171 |
Development of an Ultra Wide-Band(UWB) Synthetic Aperture Radar (SAR)System for Imaging of Near Field ObjectFayazi, Seyedeh shaghayegh January 2012 (has links)
Ultra-wideband (UWB) technology and its use in imaging and sensing have drawnsignicant interest in the last two decades. Extensive studies have contributed toutilize UWB transient scattering for automated target recognition and imagingpurposes. In this thesis a near-eld UWB synthetic aperture radar (SAR) imagingalgorithm is presented.It is shown with measurements and simulation, that it is possible to reconstruct an imageof an object in the near eld region using UWB technology and SAR imaging algorithm.However the nal SAR image is highly aected by unwanted scattered elds at each pixelusually observed as an image artifact in the nal image. In this study these artifactsare seen as a smile around the main object. Two methods are suggested in this thesiswork to suppress this artifact. The rst method combines the scattered eld informationreceived from both rear and front of the object to reconstruct two separate images, onefrom rear view and one from front view of the object respectively. Since the scatteredelds from behind the object are mirrored, the pixel by pixel multiplication of thesetwo images for objects with simple geometry will cancel the artifact. This method isvery simple and fast applicable to objects with simple geometry. However this methodcannot be used for objects with rather complex geometry and boundaries. Thereforethe Range Point Migration (RPM) method is used along with the global characteristicsof the observed range map to introduce a new artifact rejection method based on thedirectional of arrival (DOA) of scattered elds at each pixel. DOA information can beused to calculate an optimum theta for each antenna. This optimum angle along withthe real physical direction of arrival at each position can produce a weighting factor thatlater can be used to suppress the eect of undesired scattered elds producing the smileshaped artifact. Final results of this study clearly show that the UWB SAR accompaniedwith DOA can produce an image of an object free of undesired artifact from scatteredeld of adjacent antennas.
|
172 |
Ultra Wide Band Sigma-Delta modulator in CMOS090 / UWB Sigma-Delta modulator i CMOS090Jonsson, Fredrik January 2004 (has links)
Today the frequency spectrum is full of wireless standards. The most common technique being used is the frequency modulation. To take advantage of this and the technology improvement a new wireless communication standard is being developed. This standard is using a low power impulse modulation method, allowing it to overlap with other standards. The proposed standard called IEEE802.15.3a is applied at an Ultra Wide Band and has potential to be used both in interchip and intrasystem communication, since it allows a very high data density. In this thesis the analog to digital converter is designed, which is one part of a communication system. Although the signal bandwidth is very wide the converter is designed as a Sigma-Delta modulator, which is most suitable for low-speed applications. Its main advantages over high-speed converters are less area and less power consumption. The goal of this project is to investigate if the CMOS090 process technology will be sufficient for reaching a signal-to-noise ratio, SNR, of 30 dB in a signal band of 264 MHz. The main limiting factor during the design of the modulator is the excess feedback delay. This delay degrades the SNR and can even make the system unstable. At a feedback delay of 83 ps and a sampling frequency of 6.336 GHz, the maximum SNR achieved was 27 dB. At this high frequency the modulator is close to instability. Hence, to ensure stability a maximum sampling frequency of 4.224 GHz is chosen, achieving a SNR of 19 dB. The effect of the feedback delay can be reduced either by using a different structure or by using compensation methods, either of them would probably allow a SNR above 30 dB.
|
173 |
Design of a transmitter for Ultra Wideband Radio / Konstruktion av en sändare till Ultra Wideband RadioAndersson, Christofer January 2003 (has links)
Ultra Wideband Radio (UWB) is an upcoming alternative for wireless communications. Since the Federal Communication Commission in the USA allowed UWB for unlicensed usage in April 2002, more and more companies have started developing UWB systems. The major difference with UWB compared to other RF systems is that UWB sends information with pulses instead of using a carrier wave. The technique is from the nineteenth century and was first developed by Heinrich Hertz (1857-1894), which led to transatlantic communications 1901. This Master thesis presents a proposal of a transmitter for Ultra Wideband Radio using multiple bands. The proposed transmitter is implemented on system level in Simulink, Matlab. The frequency generation in the transmitter is also implemented at component level in a 0.13 um IBM process. The thesis begins with an introduction of UWB theory and techniques.
|
174 |
Investigation of Limiters For HPM and UWB Front-door Protection / Undersökning av limitrar för HPM och UWB framvägskopplingsskyddNilsson, Tony January 2006 (has links)
An extensive investigation of front-door protection devices i.e. limiters has been made. The thesis work contains both HPM- and UWB-measurements done on various limiters, in order to characterize them. The measurements show that all limiters are not suitable as protection against HPM- and UWB-pulses. The limiters that were found to provide the best protection are limiters based on diode technologies. PIN- and Schottky-diodes generally shows very good performance and they fulfill many parameters that have been set by FOI. To obtain a full protection it is presumably necessary to use two or more limiters in combination, which complement each other. / En omfattande studie av framvägskopplingsskydd, dvs. limiters har gjorts. Examensarbetet innehåller resultat från både HPM- och UWB- mätningar som har gjorts på olika limitrar för att karaktärisera deras prestanda. Av resultaten från mätningarna kan man se att alla limitrar inte passar som skydd mot HPM- och UWB-pulser. De limitrar som tillhandahöll det bästa skyddet var baserade på olika diodtekniker. PIN- och Schottky-dioder visade sig överlag ha väldigt goda prestanda och de uppfyller många av de parametrar som bestämts av FOI. För att få ett heltäckande skydd är det förmodligen nödvändigt att man använder två eller flera limitrar i kombination, som kompletterar varandra.
|
175 |
Design, Modeling, and Analysis for MAC Protocols in Ultra-wideband NetworksLiu, Kuang-Hao January 2008 (has links)
Ultra-wideband (UWB) is an appealing transmission technology for
short-range, bandwidth demanded wireless communications. With the
data rate of several hundred megabits per second, UWB demonstrates
great potential in supporting multimedia streams such as
high-definition television (HDTV), voice over Internet Protocol
(VoIP), and console gaming in office or home networks, known as the
wireless personal area network (WPAN). While vast research effort
has been made on the physical layer issues of UWB, the corresponding
medium access control (MAC) protocols that exploit UWB technology
have not been well developed.
Given an extremely wide bandwidth of UWB, a fundamental problem on
how to manage multiple users to efficiently utilize the bandwidth is
a MAC design issue. Without explicitly considering the physical
properties of UWB, existing MAC protocols are not optimized for
UWB-based networks. In addition, the limited processing capability
of UWB devices poses challenges to the design of low-complexity MAC
protocols. In this thesis, we comprehensively investigate the MAC
protocols for UWB networks. The objective is to link the physical
characteristics of UWB with the MAC protocols to fully exploit its
advantage. We consider two themes: centralized and distributed UWB
networks.
For centralized networks, the most critical issue surrounding the
MAC protocol is the resource allocation with fairness and quality of
service (QoS) provisioning. We address this issue by breaking down
into two scenarios: homogeneous and heterogeneous network
configurations. In the homogeneous case, users have the same
bandwidth requirement, and the objective of resource allocation is
to maximize the network throughput. In the heterogeneous case, users
have different bandwidth requirements, and the objective of resource
allocation is to provide differentiated services. For both design
objectives, the optimal scheduling problem is NP-hard. Our
contributions lie in the development of low-complexity scheduling
algorithms that fully exploit the characteristics of UWB.
For distributed networks, the MAC becomes node-based problems,
rather than link-based problems as in centralized networks. Each
node either contends for channel access or reserves transmission
opportunity through negotiation. We investigate two representative
protocols that have been adopted in the WiMedia specification for
future UWB-based WPANs. One is a contention-based protocol called
prioritized channel access (PCA), which employs the same mechanisms
as the enhanced distributed channel access (EDCA) in IEEE 802.11e
for providing differentiated services. The other is a
reservation-based protocol called distributed reservation protocol
(DRP), which allows time slots to be reserved in a distributed
manner. Our goal is to identify the capabilities of these two
protocols in supporting multimedia applications for UWB networks. To
achieve this, we develop analytical models and conduct detailed
analysis for respective protocols. The proposed analytical models
have several merits. They are accurate and provide close-form
expressions with low computational effort. Through a cross-layer
approach, our analytical models can capture the near-realistic
protocol behaviors, thus useful insights into the protocol can be
obtained to improve or fine-tune the protocol operations. The
proposed models can also be readily extended to incorporate more
sophisticated considerations, which should benefit future UWB
network design.
|
176 |
A dual-mode Q-enhanced RF front-end filter for 5 GHz WLAN and UWB with NB interference rejectionPham, Bi Ngoc 20 December 2007 (has links)
The 5 GHz Wireless LAN (802.11a) is a popular standard for wireless indoor communications providing moderate range and speed. Combined with the emerging ultra Wideband standard (UWB) for short range and high speed communications, the two standards promise to fulfil all areas of wireless application needs. However, due to the overlapping of the two spectrums, the stronger 802.11a signals tend to interfere causing degradation to the UWB receiver. This presents one of the main technical challenges preventing the wide acceptance of UWB.
The research work presented in this thesis is to propose a low cost RF receiver front-end filter topology that would resolve the narrowband (NB) interference to UWB receiver while being operable in both 802.11a mode and UWB mode. The goal of the dual mode filter design is to reduce cost and complexity by developing a fully integrated front-end filter. The filter design utilizes high Q passive devices and Q-enhancement technique to provide front-end channel-selection in NB mode and NB interference rejection in UWB mode.
In the 802.11a NB mode, the filter has a tunable gain of 4 dB to 25 dB, NF of 8 dB and an IIP3 between -47 dBm and -18 dBm. The input impedance is matched at -16 dB. The frequency of operation can be tuned from 5.15 GHz to 5.35 GHz. In the UWB mode, the filter has a gain of 0 dB to 8 dB across 3.1 GHz to 9 GHz. The filter can reject the NB interference between 5.15 GHz to 5.35 GHz at up to 60 dB. The Q of the filter is tunable up to a 250 while consuming a maximum of 23.4 mW of power. The fully integrated dual mode filter occupies a die area of 1.1 mm2.
|
177 |
Studies in Wireless Home Networking Including Coexistence of UWB and IEEE 802.11a SystemsFiroozbakhsh, Babak 25 January 2007 (has links)
Characteristics of wireless home and office services and the corresponding networking issues are discussed. Local Area Networking (LAN) and Personal Area Networking (PAN) technologies such as IEEE 802.11 and Ultra Wideband (UWB) are introduced. IEEE 802.11a and UWB systems are susceptible to interference from each other due to their overlapping frequencies. The major contribution of this work is to provide a framework for coexistence of the two systems. The interference between the two systems is evaluated theoretically by developing analytical models, and by simulations. It is shown that the interference from UWB on IEEE 802.11a systems is generally insignificant. IEEE 802.11a interference on UWB systems, however, is very critical and can significantly increase the bit error rate (BER) and degrade the throughput of the UWB system. A novel idea in the MAC layer is presented to mitigate this interference by means of temporal separation. Simulation results validate our technique. Implications to wireless home services such as high definition television (HDTV) are provided. Future research directions are discussed.
|
178 |
The Baseband Signal Processing and Circuit Design for IEEE 802.12.4a-2007 Impulse Radio Ultra-Wideband SystemWu, Jia-Hao 13 August 2012 (has links)
In recent years, the requirement of application such as wireless sensor networks and short-range wireless controllers caused the growing of ZigBee technology. ZigBee is a communication technology developed specifically for short-range, low rate, low-cost wireless transmission.There are some characteristic such as short-range, low rate, low cost, and low power. The ZigBee Aliance group developed the specifications of software, and IEEE 802.15.4 group developed the specifications of hardware.
IEEE 802.15.4a impulse radio UWB physical layer is one of the ZigBee physical layers. In our study, we designed a baseband signal processing algorithm meeting the specifications of IEEE 802.15.4a. The data processing flow in transmitter followed the specifications. In receiver, we designed baseband algorithms based-on the non-coherent energy detection scheme. Our algorithm including packet detection, synchronization and demodulation, and considering the implementation of algorithm, reducing the complexity of hardware as possible and improving the efficiency. Finally, the system performance is 3.9dB better than the receiver sensitivity.
|
179 |
Design and implementation of frequency synthesizers for 3-10 ghz mulitband ofdm uwb communicationMishra, Chinmaya 15 May 2009 (has links)
The allocation of frequency spectrum by the FCC for Ultra Wideband (UWB)
communications in the 3.1-10.6 GHz has paved the path for very high data rate Gb/s
wireless communications. Frequency synthesis in these communication systems involves
great challenges such as high frequency and wideband operation in addition to stringent
requirements on frequency hopping time and coexistence with other wireless standards.
This research proposes frequency generation schemes for such radio systems and their
integrated implementations in silicon based technologies. Special emphasis is placed on
efficient frequency planning and other system level considerations for building compact
and practical systems for carrier frequency generation in an integrated UWB radio.
This work proposes a frequency band plan for multiband OFDM based UWB
radios in the 3.1-10.6 GHz range. Based on this frequency plan, two 11-band frequency
synthesizers are designed, implemented and tested making them one of the first
frequency synthesizers for UWB covering 78% of the licensed spectrum. The circuits are
implemented in 0.25µm SiGe BiCMOS and the architectures are based on a single VCO at a fixed frequency followed by an array of dividers, multiplexers and single sideband
(SSB) mixers to generate the 11 required bands in quadrature with fast hopping in much
less than 9.5 ns. One of the synthesizers is integrated and tested as part of a 3-10 GHz
packaged receiver. It draws 80 mA current from a 2.5 V supply and occupies an area of
2.25 mm2.
Finally, an architecture for a UWB synthesizer is proposed that is based on a
single multiband quadrature VCO, a programmable integer divider with 50% duty cycle
and a single sideband mixer. A frequency band plan is proposed that greatly relaxes the
tuning range requirement of the multiband VCO and leads to a very digitally intensive
architecture for wideband frequency synthesis suitable for implementation in deep
submicron CMOS processes. A design in 130nm CMOS occupies less than 1 mm2 while
consuming 90 mW. This architecture provides an efficient solution in terms of area and
power consumption with very low complexity.
|
180 |
Design of CMOS integrated frequency synthesizers for ultra-wideband wireless communications systemsTong, Haitao 15 May 2009 (has links)
Ultra¬wide band (UWB) system is a breakthrough in wireless communication, as it provides data rate one order higher than existing ones. This dissertation focuses on the design of CMOS integrated frequency synthesizer and its building blocks used in UWB system.
A mixer¬based frequency synthesizer architecture is proposed to satisfy the agile frequency hopping requirement, which is no more than 9.5 ns, three orders faster than conventional phase¬locked loop (PLL)¬based synthesizers. Harmonic cancela¬tion technique is extended and applied to suppress the undesired harmonic mixing components. Simulation shows that sidebands at 2.4 GHz and 5 GHz are below 36 dBc from carrier. The frequency synthesizer contains a novel quadrature VCO based on the capacitive source degeneration structure. The QVCO tackles the jeopardous ambiguity of the oscillation frequency in conventional QVCOs. Measurement shows that the 5¬GHz CSD¬QVCO in 0.18 µm CMOS technology draws 5.2 mA current from a 1.2 V power supply. Its phase noise is ¬120 dBc at 3 MHz offset. Compared with existing phase shift LC QVCOs, the proposed CSD¬QVCO presents better phase noise and power efficiency.
Finally, a novel injection locking frequency divider (ILFD) is presented. Im¬plemented with three stages in 0.18 µm CMOS technology, the ILFD draws 3¬mA current from a 1.8¬V power supply. It achieves multiple large division ratios as 6, 12, and 18 with all locking ranges greater than 1.7 GHz and injection frequency up to 11 GHz. Compared with other published ILFDs, the proposed ILFD achieves the largest division ratio with satisfactory locking range.
|
Page generated in 0.0205 seconds