen and vanadium on the surface. Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found for the clean and stoichiometric VO2 (WF=6.7 eV), rendering an Ohmic contact for holes, which can be utilized as a hole injection contact into the devices.
12

Fabrication and characterization of GaP/Si nanodiode array based on nanowires synthesized from GaP epilayers grown on Si substrates

Hussein, Emad Hameed 06 February 2017 (has links)
In dieser Arbeit wird das epitaktische Wachstum von GaP/Si Heterostrukturen zur Herstellung von rauscharmen GaP/Si Nanodiodenarrays untersucht, wobei eine top-down Ätztechnik zur Herstellung der verwendeten Nanodiodenarrays genutzt wurde. Zur Untersuchung der gewachsenen Schichten wurden Röntgenstreuung (XRD), Rasterelektronenmikroskopie sowie die elektrische Charakterisierung mittels Strom-Spannungs und Kapazität-Spannungsmessungen verwendet. Zudem wurde die Grenzfläche zwischen epitaktischer Schicht und Substrat mittels Niederfrequenter Rauschspektroskopie (LFN) untersucht. Die GaP-Schichten wurden auf p-dotierten Si (100) Substraten mittels eines Riber-32P Gasquellen-Molekularstrahlepitaxiesystems gewachsen. Die Abhängigkeit der Oberflächenbeschaffenheit und Kristallqualität von denWachstumsbedingungen, wie der Wachstumstemperatur, wurden intensiv untersucht, um die Defektdichte zu minimieren. Dafür wurden nominal 500 nm dicke Heterostrukturschichten beiWachstumstemperaturen von 550 °C, 400 °C und 250 °C gewachsen, wobei 400 °C als die optimale Wachstumstemperatur bestimmt wurde. Trotzdem waren die erhaltenen Schichten aufgrund der hohen Versetzungsdichte von schlechter Qualität. Eine nur sehr geringe Qualitätsverbesserung konnte durch einen in situ durchgeführten thermischen Annealingschritt bei 500 °C für 10 Minuten erreicht werden. Daher wurde eine neue Annealingmethode vorgeschlagen, die in dieser Arbeit step-graded annealing (SGA) genannt wird. Bei dieser Methode wurde die Temperatur schrittweise von 400 °C auf 480 °C innerhalb von 90 Minuten erhöht. Dabei wurde die Oberfläche die gesamte Zeit mittels Reflexion hochenergetischer Elektronen (RHEED) untersucht. Die Oberflächenrekonstruktion, die während des Annealens mittels RHEED beobachtet wurde, zeigte schließlich eine große Verbesserung der Kristallqualität. Die Gitterparameter von GaP wurden mittels asymmetrischer XRD gemessen, wobei festgestellt wurde, dass sie exakt denen von Volumen-GaP entsprechen. Zudem wurde festgestellt, dass die GaP-Schicht automatisch n-dotiert ist und diodentypisches Gleichrichtungsverhalten aufweist. Interessante Informationen über Fallenzustände in den Heterostrukturfilmen konnten mittels LFN-Messungen gefunden werden. In einer nicht annealten Probe wurden beispielsweise zwei Fallenzustände im Bereich der Bandlücke festgestellt. In den mittels der SGA-Methode annealten Proben wurde hingegen ein rauscharmes und fallenfreies System erhalten. Anschließend wurde Elektronenstrahllithografie (EBL) zum Erstellen von Nanomustern auf der Oberfläche genutzt, die zur Herstellung von Nanodrähten genutzt werden sollen. Zur Optimierung der Elektronenstrahllithografie wurden dabei GaPSubstrate aufgrund der im Vergleich zu den epitaktischen Schichten besseren und glatteren Oberflächenstruktur genutzt. Dabei konnten in einer Goldschicht 200 nm große Löcher in einem Gitter mit hoher Dichte auf GaP erstellt und in die GaPSchicht übertragen werden. Die metallunterstütztes chemisches Ätzen (MacEtch) genannte Technik wurde kürzlich vorgeschlagen und eignet sich für die Herstellung von Nanodrähten. Die Anwendung zur Herstellung von Nanodrähten aus GaP war herausfordernd aufgrund bisher begrenzter Anwendung für III-V Halbleiter. Zur Optimierung der MacEtch Technik wurde zunächst wieder GaP-Substrat verwendet, um den Einfluss von Kristalldefekten und der Oberflächenrauigkeit auf die Ergebnisse zu minimieren. Genutzt wurde ein Gemisch aus Lösungen von HF/KMnO4 mit verschiedenen Konzentrationen. Mit den so bestimmten Prozessbedingungen konnten erfolgreich GaP Nanodrähte aus GaP-Epilayern hergestellt werden. GaP/Si Heteroübergangsnanodioden wurden anschließend unter Nutzung von Au-Ge/Ni Kontakten zu GaP-Schicht und Al/Ni Kontakten zum rückseitigen Si hergestellt. Die Transporteigenschaften des Nanodiodenarrays bestätigen die Möglichkeit, diese Arrays als elektronische NiederLärmbauelemente einzusetzen. / An epitaxial growth of GaP/Si heterostructures for the fabrication of low-noise GaP/Si nanodiode array based on nanowires is reported. The grown films were characterized using X-ray diffraction, scanning-electron microscopy, atomic-force microscopy and electrical measurements. Besides that, the interface between the epilayer and the substrate was deeply studied using a low-frequency noise (LFN) spectroscopy. The GaP epilayers were grown on p-type Si (100)substrates using gas-source molecular-beam epitaxy system. The dependence of surface morphology and crystal quality on the growth conditions was intensively investigated for minimizing the defects. The heterostructure films were grown at an optimal growth temperature of 400 °C and a nominal thickness of 500 nm. In order to improve the crystalline quality of the heterostructures, a new thermal annealing method was proposed, and referred to as step-graded annealing (SGA). In this method, the temperature was increased gradually to the annealing temperature to reduce the strain relaxation in the epilayers. A highly improvement in the crystal quality was confirmed using the SGA method. In addition, the epilayers were found to be n-type autodoped, and exhibited diode rectification behavior. Furthermore, the trap levels in the band gap, which were revealed via LFN measurements, were found to be suppressed in the annealed films. Thereafter, gold-mesh nanopatterns on the GaP surfaces were fabricated using an electron-beam lithography, as a step for the fabrication of GaP nanowires. A metal-assisted chemical etching technique with a mixture of HF:KMnO4 was carried out to fabricate GaP nanowires. GaP/Si heterojunction nanodiodes were then fabricated using an Au-Ge/Ni contact on the top of the GaP nanowires as well as an Al/Ni contact on the backside of Si. Transport properties of the nanodiode array confirmed the possibility of using the array as a low-frequency electronic device.
13

Indium phosphide quantum dots in GaP and in In 0.48 Ga 0.52 P

Hatami, Fariba 23 October 2002 (has links)
Im Rahmen dieser Arbeit wurden selbstorganisierte, verspannte InP-Quantenpunkte mittels Gasquellen-Molekularstrahlepitaxie hergestellt und deren strukturelle und optische Eigenschaften untersucht. Die Quantenpunkte wurden sowohl in InGaP-Matrix gitterangepasst auf GaAs-Substrat als auch in GaP-Matrix auf GaP-Substrat realisiert. Die starke Gitterfehlanpassung von 3,8% im InP/InGaP- bzw. 7,7% im InP/GaP-Materialsystem ermöglicht Inselbildung mittels des Stranski-Krastanow-Wachstumsmodus: Ab einer kritischen InP-Schichtdicke findet kein zweidimensionales, sondern ein dreidimensionales Wachstum statt. Die kritische Schichtdicke wurde mit etwa 3 Monolagen für das InP/InGaP- und mit etwa 1,8 Monolagen für das InP/GaP-System bestimmt. Die strukturellen Untersuchungen zeigen, dass InP Quantenpunkte in GaP im Vergleich zu solchen in InGaP größer sind und stärker zum Abbau von Verspannung tendieren. Die in InGaP-Matrix eingebettete InP-Quantenpunkte zeigen sehr ausgeprägte optische Emissionen, die, in Abhängigkeit von den Wachstumsparametern, im Bereich von 1,6 bis 1,75eV liegen. Die Emissionslinie wird der strahlenden Rekombination von in den Quantenpunkten lokalisierten Elektronen und Löchern zugeordnet. Dies wird auch durch das Bänderschema bestätigt, das mit Hilfe der Model-Solid-Theorie modelliert wurde. Darüber hinaus weist die Lebensdauer der Ladungsträger von einigen hundert Pikosekunden darauf hin, dass die InP/InGaP Quantenpunkte vom Typ I sind. Zusätzlich zu den optischen Eigenschaften wurde die Anordnung von dicht gepackten InP-Quantenpunkten in und auf InGaP mittels zweidimensionaler Fourier-Transformation der Daten aus der Atomkraftmikroskopie, Transmissionelektronmikroskopie und diverser Röntgen-Streuexperimente untersucht sowie die planaren und vertikale Ordnungseffekte der Quantenpunkte studiert. Die Untersuchungen zeigen, dass die Ordnung der Quantenpunkte sowohl hinsichtlich ihrer Packungsdichte als auch ihrer Orientierung mit wachsender InP-Bedeckung zunimmt. Darüber hinaus wurde die Verspannungsverteilung in den InP/InGaP-Quantenpunkten mit Hilfe von diffuser Röntgen-Streuung in Verbindung mit kinematischen Simulationen studiert und eine asymmetrische Form der Quantenpunkte festgestellt, die auch Ursache für die gemessene Polarisationsanisotropie der Photolumineszenz sein kann. Die in GaP-Matrix eingebetteten InP-Quantenpunkte wurden im Rahmen dieser Arbeit erstmals erfolgreich auf ihre aktiven optischen Eigenschaften hin untersucht. Sie zeigen eine optische Emission zwischen 1,9 und 2 eV im sichtbaren Bereich. Diese strahlende Rekombination wird ebenfalls dem direkten Übergang zwischen Elektronen- und Löcherzuständen zugeordnet, die in den InP Quantenpunkten lokalisiert sind. Auch Photolumineszenzmessungen unter mechanischem Druck weisen darauf hin, dass es sich in diesem System hauptsächlich um einen direkten räumlichen Übergang handelt. Dieses Ergebnis wird dadurch untermauert, dass die Lebensdauer der Ladungsträger im Bereich von etwa 2 ns liegt, was nicht untypisch für Typ-I-Systeme ist. Die Ergebnisse für zweidimensionale, in GaP eingebettete InP-Schichten zeigen im Gegensatz zu den Quantenpunkten, dass die strahlende Rekombination in InP/GaP Quantentöpfen aufgrund eines indirekten Übergangs (sowohl in Orts- als auch in Impulsraum) zwischen Elektronen- und Löcherzuständen erfolgt. Die optischen Emissionslinien liegen für Quantentöpfe im Bereich von 2,15 bis 2,30eV. Die nachgewiesene sehr lange Lebensdauer der Ladungsträger von etwa 20ns weist weiter darauf hin, dass die Quantentöpfe ein Typ-II-System sind. Nach Modellierung des Bänderschemas für das verspannte InP/GaP-System und Berechnung der Energieniveaus von Löchern und Elektronen darin mit Hilfe der Effektive-Masse-Näherung in Abhängigkeit von der InP-Schichtdicke zeigt sich ferner, dass für InP-Quantentöpfe mit einer Breite kleiner als 3nm die Quantisierungsenergie der Elektronen so groß ist, dass der X-Punkt in GaP energetisch tiefer liegt als der Gamma-Punkt in InP. Dieser Potentialverlauf führt dazu , dass die Elektronen im X-Minimum des GaP lokalisieren, während die Löcher in der InP-Schicht bleiben. Optische Untersuchungen nach thermischer Behandlung der Quantenpunkte führen sowohl im InP/InGaP- als auch im InP/GaP-System zur Verstärkung der Lumineszenz, die bis zu 15 mal internsiver als bei unbehandelten Proben sein kann. Insgesamt zeigt diese Arbeit, dass InP-Quantenpunkte durch ihre optischen Eigenschaften sehr interessant für optoelektronische Anwendungen sind. Die Verwendung von durchsichtigem GaP (mit einer größeren Bandlücke und kleineren Gitterkonstante im Vergleich zu GaAs und InGaP) als Matrix und Substrat hat nicht nur den Vorteil, dass die InP-Quantenpunkte hierbei im sichtbaren Bereich Licht emittieren, sondern man kann in der Praxis auch von einer hochentwickelten GaP-basierten LED-Technologie profitieren. Hauptergebnis dieser Arbeit ist, dass die in indirektes GaP eingebetteten InP-Quantenpunkte aktive optische Eigenschaften zeigen. Sie können daher als aktive Medien zur Realisierung neuartiger effizienter Laser und Leuchtdioden verwendet werden. / The growth and structural properties of self-assembled InP quantum dots are presented and discussed, together with their optical properties and associated carrier dynamics. The QDs are grown using gas-source molecular-beam epitaxy in and on the two materials InGaP (lattice matched to GaAs) and GaP. Under the proper growth conditions, formation of InP dots via the Stranski-Krastanow mechanism is observed. The critical InP coverage for 2D-3D transition is found to be 3ML for the InP/ InGaP system and 1.8ML for the InP/GaP system. The structural characterization indicates that the InP/GaP QDs are larger and, consequently, less dense compared to the InP/ InGaP QDs; hence, InP dots on GaP tend to be strain-relaxed. The InP/ InGaP QDs tend to form ordered arrays when InP coverage is increased. Intense photoluminescence from InP quantum dots in both material systems is observed. The PL from InP/GaP QDs peaks between 1.9 and 2 eV and is by about 200 meV higher in energy than the PL line from InP/ InGaP QDs. The optical emission from dots is attributed to direct transitions between the electrons and heavy-holes confined in the InP dots, whereas the photoluminescence from a two-dimensional InP layer embedded in GaP is explained as resulting from the spatially indirect recombination of electrons from the GaP X valleys with holes in InP and their phonon replicas. The type-II band alignment of InP/GaP two-dimensional structures is further confirmed by the carrier lifetime above 19 ns, which is much higher than in type-I systems. The observed carrier lifetimes of 100-500 ps for InP/ InGaPQDs and 2 ns for InP/GaP QDs support our band alignment modeling. Pressure-dependent photoluminescence measurements provide further evidence for a type-I band alignment for InP/GaP QDs at normal pressure, but indicate that they become type-II under hydrostatic pressures of about 1.2 GPa and are consistent with an energy difference between the lowest InP and GaP states of about 31 meV. Exploiting the visible direct-bandgap transition in the GaP system could lead to an increased efficiency of light emission in GaP-based light emitters.
14

Luminescence of group-III-V nanowires containing heterostructures

Lähnemann, Jonas 30 July 2013 (has links)
In dieser Dissertation wird die spektrale und örtliche Verteilung der Lumineszenz von Heterostrukturen in selbstorganisierten Nanodrähten (ND) mit Hilfe von Kathodolumineszenz-Spektroskopie (KL) im Rasterelektronenmikroskop untersucht. Diese Methode wird ergänzt durch Messungen der kontinuierlichen und zeitaufgelösten Mikro-Photolumineszenz. Drei verschiedene Strukturen werden behandelt: (i) GaAs-ND bestehend aus Segmenten der Wurtzit (WZ) bzw. Zinkblende (ZB) Kristallstrukturen, (ii) auf GaN-ND überwachsene GaN-Mikrokristalle und (iii) (In,Ga)N Einschlüsse in GaN-ND. Die gemischte Kristallstruktur der GaAs-ND führt zu komplexen Emissionsspektren. Dabei wird entweder ausschließlich Lumineszenz bei Energien unterhalb der ZB Bandlücke, oder aber zusätzlich bei höheren Energien, gemessen. Diese Differenz wird durch unterschiedliche Dicken der ZB und WZ Segmente erklärt. Messungen bei Raumtemperatur zeigen, dass die Bandlücke von WZ-GaAs mindestens 55 meV größer als die von ZB-GaAs ist. Die Lumineszenz-Spektren der GaN-Mikrokristalle enthalten verschiedene Emissionslinien, die auf Stapelfehler (SF) zurückzuführen sind. SF sind ZB Quantentöpfe verschiedener Dicke in einem WZ-Kristall und es wird gezeigt, dass ihre Emissionsenergie durch die spontane Polarisation bestimmt wird. Aus einer detaillierten statistischen Analyse der Emissionsenergien der verschiedenen SF-Typen werden Emissionsenergien von 3.42, 3.35 und 3.29 eV für die intrinsischen (I1 und I2) sowie für extrinsische SF ermittelt. Aus den entsprechenden Energiedifferenzen wird -0.022C/m² als experimenteller Wert für die spontane Polarisation von GaN bestimmt. Die Bedeutung sowohl der piezoelektrischen Polarisation als auch die der Lokalisierung von Ladungsträgern wird für (In,Ga)N-Einschlüsse in GaN-ND gezeigt. Hierbei spielt nicht nur die Lokalisierung von Exzitonen, sondern auch die individueller Elektronen und Löcher an unterschiedlichen Potentialminima eine Rolle. / In this thesis, the spectral and spatial luminescence distribution of heterostructures in self-induced nanowires (NWs) is investigated by cathodoluminescence spectroscopy in a scanning electron microscope. This method is complemented by data from both continuous and time-resolved micro-photoluminescence measurements. Three different structures are considered: (i) GaAs NWs containing segments of the wurtzite (WZ) and zincblende (ZB) polytypes, (ii) GaN microcrystals overgrown on GaN NWs, and (iii) (In,Ga)N insertions embedded in GaN NWs. The polytypism of GaAs NWs results in complex emission spectra. The observation of luminescence either exclusively at energies below the ZB band gap or also at higher energies is explained by differences in the distribution of ZB and WZ segment thicknesses. Measurements at room temperature suggest that the band gap of WZ GaAs is at least 55 meV larger than that of the ZB phase. The luminescence spectra of the GaN microcrystals contain distinct emission lines associated with stacking faults (SFs). SFs essentially constitute ZB quantum wells of varying thickness in a WZ matrix and it is shown that their emission energy is dominated by the spontaneous polarization. Through a detailed statistical analysis of the emission energies of the different SF types, emission energies of 3.42, 3.35 and 3.29 eV are determined for the intrinsic (I1 and I2) as well as the extrinsic SFs, respectively. From the corresponding energy differences, an experimental value of -0.022C/m² is derived for the spontaneous polarization of GaN. The importance of both carrier localization and the quantum confined Stark effect induced by the piezoelectric polarization is shown for the luminescence of (In,Ga)N insertions in GaN NWs. Not only localized excitons, but also electrons and holes individually localized at different potential minima contribute to the observed emission.
15

Strain-related phenomena in (In,Ga)N/GaN nanowires and rods investigated by nanofocus x-ray diffraction and the finite element method

Henkel, Thilo Johannes 15 January 2018 (has links)
In dieser Arbeit wird das lokal aufgelöste Deformationsfeld einzelner (In,Ga)N/GaN Drähte mit Hilfe nanofokussierter Röntgenbeugung und der Methode der Finiten Elemente untersucht. Hiermit soll ein Beitrag zum grundlegenden Verständis der optischen Eigenschaften geleistet werden, die durch das Deformationsfeld maßgeblich beeinflusst werden. Zunächst wird die Abhängigkeit der vertikalen Normalkomponente, epsilon_zz, des elastischen Dehnungstensors von der Geometrie eines axialen (In,Ga)N/GaN Nanodrahtes diskutiert. Dabei wird ein signifikant negativer epsilon_zz-Wert beobachtet, sobald das Verhältnis von Nanodrahtradius und (In,Ga)N-Segmentlänge gegen eins strebt. Auffallend große Scherkomponenten und eine konvexe Verformung der äußeren Oberfläche begleiten das Auftreten des negativen epsilon_zz- Wertes und sind die Ursache dieses Effekts. Durch eine Ummantelung von GaN-Nanodrähten mit einer (In,Ga)N-Schale lässt sich die aktive Fläche und somit die potentielle Lichtausbeute pro Fläche im Vergleich zu planaren Strukturen deutlich erhöhen. Es wurde jedoch festgestellt, dass das entlang der Drahthöhe emittierte Licht rotverschoben ist. Um den Ursprung dieses Phänomens zu beleuchten, wird das lokale Deformationsfeld mit Hilfe nanofokussierter Röntgenbeugung vermessen. Durch die gute räumliche Auflösung ist es möglich, das Deformationsfeld innerhalb einzelner Seitenfacetten zu untersuchen, wobei ein deutlicher Gradient festgestellt wird. Basierend auf dem mit der Methode der Finiten Elemente simulierten Deformationsfeld und kinematischen Streusimulationen, ist es möglich, den Deformationszustand in einen In-Gehalt zu übersetzen. Wenn neben dem Deformationsfeld auch der strukturelle Aufbau in der Simulation berücksichtigt wird, kann der In-Gehalt mit noch größerer Genauigkeit bestimmt werden. / In this thesis, nanofocus x-ray diffraction and the finite element method are applied to analyze the local strain field in (In,Ga)N/GaN nanowires and micro-rods which are discussed as candidates for a plethora of future optoelectronic applications. However, to improve and tailor their properties, a fundamental understanding on the level of individual objects is essential. In this spirit, the dependence of the vertical normal component, epsilon_zz, of the elastic strain tensor on the geometry of an axial (In,Ga)N/GaN nanowire is systematically analyzed using the finite element method. Hereby, it is found that if the ratio of nanowire radius and (In,Ga)N segment length approaches unity, a significantly negative epsilon_zz value is observed. This stands in stark contrast to naive expectations and shows that the common knowledge about planar systems where epsilon_zz would always be greater or equal zero cannot easily be translated to nanowires with an equivalent material sequence. As the origin of this effect significant shear strains are discussed which go along with a convex deformation of the outer surface resulting in a highly complex strain distribution. The increased active area of core-shell (In,Ga)N/GaN micro-rods makes them promising candidates for next-generation light emitting diodes. However, it is found that the emission wavelength is significantly red-shifted along the rod height. To shed light on the origin of this phenomenon, nanofocus x-ray diffraction is applied to analyze the local strain field. Due to the high spatial resolution it is possible to investigate the strain field within individual side-facets and to detect a significant gradient along the rod height. Based on the deformation field simulated using the finite element method and subsequent kinematic scattering simulations it is possible to translate the strain state into an In content.
16

(Al,Ga)(As,P) structures in the GaP matrix

Dadgostar, Shabnam 15 August 2016 (has links)
GaP ist ein Halbleiter mit einer großen Bandlückenenergie und infolgedessen transparent im größten Teil der sichtbaren Wellenlängen. GaP hat außerdem die kleinste Gitterfehlanpasung zu Si (weniger als 0.4%). Das macht GaP ein interessantes Material für monolithische Integration zu III–V Lichtsender auf Si. Diese Arbeit ist eine Untersuchung über die strukturellen und optische Eigenschaften von (Al, Ga) (As, P) Heterostrukturen auf GaP (001) -Substrat aufgewachsen. Die Einflüsse des PH3 Fluss und Wachstumstemperatur untersucht auf dem Kristallqualität und Oberflächenqualität von AlGaP/GaP Heterostructure. Experimentelle Ergebnisse deuten darauf hin, dass eine Wachstumstemperatur von 490 oC und ein geknackter (engl. cracked) PH3 Fluss von 2.7 sccm zur besten AlGaP Qualität und gleichzeitig zur guten GaP Qualität führen. Um die ineffiziente Lichtemission von GaP zu überwinden wurde GaAs in der GaP-Matrix gewachsen. Die Entstehung der Quantenpunkte wurde durch die 3.7% Gitterfehlanpassung zwischen GaAs und GaP für GaAs Nenndicke über 1,2 ML. Die optischen Messungen zeigen zwei Peaks im Bereich von 1,7 bis 2,1 eV und die Lumineszenz auf Raumtemperatur für 2,7 und 3,6 ML-Proben. Die hohe Energieemission wird der indirekten Rekombination in den dünnen Quantentröge oder kleine gespannte Quantenpunkte zurückzuführen, Während die niedrige Energie Emission ist aufgrund der direkten Elektron-Loch- Rekombination in der entspannten Quantenpunkte. Die Wirkung von Al wird untersucht auf die energetische Bandausrichtung und auf die elektronische Struktur der (Al,Ga)As Quantenstrukturen. Die optische Spektren zeigten einen blaue Verschiebung (engl. blue shift) mit wachsendem Al-Inhalt und die höchste missionsenergie für die (Al,Ga)As/GaP- Heterostruktur war 2.17 eV die zum indirekten Typ-II-Rekombination zusammenhängt. / Transparency of GaP due to the large indirect bandgap energy and its small lattice mismatch with Si make GaP an interesting candidate for optoelectronic devices in visible wavelength. This thesis is an investigation on the structural and optical characteristics of (Al,Ga)(As,P) heterostructures grown on GaP (001) substrates. The influences of the PH3 flux and growth temperature are studied on the crystal and surface quality of AlGaP/GaP heterostructure. The results indicate the narrow growth window of PH3 = 2.7 sccm and growth temperature = 490oC as the optimized conditions. To overcome the inefficient light emission of indirect GaP, direct bandgap GaAs was grown as the quantum structures in the GaP matrix. The QD formation is driven by the 3.7% lattice mismatch between GaAs and GaP for GaAs nominal thickness above 1.2 ML. The optical measurements show two peaks in the range of 1.7 to 2.1 eV and the luminescence up to room temperature for 2.7 and 3.6 ML samples. The high energy emission is attributed to indirect carrier recombination in the thin quantum wells or small strained quantum dots, whereas the low energy red emission is due to the direct electron-hole recombination in the relaxed quantum dots. The influence of the Al content on the band alignment and electronic structure of (Al,Ga)As quantum structures is studied. The optical spectra illustrate the blueshift of the radiative emission with increasing the Al content and the highest emission energy of 2.17 eV is observed for the (Al,Ga)As/GaP system that is related to the indirect type-II radiative recombination.
17

Korrelation elektronischer und struktureller Eigenschaften selbstorganisierter InAs-Nanostrukturen der Dimensionen 0 und 1 auf Verbindungshalbleitern

Walther, Carsten 20 December 2000 (has links)
Das gitterfehlangepaßte Kristallwachstum führt unter bestimmten Bedingungen zu einem 3-D Wachstumsmodus, der oft Stranski-Krastanow-Wachstum genannt wird. Resultierende Strukturgrößen liegen in der Größenordnung 10 nm und die Halbleiterstrukturen besitzen daher Quanteneigenschaften. Sie stehen im Fokus grundlagenwissenschaftlichen Interesses, da künstliche Atome und Dimensionalitätseffekte an ihnen untersucht werden können. Auch von der Anwendungsseite wächst das Interesse, da niederdimensionale Strukturen hoher Kristallqualität und mit hoher gestalterischer Freiheit geschaffen werden können. In dieser Arbeit wurden Mischhalbleiter-Heterostrukturen der Dimensionalität d= 0,1 und 2 mittels Gasphasen-MBE hergestellt. Ziel war eine Korrelation der strukturellen mit den elektronischen und optischen Eigenschaften. Selbstformierende Quantendrähte und Quantenpunkte in leitfähigen Kanälen wurden in ihrem Einfluß auf den lateralen Transport untersucht. Weiterhin wird dargestellt, wie zusätzliche, durch Quantenpunkte induzierte Oberflächenzustände eine deutliche Verschiebung der Energie des Oberflächen-Ferminiveau-Pinning einer (100)-GaAs-Oberfläche verursachen. Der senkrechte Elektronentransport durch Quantenpunkte dient der Untersuchung von Dot-induzierten, tiefen elektronischen Zuständen und der Erklärung eines eindimensionalen Modells elektronischer Kopplung zwischen denselben. Zusätzlich führen uns die Ergebnisse optischer Messungen zu einem besseren Verständnis des Vorgangs der Dotformierung und der elektronischen Kopplung zwischen zufällig verteilten Quantenpunkten. / The lattice-mismatched epitaxial growth is known to induce a three-dimensional growth mode often referred to as Stranski-Krastanov growth. The resulting structures have typical sizes of 10 nm and possess quantum properties, which are of fundamental physical interest, since artificial atoms and dimensionality effects can be studied. There is a growing interest from an applicational point of view also, since low dimensional structures of a high crystal quality and of a high degree of designerabillity can be created. In this work such structures of a dimensionality d=0,1 and 2 based on compound semiconductors have been designed and prepared by molecular beam epitaxy to perform comparative studies with respect to their electronic, structural and optical properties. Self assembled quantum wires and dots in conductive channels have been examined according to their influence on lateral electrical transport. It is demonstrated how additional surface states from quantum dots cause a distinct shift in the Surface Fermi-level of a GaAs (100) surface. Vertical transport through dots is used to support a model of one-dimensional coupling between deep states induced by the dots. Additionally, optical investigations let us attain a better understanding of the process of dot formation and the electronic coupling between the randomly distributed dots.
18

Electron-nuclear spin control and carrier spin dynamics in II-VI semiconductor

Kim, Jungtaek 10 June 2016 (has links)
Diese Dissertation besteht aus zwei Teilen von Studien. Der erste Teil demonstriert die Steuerung der Elektron-Kern-Spin-Systems in II-VI Halbleiter Quantum Dots (QDs) durch elektrische Ströme über Mikrospulen. Mikrometer-große Leiterschleifen sind auf der Oberseite von Heterostrukturen mit geladenen CdSe/ZnS QDs hergestellt worden. Eine Strominjektion erzeugt magnetische Felder im Bereich von einige 10 mT, welche stark genug sind, um die Hyperfeinwechselwirkung in CdSe QDs modulieren zu können. Der Durchmesser des Spulen im Mikrometer-Bereich ermöglicht die Generation von schnellen Feld transienten im Bereich von wenigen ns. Mit diesen Vorteilen der Mikrospulen werden die Steuerungs des Spins der residenten Elektronen sowie das Auslesen des Kernspinzustandes durch elektrische Impulse nachgewiesen. Der zweite Teil befasst sich mit der Ladungsträger-Spindynamik in ZnO Quantum Well (QW) Strukturen und Epitaxieschichten, die mittels des optischen Übergang von negativ geladenen Exzitonen X− beziehungsweise des am neutralen Donator gebunden Exziton D0X untersucht werden. Der Loch-Spin kann direkt über die zirkular polarisierten Photolumineszenz der beiden Komplexe zurückverfolgt werde. Die Spin-Relaxationszeit von QW und Epiplyer verfolgt werden. Der Spin des Donatorelektronens wird über die Ausbleichung des Spin-selektive Anregungprozesses nachgewiesen. Es werden longitudinale Loch-Spinrelaxationszeiten von 80 bis 140 ps für D0X und X− gefunden. Deutlich längere longitudinalen Elektronen-Spin-Relaxationszeiten in Bereich von mehreren 100 ns werden gefunden, wenn die Hyperfeinwechselwirkung durch ein geeignetes externes Magnetfeld unterdrückt wird. Eine Feldstärke von 2 mT ist groß genug. Dies zeigt den extrem kleinen Wert des Overhauser-Feldes in ZnO auf, der durch die sehr begrenzte Anzahl von magnetischen Kernen in Wechselwirkung mit dem Elektronen innerhalb des Volumens des Donators verursacht wird. / This work is composed of two parts of studies. The first part represents an electron-nuclear spin control in II-VI semiconductor quantum dots (QDs) by electrical currents via micro coils. Micrometer single turn coils are fabricated on top of heterostructures with charged CdSe/ZnSe QDs. Current injection creates magnetic fields in the range of some 10 mT which is strong enough to modulate the hyperfine interaction in CdSe. The micrometer-range diameter of coil allows for generation of fast field transient in the range of few ns. Using these advantages of micro coils, local control of the resident electron spin as well as read out of the nuclear spin state are demonstrated by electrical pulses. The second part presents charged carrier spin dynamics in ZnO quantum wells and epilayers using the optical transition of the negatively charged exciton X− and the neutral donor bound exciton D0X, respectively. The hole spin can be directly traced by the circular polarized photoluminescence of both complexes. The spin relaxation of the resident electrons and donor electrons is accessed via the bleaching of the spin selective excitation process. Longitudinal hole spin relaxation times of 80 and 140 ps are found for D0X and X−, respectively. Much longer longitudinal electron spin relaxation times in the several 100 ns range are uncovered if the hyperfine interaction is suppressed by a proper external magnetic field. A field strength of 2 mT is large enough proving that the extremely small value of the Overhauser field in ZnO caused by the very restricted number of magnetic nuclei interacting with the electron inside the donor volume.
19

Electronic properties of organic-inorganic halide perovskites and their interfaces

Zu, Fengshuo 21 August 2019 (has links)
Über die besonders hohe Effizienz von Halid-Perowskit (HaP)-basierten optoelektronischen Bauteilen wurde bereits in der Literatur berichtet. Um die Entwicklung dieser Bauteile voranzutreiben, ist ein umfassendes und verlässliches Verständnis derer elektronischen Struktur, sowie der Energielevelanordnung (ELA) an HaP Grenzflächen von größter Bedeutung. Demzufolge beschäftigt sich die vorliegende Arbeit mit der Untersuchung i) der Bandstruktur von Perowskit-Einkristallen, um ein solides Fundament für die Darlegung der elektronischen Eigenschaften von polykristallinen Dünnschichten zu erarbeiten, und mit ii) den Einflüssen von Oberflächenzuständen auf die elektronische Struktur der Oberfläche, sowie deren Rolle bei der Kontrolle von ELA an HaP Grenzflächen. Die Charakterisierung erfolgt überwiegend mithilfe von Photoelektronenspektroskopie (PES) und ergänzenden Messmethoden wie Beugung niederenergetischer Elektronen an Oberflächen, UV-VIS-Spektroskopie, Rasterkraftmikroskopie und Kelvin-Sonde. Erstens weist die Banddispersion von zwei prototypischen Perowskit-Einkristallen eine starke Dispersion des jeweiligen oberen Valenzbandes (VB) auf, dessen globales Maximum in beiden Fällen am R-Punkt in der Brillouin-Zone liegt. Dabei wird eine effektive Lochmasse von 0.25 m0 für CH3NH3PbBr3, bzw. von ~0.50 m0 für CH3NH3PbI3 bestimmt. Basierend auf diesen Ergebnissen werden die elektronischen Spektren von polykristallinen Dünnschichten konstruiert und es wird dadurch aufgezeigt, dass eine Bestimmung der Valenzbandkantenposition ausgehend von einer logarithmischen Intensitätsskala aufgrund von geringer Zustandsdichte am VB Maximum vorzuziehen ist. Zweitens stellt sich bei der Untersuchung der elektronischen Struktur von frisch präparierten Perowskit-Oberflächen heraus, dass die n-Typ Eigenschaft eine Folge der Bandverbiegung ist, welche durch donatorartige Oberflächenzustände hervorgerufen wird. Des Weiteren weisen die PES-Messungen an Perowskiten mit unterschiedlichen Zusammensetzungen aufgrund von Oberflächenphotospannung eine Anregungslichtintensitätsabhängigkeit der Energieniveaus von bis zu 0.7 eV auf. Darüber hinaus wird die Kontrolle von ELA durch gezielte Variation der Oberflächenzustandsdichte gezeigt, wodurch sich unterschiedliche ELA-Lagen (mit Abweichungen von über 0.5 eV) an den Grenzflächen mit organischen Akzeptormolekülen erklären lassen. Die vorliegenden Ergebnisse verhelfen dazu, die starke Abweichung der in der Literatur berichteten Energieniveaus zu erklären und somit ein verfeinertes Verständnis des Funktionsprinzips von perowskit-basierten Bauteilen zu erlangen. / Optoelectronic devices based on halide perovskites (HaPs) and possessing remarkably high performance have been reported. To push the development of such devices even further, a comprehensive and reliable understanding of their electronic structure, including the energy level alignment (ELA) at HaPs interfaces, is essential but presently not available. In an attempt to get a deep insight into the electronic properties of HaPs and the related interfaces, the work presented in this thesis investigates i) the fundamental band structure of perovskite single crystals, in order to establish solid foundations for a better understanding the electronic properties of polycrystalline thin films and ii) the effects of surface states on the surface electronic structure and their role in controlling the ELA at HaPs interfaces. The characterization is mostly performed using photoelectron spectroscopy, together with complementary techniques including low-energy electron diffraction, UV-vis absorption spectroscopy, atomic force microscopy and Kelvin probe measurements. Firstly, the band structure of two prototypical perovskite single crystals is unraveled, featuring widely dispersing top valence bands (VB) with the global valence band maximum at R point of the Brillouin zone. The hole effective masses there are determined to be ~0.25 m0 for CH3NH3PbBr3 and ~0.50 m0 for CH3NH3PbI3. Based on these results, the energy distribution curves of polycrystalline thin films are constructed, revealing the fact that using a logarithmic intensity scale to determine the VB onset is preferable due to the low density of states at the VB maximum. Secondly, investigations on the surface electronic structure of pristine perovskite surfaces conclude that the n-type behavior is a result of surface band bending due to the presence of donor-type surface states. Furthermore, due to surface photovoltage effect, photoemission measurements on different perovskite compositions exhibit excitation-intensity dependent energy levels with a shift of up to 0.7 eV. Eventually, control over the ELA by manipulating the density of surface states is demonstrated, from which very different ELA situations (variation over 0.5 eV) at interfaces with organic electron acceptor molecules are rationalized. Our findings further help to explain the rather dissimilar reported energy levels at perovskite surfaces and interfaces, refining our understanding of the operational principles in perovskite related devices.
20

Structural and optical properties of short period superlattices for rational (In,Ga)N

Anikeeva, Mariia 10 February 2020 (has links)
In dieser Arbeit untersuchen wir ultradünne (In,Ga)N Quantentöpfe (QW) in Form von kurzperiodischen Übergittern auf (0001) GaN. Wir charakterisieren dieser Strukturen mit verschiedenen Methoden, d.h.: die hochauflösende Transmissionselektronenmikroskopie, die Rastertransmissionselektronenmikroskopie, Röntgenbeugung und die hochenergetischer Refeflexionselektronenbeugung an Oberflächen, sowie die Photolumineszenz (PL) und die Kathodolumineszenz. Wir fokussieren uns dabei auf die Quantifizierung des Indiumgehaltes solche ultradünnen Schichten und diskutieren über grundlegende optische Eigenschaften dieser Übergitter. Wir finden, dass: 1. Der Indiumeinbau in GaN unter Exposition von In und N-Fluss ist selbst-begrenzend auf eine Zusammensetzung von 25% und eine Schichtdicke von einer Monolage. Die Variation der Wachstumsbedingungen führen weder nicht zu einer Höhung des Indiumgehalts noch der Schichtdicke. Diese Selbstbegrenzung ist im Ergebnis auf die Unterschiede in der Bildungsenthalpie von InN und GaN und auf die hohe Gitterfehlanpassung des Systems. Die niedrigste Energiekonfiguration ist einer (2»3×2»3)R30° Oberflächenrekonstruktion. 2. In diesen polaren In0.25Ga0.75N Übergitter Polarisationsfelder, Dickenfluktuationen oder Kompositionsschwankungen keine wesentliche Rolle spielen. Unsere optischen Studien in Kombination mit DFT-Berechnungen zeigen, dass der Rekombinationsprozess durch den Einschluss der Lochwellenfunktion in den Monoschichten gesteuert wird, dass mit abnehmender Barrieredicke verändert werden können. Im Gegenteil, ist die Elektronenwellenfunktion immer delokalisiert. Unsere Übergitter Phänomene sind als in konventionellen QWs, z.B. den nichtexponentiellen Abfall der PL-Intensität, die spektrale Abhängigkeit der PL Lebensdauer und eine S-förmige Temperaturabhängigkeit des Emissionspeaks. Die letzte lassen sich durch das Zusammenspiel von Ladunsgträgerlokalisation und nicht-strahliger Rekombination erklären. / In this work we investigate ultra-thin (In,Ga)N quantum wells (QWs) grown on (0001) GaN in the form of short-period superlattices (SLs). We perform a comprehensive study of these structures via various methods, i.e.: high resolution transmission electron microscopy, scanning transmission electron microscopy, x-ray diffraction and reflection high-energy electron diffraction, as well as photoluminescence (PL) and cathodoluminescence. We focus on the quantification of In incorporation and study basic optical properties of these SLs. The main results of our investigations are: 1. The In incorporation into GaN under exposure of In and N flux is self-limited to a composition of 25% and a layer thickness of one monolayer. Varying growth conditions do not increase the In content or the layer thickness. This self-limitation is a result of the differences in formation enthalpy of InN and GaN and the high lattice mismatch of the system. The lowest energy configuration that sets maximum In concentration to a fundamental limit of 25%, stable under various growth regimes, is the one with (2»3×2»3)R30° surface reconstruction. 2. Our polar In0.25Ga0.75N SLs serve as model system for recombination process in (In,Ga)N since their recombination is not suffering from polarization fields, well-width or high compositional fluctuations. The optical studies combined with DFT calculations show that the recombination process is governed by the confinement of the hole wavefunction in the QWs, that can be substantially weakened by decreasing barrier thickness. This leads to an increase of non-radiative recombination in the barriers. In the opposite, the electron wave function is always delocalized. Our SLs show common phenomena observed in conventional QWs or bulk alloys like a non-exponential decay of the PL intensity, spectral dependence of the decay time and S-shape temperature dependence. The latter can be explained by the interplay of carrier localization and non-radiative recombination.

Page generated in 0.0235 seconds